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ñ Quantum number -
~n Box vector Å
P Probability -
Pacc Acceptance probability -
P Momentum kg·m/s
~P Momentum vector kg·m/s
p Pressure Pa
p0 Vapor pressure (above flat interface) Pa
Q Fictitious mass kg
q Quaternion -
q̃ Partial charge C
R Universal gas constant J/(K·mol)
r Radius m
r̃ Roughness ratio -
r̄ Mean of compensation charge cloud Å
~r Position Å
S Entropy J/K
s̄ Additional degree of freedom in the Nosé-Hoover -

thermostat
s̃ Integer in the Ewald summation -
T Temperature K
~T Torque N·m
t Time s
U Internal energy J
u One-electron potential J
V Volume m3

v Speed m/s
~v Velocity m/s
W Total number of available microscopic states -
W̌ Wiener noise -
w Weight -
w̃ Rosenbluth weight for chain segment
x Mole fraction -
Z System partition function -
z Particle partition function -

α Proposal probability -
αL Lagrangian multiplier -
βL Lagrangian multiplier 1/J
Γ Mass specific adsorbed amount mol/kg
γL Lagrangian multiplier 1/particle

XII



δ Wildcard (numerical value) -
ε0 Vacuum permittivity (8.854 · 10−12 A2s4/(kg ·m3)) A2s4/(kg ·m3)
ε Lennard-Jones well-depth J/mol
ε Particle energy J
ζ Random number -
Θ Contact angle deg
Θ̃ Occupancy of adsorption sites -
θ Bond angle deg
κ Scaling factor in velocity rescaling thermostats -
Λ de-Broglie wavelength m
λ Scaling factor -
λL Lagrangian multipliers -
µ Chemical potential J/particle
ν Number of adsorbate molecules that can simultaneously -

occupy an adsorption site
ξ Friction coefficient in the Nosé-Hoover thermostat 1/s
π̃ Spreading pressure J/m2

π̄ Transition probability -
$ Ewald splitting parameter 1/Å
ρ Density kg/m3

σ Surface tension J/m2

σ̄ Holonomic constraint -
σ̃ Lennard-Jones distance Å
τ Coupling parameter in the CSVR algorithm s
Υ Position of segment for o in CBMC Å
Φ Torsion angle deg
ϕ Atomic orbital -
φ Electrostatic potential J
χ Electronegativity -
Ψ Eigenfunction describing the quantum state of a system -
ψ Molecular orbital/Eigenfunction -
Ω Entropy factor -
ω Rotational angle deg
ω{Ns} Number of realizations -
~ω Angular velocity 1/s

A Number of systems in Gibbs’ thought experiment -
E Total energy of the collection of systems J
H Hamiltonian J
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1 Motivation

I would like to start by emphasizing the
importance of surfaces. It is at a surface where
many of our most interesting and useful
phenomena occur. We live for example on the
surface of a planet. It is at a surface where the
catalysis of chemical reactions occur. It is
essentially at a surface of a plant that sunlight
is converted to a sugar. [...]

Walter H. Brattain, in his Noble Lecture, 1956

This extract from the Nobel Lecture by Walter H. Brattain, who together with William B.
Shockley and John Bardeen received the Nobel Prize in Physics for their work on semicon-
ductors, gives an impression of the importance of surfaces and the phenomena that occur on
them. Surface phenomena are an integral part of everyday life – whether in the appearance
of bubbles in the sink after washing one’s hands or in the design of water-repellent clothing.
Surface phenomena also find application in industrial processes, such as catalysis, fluid pu-
rification, or separation. For industrial application, materials with huge surface-to-volume
ratios are preferred. Solids with pores in the nanometer range (i.e. nanoporous solids) are
such materials, and of these, metal-organic frameworks are the most versatile class. Metal-
organic frameworks have already received a high level of attention. The modular structure
– MOFs consist of inorganic nodal building blocks that are connected by organic linking
building blocks – allows almost continuous adjustment of pore size, shape, and environment.
However, many aspects of surface phenomena in or on metal-organic frameworks are not yet
fully understood. For example, it is known that entropy favors the accumulation of smaller
guest molecules in nanoporous solids at high loading. But does entropy also favor the ac-
cumulation of water in metal-organic frameworks with internal hydrophobicity? Speaking
of which, how is the hydrophobicity of the internal and external surface of metal-organic
frameworks related? And how can modern visualization techniques, such as virtual reality,
help in studying metal-organic frameworks and the guest molecules within them?

This thesis aims to shed light on these questions using classical molecular simulations. Molec-
ular simulations are a helpful tool for studying surface phenomena, because they can com-
plement experiments by providing insights at the microscopic level, and offer the possibility
of exploring surface phenomena that can only rarely be investigated in experiments, plus
help to improve the efficiency of experiments by predicting metal-organic frameworks with
desired properties.
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After describing the theoretical background in Section 2, the following research studies are
presented:

1. The investigation of the impact of entropic effects on the separation of aqueous alcohol
mixtures in CAU-10 (Section 3) using Monte Carlo simulations.

2. The study of the relationship between internal and external hydrophobicity of metal-
organic frameworks (Section 4) using Monte Carlo and molecular dynamics simulations.

3. The development of MOF-VR: a virtual reality tool to study guest molecules in metal-
organic frameworks (Section 5).

Each research study is introduced by a detailed motivation and an overview of the state of
the research. Finally, the results are summarized in relation to each other in Section 6.
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2 Theory Section

2.1 Interfacial Phenomena

Interfaces – whether fluid-fluid, fluid-solid, or solid-solid interfaces – give rise to a number
of phenomena, which arise from the peculiar energy state of the surface particles shown in
Fig. 1. In condensed phase, each particle is surrounded by a large number of other particles
with which it shares attractive interactions (see Fig. 1a). The net force acting on any particle
in the solid is zero. If we were now to suddenly remove the top layers of the solid, the particles
in the resulting surface region would lack part of their attractive interactions (see Fig. 1b),
and the net force acting on these particles would be unbalanced. As a result, the particles
in the surface region would now be pulled inward until the net force acting on each particle
is balanced by the force due to the compression resistance of the bulk solid (see Fig. 1c).

Fig. 1: Illustration of a solid surface. (a) The net force acting on any particle (colored red) in
the bulk solid is zero (blue force vectors; only shown for the nearest neighbors). (b) If the top
layers of the solid were suddenly removed, the surface particles would lack part of their attractive
interactions, and (c) be pulled inward. Source: author’s illustration inspired by Coussy, 2010, p.
108 [1].

The driving force for minimizing the interfacial area is the reduction of the internal energy
of the system,

dU = TdS − pdV + σdAi +
∑
i

µidni, (1)

where T is the temperature, S is the entropy, p is the pressure, V is the volume, σ is the
surface tension, Ai is the interfacial area, µi is the chemical potential of chemical species i,
and ni is the amount of i. The term σdAi represents the work performed by changing the
interfacial area. Many interfacial phenomena can be traced back to surface tension. In the
following sections, we will discuss:

1) the adsorption of gases on solid surfaces (Sec. 2.1.1),

2) the adsorption of liquid mixtures on solid surfaces (Sec. 2.1.2), and

3) the wetting of solid surfaces (Sec. 2.1.3).
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2.1.1 Adsorption of Gases on Solid Surfaces

Adsorption is a ubiquitous phenomenon that leads to an increase in fluid density near an
interface and is driven by the reduction of surface tension. Industrial applications of ad-
sorption include drying of gases, separation of fluids, or use in catalysis. As the extent of
adsorption depends on the size of the interface, industrial adsorption materials possess large
surface-to-volume ratios, such as nanoporous solids. Below, we will establish a relationship
between adsorption and surface tension before turning to the special case of adsorption of
gases on solid surfaces. In the process, we will draw on terms that are commonly used in
the field, which are listed in Tab 1.

Tab. 1: Common terms used in the field of adsorption on solid surfaces [2, 3].

Term Explanation

adsorption/desorptionadsorption/desorption accumulation/exclusion of matter near interfaces

adsorbentadsorbent solid on which adsorption occurs

adsorptiveadsorptive substance that can be adsorbed (e.g. gas)

adsorbateadsorbate adsorbed matter

microporemicropore pore with width ≤ 2 nm

ultramicroporeultramicropore micropore with width < 0.7 nm

mesoporemesopore pore with width > 2 nm and < 50 nm

macroporemacropore pore with width ≥ 50 nm

nanoporenanopore pore with width ≤ 100 nm

external surfaceexternal surface surface outside pores of porous adsorbent

internal surfaceinternal surface surface of all pores of porous adsorbent

Note that we will focus on physisorption, which deals only with adsorption effects that do not
involve the formation of chemical bonds – in contrast to chemisorption. We will establish a
relationship between adsorption and surface tension by using the example of a heterogeneous
system that consists of a solid phase, α, a gas phase, β, and an interfacial layer, γ. The
integral version of Eq. (1) vanishes for the bulk phases (i.e. α or β), but not for the interfacial
layer, γ ([4], p. 14),

Uα − TSα + pV α −
∑
i

µin
α
i = 0, (2)

Uβ − TSβ + pV β −
∑
i

µin
β
i = 0, (3)

Uγ − TSγ + pV γ −
∑
i

µin
γ
i = Aiσ. (4)
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By differentiation of Eq. (4),

Aidσ + σdAi = dUγ − SγdT − TdSγ + V γdp+ pdV γ −
∑
i

µidnγi −
∑
i

nγi dµi, (5)

and comparison with the interfacial analog of Eq. (1),

σdAi = dUγ − TdSγ + pdV γ −
∑
i

µidnγi , (6)

we obtain:
0 = Aidσ = −SγdT + V γdp−

∑
i

nγi dµi, (7)

which applies to any kind of interfacial layer. For the adsorption of a pure gas on a solid
surface at constant p and T , Eq. (7) reduces to:

Aidσ = −nγgdµg, (8)

where nγg is the amount of gas located in the interfacial layer, µg is the chemical potential of
the gas, and the solid is assumed to be inert (dµs = 0). By dividing Eq. (8) by the surface
area, we obtain the relationship between adsorption and surface tension – often referred to
as Gibbs adsorption isotherm ([4], p. 30),

dσ = −
[
nγg
]
dµg, (9)

where
[
nγg
]
is the areal amount of gas in the interfacial layer.

Fig. 2: Classification of physisorption isotherms according to IUPAC. Source: author’s illustration
inspired by IUPAC, 2015, p. 8 [3].
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Gas adsorption on solid surfaces is commonly expressed quantitatively by plotting the
pressure-dependent increase in the (mass) specific adsorbed amount of gas,

Γg =
[
nγg
]
Asp, (10)

where Asp is the specific surface. These plots are recorded at constant temperature and
thus called adsorption isotherms. The International Union of Pure and Applied Chemistry
(IUPAC) [3] distinguishes six (plus two) types of adsorption isotherms (see Fig. 2):

• Type I isotherms are often found for the adsorption of gases on solids with narrow
pores. This type of isotherm is characterized by a sharp uptake of adsorbate at low
pressure (due to the high adsorption energy in narrow pores) and the formation of a
plateau when approaching the vapor pressure, p0, of the adsorptive (due to the low
external surface area). Type I isotherms can be divided into

– Type I(a) isotherms for narrow micropores (< 1 nm), and

– Type I(b) isotherms for wider micropores and narrow mesopores (< 2.5 nm),

which differ primarily in the steepness of the slope for low pressures. A type I isotherm
can be found for the adsorption of ethanol in CAU-10 (see Sec. 3.4.1).

• Type II isotherms are often found for the adsorption of gases on non-porous or macrop-
orous solids. This type of isotherm is characterized by a sharp uptake at low pressures
(due to the formation of an adsorbate monolayer) and a subsequent linear range up
to pressures close to p0. In this linear range, the accumulation of matter increases
progressively (due to the formation of a multilayer of adsorbate). A type II isotherm
can be found for the adsorption of nitrogen in CAU-10 [5].

• Type III isotherms are found for the adsorption of gases on solid surfaces with weak
adsorbate-adsorbent interactions. This type of isotherm is characterized by a poor
increase at low pressures (indicating that the formation of a monolayer is not preferred)
and a steep increase for pressures close to p0 (multilayer formation). Type III isotherms
are rare.

• Type IV isotherms are often found for the adsorption of gases in mesoporous solids.
They are similar to type II isotherms, but differ in the occurrence of a plateau at high
pressures. Type IV isotherms can be divided into:

– Type IV(a) isotherms for mesopores exceeding a critical width (e.g. about 4 nm
for nitrogen), and

– Type IV(b) isotherms for small mesopores,

which differ in the occurrence of adsorption hysteresis – i.e. adsorption and desorption
branch are not congruent – caused by capillary condensation in wider mesopores. A
type IV isotherm can be found for the adsorption of nitrogen in SBA-15 [6].
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• Type V isotherms are often found for the adsorption of gases on porous materials with
weak adsorbate-adsorbent interactions. This type of isotherm is similar to a type III
isotherm, except for the plateau at high pressures and the occurrence of adsorption
hysteresis. A type V isotherm can be found for the adsorption of water in CAU-10 [7].

• Type VI isotherms are found for the adsorption of gases on highly uniform solid sur-
faces. This type of isotherm is characterized by a stepwise formation of adsorbate
layers. Type VI isotherms are rare.

Determining Γg requires knowledge on the composition of the interfacial layer. For adsorption
in nanoporous solids, we can safely neglect the influence of the external surface. In adsorption
simulations, we can thus determine Γγg by counting the particles in the pores, providing nγg ,
and dividing the result by the adsorbent’s mass. But this is hardly feasible in the experiment.
When we wish to compare simulated gas adsorption isotherms with experimental ones, we
need to define what is measured in the experiment.

Fig. 3: Accumulation of gas on a solid surface. (a) Real system arbitrarily divided in solid phase,
α, interfacial layer, γ, and gas phase, β. (b) The Gibbs dividing surface (red) separates the system
in phase I and II. Source: author’s illustration inspired by Rouquerol et al., 1999, p. 30 [2].

Fig. 3 illustrates the concentration profile for a single component gas near a solid surface.
In consistency with the conventions used in Eqs. (2) - (4), we divide the system into three
phases: a solid phase, α, a gas phase, β, and an interfacial layer, γ. In the following, we will
assume that there is no gas accumulation in the solid phase – i.e. there is no absorption.
The concentration profile in Fig. 3a shows an increased gas concentration in the interfacial
layer, γ, which decreases progressively with increasing distance from the solid surface until
the concentration of the bulk gas phase is reached. We can define nγg as being the difference
of the total amount of gas in the system, ng, and the amount of gas in the bulk gas phase,
cβgV

β,
nγg = ng − cβgV β, (11)

where cβg is the gas concentration profile and V β is the volume of the bulk gas phase, β.
Eq. (11) is difficult to evaluate because we are often unable to determine the concentration
profile and/or unambiguously separate the interfacial layer, γ, and the gas phase, β, due to
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the asymptotic approximation of the concentration profile to the bulk gas concentration. As
a consequence, we often apply a technique called Gibbs dividing surface (GDS) illustrated
in Fig. 3b. The fundamental idea is to compare the real system with a reference system of
same volume in which cβg is constant up to the GDS, i.e. there is no gas accumulation near
the solid surface in the reference system. The difference between the total amount of gas in
the real system, ng, and the total amount of gas in the reference system, n′g, is dubbed as
the surface excess amount of gas ([4], p. 8),

nσg = ng − n′g = ng − (cIgV
I + cIIg V

II), (12)

where cIg and cIIg are the gas concentrations, and V I and V II are the volumes of phase I or II
of the reference system. Eq. (12) indicates that the surface excess amount of gas depends on
the position of the GDS and is thus no unambiguously defined physical quantity. However,
certain linear combinations of the surface excess amount for two of more components are
independent of the location of the GDS. One of them is referred to as the relative adsorption
excess of one component with respect to another component, and is often used for the
quantitative expression of gas adsorption on solid surfaces. We define the relative adsorption
excess by determining the surface excess amount of solid,

nσs = ns − (cIsV
I + cIIs V

II), (13)

where ns is the total amount of solid in the system, and cIs and cIIs are the concentration of
solid in phase I or II. Using V I = V − V II, Eq. (12) and Eq. (13) reduce to:

nσg = ng − cIgV + (cIg − cIIg )V II, (14)

nσs = ns − cIsV + (cIs − cIIs )V II, (15)

in which only V II depends on the position of the GDS. To eliminate this dependency, we
multiply Eq. (15) with (cIg − cIIg )/(cIs − cIIs ),

nσs
cIg − cIIg
cIs − cIIs

= (ns − cIsV )
cIg − cIIg
cIs − cIIs

+ (cIg − cIIg )V II, (16)

and subtract the result from Eq. (14),

nσg − nσs
cIg − cIIg
cIs − cIIs

= ng − cIgV − (ns − cIsV )
cIg − cIIg
cIs − cIIs

. (17)

The right-hand side of Eq. (17) consists of unambiguously defined quantities, which are
independent of the position of the GDS. As a result, the relative surface excess of gas with
respect to the solid,

nσ(s)
g = nσg − nσs

cIg − cIIg
cIs − cIIs

, (18)
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is also independent of the position of the GDS. Division by the mass of the adsorbent leads
to the specific relative surface excess of gas with respect to the solid ([4], p. 9),

Γσ(s)
g = Γσg − Γσs

cIg − cIIg
cIs − cIIs

. (19)

Commonly, the position of the GDS, z̃, is chosen so that Γσs = 0 and, as a consequence,

Γσ(s)
g =

(
Γσg
)
z̃
, (20)

which corresponds to placing the GDS directly on the solid surface, so that the difference
between nγg (determined in adsorption simulations) and n

σ(s)
g (measured in adsorption ex-

periments) is provided by:
nγg − nσg = cβgV

γ. (21)

Unless otherwise stated, gas adsorption isotherms shown in the following sections plot the
absolute adsorbed amount of a gas as a function of pressure.

2.1.2 Adsorption from Liquid Mixtures at Solid Surfaces

Another common interfacial phenomenon is the adsorption from liquid mixtures, where we
often observe the preferential adsorption of one or more components of the mixture. The
preferential adsorption is driven by the reduction of surface tension,

dσ = −
∑
i

[nγi ] dµi, (22)

which is tantamount to Eq. (7) for constant p and T . In Eq. (22) we are to determine
the composition of the interfacial layer (given by nγ1 , n

γ
2 , . . . ) that minimizes the surface

tension. Similar to gas adsorption, it is often impossible to determine the composition of
the interfacial layer in an experiment. We use thus the Gibbs dividing surface to define the
reduced surface excess. Again, we compare the real system to a hypothetical one in which
the concentrations of the components in the bulk liquid phase are assumed to be constant
up to the GDS. The reduced surface excess is obtained by considering the surface excess of
component i,

nσi = ni − cIiV + (cIi − cIIi )V II, (23)

where ni is the total amount of i in the real system and cIi and cIIi are the concentrations of
i in phase I or II of the reference system, and the total surface excess,

nσ = n− cIV + (cI − cII)V II, (24)

where n is the total amount of matter in the real system, and cI and cII are the total
concentrations of the components in phase I or II of the reference system. In both equations,
only V II, depends on the position of the GDS. To eliminate this dependency, we multiply
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Eq. (24) by (cIi − cIIi )/(cI − cII),

nσ
cIi − cIIi
cI − cII

= (n− cIV )
cIi − cIIi
cI − cII

+ (cIi − cIIi )V II, (25)

and subtract the result from Eq. (23),

nσi − nσ
cIi − cIIi
cI − cII

= ni − cIiV − (n− cIV )
cIi − cIIi
cI − cII

. (26)

The right-hand side of Eq. (26) contains only unambiguously defined quantities which are
independent of the position of the GDS. Thus, the reduced surface excess of i with respect
to the total amount of matter,

n
σ(n)
i = nσi − nσ

cIi − cIIi
cI − cII

, (27)

is also independent of the position of the GDS. Division by the mass of the adsorbent leads
to the specific reduced surface excess of i ([4], p. 9),

Γ
σ(n)
i = Γσi − Γσ

cIi − cIIi
cI − cII

. (28)

Commonly, the position of the GDS, z̃, is chosen so that

Γσ =
∑
i

Γσi = 0, (29)

and, thus,
Γ
σ(n)
i = (Γσi )z̃ . (30)

This choice of the GDS has three major consequences:

1. Reference and real system have the same total amount of fluid.

2. The specific reduced surface excess of i is tantamount to the difference of the specific
total amount of i in the real system, Γi, and the specific total amount of i in the
reference system, Γ′i,

Γ
σ(n)
i = Γi − Γ′i =

n

ma
(xi − x′i), (31)

where n is the total amount of fluid in the mixture, xi is the (total) mole fraction of i in
the real system – i.e. corresponding to the mole fraction of i in the pores (simulation)
or the initial liquid mixture (experiment) –, and x′i is the mole fraction of i in the
reference system – i.e. the equilibrium mole fraction of i in the liquid mixture.

3. For binary liquid mixtures, the surface excess of component 1 provides the surface
excess of component 2,

Γσ1 = −Γσ2 . (32)
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The reduced surface excess for binary liquid mixtures is commonly plotted against the equi-
librium mole fraction of one of the components in the liquid phase. IUPAC [8] classifies
these excess isotherms into two main groups: U-shaped and S-shaped isotherms. U-shaped
isotherms indicate the preferential adsorption of one component over the whole concentration
range, while S-shaped isotherms indicate a selectivity reversal.

Fig. 4: Reduced surface excess isotherms (red) of binary liquid mixtures and exemplary amount
nγ1 and nγ2 in the interfacial layer (gray). Source: author’s illustration inspired by Nagy and Schay,
1963, p. 370 [9].

Nagy and Schay [9] further divided U-shaped and S-shaped excess isotherms into a total of
five types (see Fig. 4):

• Type I excess isotherms are U-shaped (Fig. 4a). They indicate the preferential ad-
sorption of one component in the mixture over the whole concentration range. A
type I excess isotherm can be found for the adsorption of a mixture of benzene (1) and
1,2-dichloroethane (2) on alumina [9].

• Type II excess isotherms are U-shaped (Fig. 4b). They indicate a strong preference
for the adsorption of one component in the mixture. Within a certain concentration
range, the preferential adsorption of one component leads to the exclusion of the other
one from the adsorbed layer. A type II excess isotherm can be found for the adsorption
of a mixture of n-octane (1) and ethanol (2) on SBA-16 [10].

• Type III excess isotherms are U-shaped (Fig. 4c). They indicate the preferential ad-
sorption of one component in the mixture. Within a certain concentration range, the
composition of the mixture in the interfacial layer approaches the composition of the
mixture in the bulk liquid phase. A type III excess isotherm can be found for the
adsorption of a mixture of water (1) and ethanol (2) on charcoal [9].

11



• Type IV excess isotherms are S-shaped (Fig. 4d). Within a certain concentration range,
the composition of the mixture in the interfacial layer is constant until a reversal of
selectivity occurs. The zero of the excess isotherm is called the azeotropic point. At this
point, the composition of the interfacial layer equals the one in the bulk liquid layer.
A type IV excess isotherm can be found for the adsorption of a mixture of ethanol (1)
and benzene (2) on charcoal [9].

• Type V excess isotherms are S-shaped (Fig. 4e). The composition of the mixture in
the interfacial layer is not constant in any part of the concentration range. A type V
excess isotherm can be found for the adsorption of a mixture of methyl acetate (1) and
benzene (2) on charcoal [9].

2.1.3 Contact Angles of Liquids at Solid Surfaces

Understanding and controlling the wettability of solid surfaces is important in many indus-
tries, such as in the production of paints, stain-resistant textiles, or water-repellent eyeglass
lenses ([11], pp. 1–2). Wettability can be evaluated by bringing a liquid droplet into contact
with a solid surface. The liquid droplet will either spread completely, partially, or not at all.
In the case of partial spreading, a sessile droplet with a certain angle between the tangent
of the droplet and the solid surface forms at equilibrium. This angle is often referred to as
contact angle, Θ, and is the result of three competing forces (illustrated in Fig. 5a), namely
the desire to decrease:

1. the solid-liquid interface to reduce the solid-liquid surface tension, σs/l,

2. the solid-vapor interface to reduce the solid-vapor surface tension, σs/v, and

3. the liquid-vapor interface to reduce the liquid-vapor surface tension, σl/v.

Fig. 5: (a) The contact angle of a sessile droplet is the result of three competing surface tensions: the
solid-liquid surface tension, σs/l, the solid-vapor surface tension, σs/v, and the liquid-vapor surface
tension, σl/v. (b) The relationship between surface tension and contact angle can be derived by
displacing the contact line of the droplet by dx. An area Ldx of the solid surface would be uncovered
to the vapor phase, while the liquid-vapor phase would be reduced by an area Ldy = L cos Θdx.
Source: author’s illustration inspired by (a) Law and Zhao, 2016, p. 36 [11], and (b) the explanations
by Safran, 2003, pp. 98–99. [12].

In 1805, Thomas Young [13] derived the relationship between the contact angle and the
surface tensions,

cos Θ =
σs/v − σs/l

σl/v
, (33)
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based on the assumption of mechanical equilibrium.1 But Young’s equation can also be
derived based on thermodynamic reasoning, as shown by Safran ([12], pp. 98–99). For this,
we assume the system to be at constant p, T , and n. How would the Gibbs free energy
change if we displaced the contact line by dx in the x-direction? This situation is illustrated
in Fig. 5b. There would be cost due to uncovering a fraction of the solid surface,

dGcost = (σs/v − σs/l)Ldx, (34)

where L is the length of the contact line in y-direction, but also gain,

dGgain = Lσl/v cos Θdx, (35)

due to reducing the liquid-vapor interface. At thermodynamic equilibrium, cost and gain
are balanced ([12], p. 99),

(σs/v − σs/l)Ldx = Lσl/v cos Θdx, (36)

paving the way toward Eq. (33).

Fig. 6: Three concepts of wetting real solid surfaces: (a) Wenzel’s concept of wetting rough,
chemically homogeneous surfaces with: projected surface (dashed gray), ideal contact angle, Θ, and
apparent contact angle, Θapp, (b) Cassie’s concept of wetting smooth, chemically heterogeneous
surfaces (two chemistries: brown and purple), and (c) Cassie-Baxter’s concept of wetting porous
surfaces. Source: author’s illustration inspired by Law and Zhao, 2016, p. 55 [11].

Young’s equation is based on the assumption of an ideal solid surface, which is smooth,
rigid, insoluble, non-reactive, and chemically homogeneous. Few experimentally available
solid surfaces meet these conditions. Often, they are rough and/or chemically heterogeneous.
Thus, contact angle experiments measure an apparent contact angle, Θapp, rather than the
(ideal) contact angle, Θ [14]. Fig. 6 illustrates three concepts to determine Θapp from Θ:

1. Wenzel’s concept [15] of wetting rough, chemically homogeneous solid surfaces (see
Fig. 6a),

2. Cassie’s concept [16] of wetting smooth, chemically heterogeneous solid surfaces (see
Fig. 6b), and

1 His famous paper «An essay on the cohesion of fluids»– where Young describes Eq. (33) in words – was
published about 120 years after the invention of classical mechanics by Isaac Newton and 45 years before
Rudolf Clausius explicitly mentioned the first law of thermodynamics.
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3. Cassie-Baxter’s concept [17] of wetting porous surfaces (see Fig. 6c).

1. The concept of Wenzel is based on the observation that roughening smooth solid surfaces
increases wetting if the liquid preferentially wets the smooth surface, and decreases wetting if
the liquid does not preferentially wet the surface [15]. The relationship between the apparent
contact angle on rough, chemically homogeneous solid surfaces and the ideal contact angle
is provided by the Wenzel equation [14],

cos Θapp = r̃ cos Θ, (37)

where r̃ is the roughness ratio (i.e. the ratio of the actual and projected surface area).

2. The concept of Cassie was developed for smooth, chemically heterogeneous solid sur-
faces. In this case, the surface tension varies for different locations and Θ has a different
value for each of them [16]. The Cassie equation [14],

cos Θapp = f1 cos Θ1 + f2 cos Θ2, (38)

where f1 and f2 are the area fractions of different chemistry, and Θ1 and Θ2 are the corre-
sponding ideal contact angles, provides the relationship between the apparent and the ideal
contact angles. Eq. (38) can be generalized for more than two different surface chemistries.

3. The concept of Cassie and Baxter is a special case of Cassie’s concept for wetting of
chemically homogeneous porous materials. It is based on the assumption that upon contact
of the liquid droplet with the porous solid surface, air bubbles are trapped inside the pores.
Cassie and Baxter assumed two chemistries: the material surrounding the pores (1) and the
air inside the pores (2) [17]. Under the assumption that the liquid does not wet air,

Θ2 = 180◦, (39)

the Cassie equation reduces to the Cassie-Baxter equation [14],

cos Θapp = f1 cos Θ1 − f2. (40)

2.2 Fundamentals of Statistical Thermodynamics

Statistical thermodynamics aims to express the properties of macroscopic systems in terms
of the properties of their microscopic constituents, such as atoms or molecules (particles).
While the properties of macroscopic systems can be described by classical thermodynamics –
an elegant and self-consistent theory that makes no reference to the microscopic constituents
in the system –, the properties of particles can be described by classical mechanics or quan-
tum mechanics. In classical mechanics, the state of a particle is determined by its position
and momentum, and the energy of a particle is a continuous function of these properties.

14



In quantum mechanics, a particle can only occupy discrete (quantum) states characterized
by eigenfunctions, ψs, with eigenvalues of energy, εs. Quantum mechanics arose from the
realization that it is impossible to precisely determine both the position and momentum of
a particle simultaneously (Heisenberg’s uncertainty principle). A naive approach for provid-
ing a microscopic foundation for classical thermodynamics would be to apply the laws of
classical mechanics or quantum mechanics to each particle in a macroscopic system. But
this attempt proves futile because of the large number of particles in a macroscopic system
for which the laws of classical mechanics or quantum mechanics would have to be applied.
The field of statistical thermodynamics arose from the realization that statistical methods
are required to obtain a microscopic foundation for classical thermodynamics.

We are particularly interested in the concepts of statistical thermodynamics that consti-
tute the foundation for Monte Carlo simulations (see Section 2.3.1). These concepts are
based on a continuous description of particle states (classical mechanics), but are easier to
derive for a discrete one (quantum mechanics). For this reason, the basics of statistical ther-
modynamics are first elaborated in Sections 2.2.1 and 2.2.2 assuming a quantum mechanical
description of particle states, before the results are applied to a classical mechanical descrip-
tion of particle states in Section 2.2.3. In using quantum states, we will make the following
assumptions:

1. The quantum mechanical nature of quantum states is irrelevant to the concepts of
statistical thermodynamics described hereafter.

2. Quantum states with the same eigenvalue of energy possess the same probability.

3. Each particle in a system can occupy only one quantum state at a time. Quantum
superposition (stating that any linear combination of eigenfunctions with the same
eigenvalues of energy is also a valid eigenfunction) is neglected.

In more down-to-earth terms: we are only interested in the discrete description of states.

2.2.1 Probability and Combinatorics

The laws of probability and combinatorics form the foundation for statistical thermodynam-
ics. We will illustrate these laws using the example of a model system that consists of four
distinguishable and independent particles – A, B, C, and D. Each particle can occupy one of
two available quantum states – described by ψ1 or ψ2 – with the same eigenvalue of energy.
In this example, we will neglect any physical or quantum mechanical effect and only look at
the statistical description of the model system. In principle, we could just as well be flipping
four coins (named A, B, C, or D) showing either heads (ψ1) or tails (ψ2). Each sequence of
particles in ψ1 and ψ2 represents a microscopic state of the model system. These microscopic
states can also be described by eigenfunctions, ΨS, with eigenvalues of energy, ES. For in-
dependent particles, ΨS can be represented by the product of single-particle eigenfunctions,
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ψs. For example,
ΨS = ψ1(A)ψ1(B)ψ1(C)ψ1(D), (41)

characterizes the microscopic state of the model system in which the quantum state of each
particle is described by ψ1. The total number W of available microscopic states is given by:

W = Nψ(A) ·Nψ(B) ·Nψ(C) ·Nψ(D), (42)

where Nψ(A), Nψ(B), Nψ(C), or Nψ(D) are the number of quantum states accessible to each
particle. Thus, the model system has a total of W = 16 microscopic states to choose from:

ψ1(A) ψ1(B) ψ1(C) ψ1(D) ψ2(A) ψ1(B) ψ1(C) ψ1(D)

ψ1(A) ψ1(B) ψ1(C) ψ2(D) ψ2(A) ψ1(B) ψ1(C) ψ2(D)

ψ1(A) ψ1(B) ψ2(C) ψ1(D) ψ2(A) ψ1(B) ψ2(C) ψ1(D)

ψ1(A) ψ1(B) ψ2(C) ψ2(D) ψ2(A) ψ1(B) ψ2(C) ψ2(D)

ψ1(A) ψ2(B) ψ1(C) ψ1(D) ψ2(A) ψ2(B) ψ1(C) ψ1(D)

ψ1(A) ψ2(B) ψ1(C) ψ2(D) ψ2(A) ψ2(B) ψ1(C) ψ2(D)

ψ1(A) ψ2(B) ψ2(C) ψ1(D) ψ2(A) ψ2(B) ψ2(C) ψ1(D)

ψ1(A) ψ2(B) ψ2(C) ψ2(D) ψ2(A) ψ2(B) ψ2(C) ψ2(D)

Each of these microscopic states has the same total energy, E. Their probability is given by
the first postulate of statistical thermodynamics ([18], p. 5):

1. Postulate:1. Postulate: For a system with constant total energy, E, all available microscopic
states have the same probability,

P(ΨS) =
1

W
. (43)

For a statistical description of our model system, we assign each microscopic state to a
statistical distribution of particles over quantum states, {Ns}, where Ns is the number of
particles found in each quantum state for any microscopic state. In our example, there exist
five distinct distributions of particles over quantum states:

1) {4 ψ1 | 0 ψ2}:{4 ψ1 | 0 ψ2}: All particles occupy state ψ1.

2) {3 ψ1 | 1 ψ2}:{3 ψ1 | 1 ψ2}: Three particles occupy state ψ1 and one particle occupies state ψ2.

3) {2 ψ1 | 2 ψ2}:{2 ψ1 | 2 ψ2}: Two particles occupy state ψ1 and two particles occupy state ψ2.

4) {1 ψ1 | 3 ψ2}:{1 ψ1 | 3 ψ2}: One particle occupies state ψ1 and three particles occupy state ψ2.

5) {0 ψ1 | 4 ψ2}:{0 ψ1 | 4 ψ2}: All particles occupy state ψ2.
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Each microscopic state of the model system can be assigned to one (and only one) of these
distributions. The number of microscopic states that belong to any of these distributions
can be calculated using a multinomial distribution,

w{Ns} =
N !∏
s

Ns!
, (44)

where w{Ns} is often referred to as the number of realizations of any distribution and N is
the total number of particles. The probability of any distribution, P{Ns}, is obtained by
dividing the number of realizations by the total number of possible microscopic states,

P{Ns} =
w{Ns}
W

, (45)

where
W =

∑
s

w{Ns}. (46)

Using Eq. (44), we obtain the following numbers of realizations:

1) {4 ψ1 | 0 ψ2}:{4 ψ1 | 0 ψ2}: 1

2) {3 ψ1 | 1 ψ2}:{3 ψ1 | 1 ψ2}: 4

3) {2 ψ1 | 2 ψ2}:{2 ψ1 | 2 ψ2}: 6

4) {1 ψ1 | 3 ψ2}:{1 ψ1 | 3 ψ2}: 4

5) {0 ψ1 | 4 ψ2}:{0 ψ1 | 4 ψ2}: 1

Fig. 7: Bar charts of the relative probability, P{Ns}/P{N∗s }, against the relative number of particles
in state ψ1, N1/N , for increasing particle numbers, N . Each particle can occupy one of two accessible
quantum states (ψ1 or ψ2). Source: author’s illustration inspired by Dill and Bromberg, 2011, p.
32 [19].
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We notice that the equipartition of particles over quantum states, {2 ψ1 | 2 ψ2}, has the
highest number of realizations and is according to Eq. (45) the most probable distribution
of particles over quantum states, denoted by {N∗s }. The importance of the most probable
distribution increases significantly with increasing particle number. This is illustrated in
Fig. 7, which plots the relative probability, P{N1}/P{N∗1}, against the relative number of
particles in state ψ1, N1/N . For increasing N , the density of the relative probability increases
sharply around the equipartition. More strictly, the maximum term method ([18], pp. 11–13),

lim
N→∞

(lnW ) ≈ lnw{N∗s }, (47)

suggests that any deviation from the most probable distribution, {N∗s }, can be ignored for
a system with a very high number of particles – as is common for a macroscopic system.

2.2.2 Statistical Ensembles

The attempt of reconciling thermodynamics with the microscopic laws of matter was deci-
sively advanced by the concept of statistical ensembles originally introduced by the American
physicist Josiah W. Gibbs [20]. For illustration, imagine a closed thermodynamic system of
constant volume that is in thermal equilibrium with a heat bath, has a constant size, and
contains only one type of particles. While the macroscopic state of the system is unam-
biguously determined by N , V , and T , the microscopic state of the system is not. In fact,
the macroscopic state of the thermodynamic system at hand can be replicated by a large
number of microscopic states. The collection of these microscopic states is referred to as
the statistical ensemble of the system. Statistical ensembles are often classified based on the
state variables that determine the macroscopic state of the system. Important statistical
ensembles are:

• the microcanonical ensemblemicrocanonical ensemble, which contains the microscopic states for an isolated
system (i.e. N , V , and E are constant),

• the canonical ensemblecanonical ensemble, which contains the microscopic states for a closed system of
constant volume (i.e. N , V , and T are constant), or

• the grand canonical ensemblegrand canonical ensemble, which contains the microscopic states for an open sys-
tem of constant volume (i.e. µ, V , and T are constant).

The grand canonical ensemble is of special interest to this work, because of its application
in adsorption simulations. It contains the microscopic states of a system with immovable,
diathermic, and permeable boundaries ([21], p. 8). As a consequence, the system can not
exchange energy through work with its surroundings, but energy through heat and mat-
ter through material exchange. In classical thermodynamics, this is an open system with
constant volume. In equilibrium with a heat bath and a particle reservoir, an open system
of constant volume has a constant chemical potential, µ, volume, V , and temperature, T .
At constant T and constant µ, a system can occupy microscopic states, ΨN,S, of arbitrary
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energy, EN,S, and particle number, N , but only certain energies and particle numbers will
have a significant probability. The probability distribution of the microscopic states for the
grand canonical ensemble can be illustrated by a thought experiment that can be traced
back to Gibbs ([20], pp. 32–56). In this thought experiment, we imagine the system of being
surrounded by a nearly infinite number of identical copies. The fictive collection of systems
is brought to the desired temperature and chemical potential and subsequently isolated from
its surroundings. The systems in the collection have heat and particle permeable walls and
will now distribute over the accessible microscopic states in a manner that is characteristic
for the given chemical potential, volume, and temperature. We will denote this distribution
of systems over microscopic states by {aN,S}, where aN,S is the number of systems in the
collection that occupy a certain microscopic state, ΨN,S. At equilibrium, {aN,S} corresponds
to the distribution of systems over microscopic states that can be found in the grand canon-
ical ensemble (see Fig. 8). The isolated collection of systems in our thought experiment
has a constant number of systems, A, a constant total energy, E, and a constant number of
particles, N. Any distribution, {aN,S}, must thus meet the following constraints:∑

N

∑
S

aN,S = A, (48)∑
N

∑
S

aN,SEN,S = E, and (49)∑
N

∑
S

aN,SN = N. (50)

Fig. 8: Illustration of an isolated collection of A = 15 systems. Each system in the collection
has the same macroscopic state determined by µ, V , and T (left), but differs in the occupied
microscopic state, ΨN,S (right). At equilibrium, the distribution of systems over microscopic states
in the collection is the same as that of the grand canonical ensemble. A can be chosen arbitrarily
large. Source: author’s illustration inspired by Raabe, 2017, p. 15 [21].

The number of realizations for any distribution of systems over microscopic states is given
by:

ω{aN,S} =
A!∏

N,S

aN,S!
. (51)
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The number of systems in the imaginary collection can be chosen arbitrarily large. Any
deviation from the most probable distribution, {a∗N,S}, can thus be neglected, as indicated
by the maximum term method in Eq. (47). To use the maximum term method, we must
take the logarithm of Eq. (51),

lnw{aN,S} = lnA!−
∑
N,S

ln aN,S!, (52)

which can be simplified into:

lnw{aN,S} = A lnA−A−
∑
N,S

(aN,S ln aN,S − aN,S) (53)

by using Stirling’s approximation, which holds for large values of aN,S. We find {a∗N,S}
by determining the maximum of Eq. (53). For this, we will use the method of Lagrange
multipliers (see [18], pp. 52–53). First, we equate Eq. (48) to (50) with zero,

A−
∑
N

∑
S

aN,S = 0, (54)

E−
∑
N

∑
S

aN,SEN,S = 0, and (55)

N −
∑
N

∑
S

aN,SN = 0. (56)

Then, we multiply the resulting expressions in Eq. (54) to (56) with the (yet undefined)
Lagrangian multipliers αL, βL, or γL, and finally add the resulting terms to Eq. (53). The
result is an auxiliary function,

L{aN,S} = A lnA−A−
∑
N

∑
S

(aN,S ln aN,S − aN,S) + αL

(
A−

∑
N

∑
S

aN,S

)

+ βL

(
E−

∑
N

∑
S

aN,SEN,S

)
+ γL

(
N −

∑
N

∑
S

aN,SN

)
,

(57)

whose total differential vanishes for {a∗N,S},

dL{a∗N,S} =
∑
N

∑
S

(
∂L{a∗N,S}
∂aN,S

)
daN,S = 0. (58)

For the non-trivial solution,
∂L{a∗N,S}
∂aN,S

= 0, (59)

we obtain:
∂L{a∗N,S}
∂aN,S

= − ln aN,S − αL − βLEN,S − γLN = 0. (60)
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Solving Eq. (60) for aN,S yields the number of systems in any microscopic state for {a∗N,S},

a∗N,S = e−αLe−βLEN,Se−γLN . (61)

The probability, P(ΨN,S), of finding an open system in any microscopic state, ΨN,S, is
thus ([22], p. 53):

P(ΨN,S) =
a∗N,S
A

=
e−βLEN,Se−γLN∑

N

∑
S

e−βLEN,Se−γLN
. (62)

The Lagrangian multipliers βL or γL are evaluated in Appendix A and found to be ([22],
pp. 53–54):

βL =
1

kBT
, (63)

γL = − µ

kBT
, (64)

where kB is the Boltzmann factor. During a sufficiently long observation period, a system
will visit all possible microscopic states many times. The time spent in each microscopic
state is proportional to the probability, P(ΨS), of the respective microscopic state. This is
often referred to as the ergodic hypothesis and forms the basis for the second postulate of
statistical thermodynamics ([18], p. 25):

2. Postulate:2. Postulate: The time average of a mechanical variable, M , of a system is equal
to the ensemble average, 〈M〉, of the corresponding ensemble, e.g.:

〈M〉 :=
∑
N

∑
S

P(ΨN,S)MN,S, (65)

where MN,S is a mechanical variable that depends on ΨN,S.

The second postulate provides us with a method for determining the macroscopic observables
of a system, 〈M〉, by performing averages over the statistical ensemble.

2.2.3 Classical Ensemble Averages

In Sections 2.2.1 and 2.2.2 we used the discrete nature of particle states in quantum me-
chanics to derive the concepts of statistical mechanics. Now, let us apply the results to a
classical mechanical description of particle states to provide the foundation for Monte Carlo
simulations; a technique that allows the approximation of ensemble averages. In classical me-
chanics, the energy of a system is a continuous function of the positions, {~rN}, and momenta,
{~PN}, of all of its N particles,

H
(
{~rN}, {~PN}

)
= U({~rN}) + K({~PN}), (66)
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where U and K are the potential or kinetic energy, and {~rN} = ~r1, · · · , ~rN or {~PN} =
~P1, · · · , ~PN . To obtain a continuous description of the system’s energy, we replace the sum
over quantum states in Eq. (65) by an integral over the positions and momenta of the particles
in the system,

〈M〉 :=

∑
N

1

h̃3N

dsys∫
0

· · ·
dsys∫
0

+∞∫
−∞

· · ·
+∞∫
−∞

M exp

(
−H({~rN}, {~PN})− µN

kBT

)
d{~rN}d{~PN}

Zclass(µ, V, T )
,

(67)
where dsys is the dimension of the system in any of the three spatial directions, Zclass(µ, V, T )

is the classical partition function for the grand canonical ensemble, M is a property of
the system that depends on {~rN} and {~PN}, and d{~rN} as well as d{~PN} are short-hand
notations for:

d{~rN} = d~r1,x, d~r1,y, d~r1,z, · · · , d~rN,x, d~rN,y, d~rN,z, or (68)

d{~PN} = d~P1,x, d~P1,y, d~P1,z, · · · , d~PN,x, d~PN,y, d~PN,z. (69)

In addition, we used the definitions for βL and γL provided in Eq. (63) or Eq. (64) and
introduced Planck’s constant, h̃. In Appendix B, we show that Planck’s constant is required
to ensure that the classical partition function in Eq. (67) is dimensionless. The integral
over momenta in Eq. (67) can be solved analytically. First, we use Eq. (66) to separate the
integral in Eq. (67) into an integral over positions,

Ir =

dsys∫
0

· · ·
dsys∫
0

exp

(
−U({~rN})

kBT

)
d{~rN}, (70)

and an integral over momenta,

IP =

+∞∫
−∞

· · ·
+∞∫
−∞

exp

(
−K({~PN})

kBT

)
d{~PN}. (71)

Note that we omit M for the time being, as well as all terms that are independent of {~rN}
or {~PN}. Using the mechanical definition of kinetic energy,

K({~PN}) =
N∑
i=1

‖~Pi‖2

2mi

, (72)

where ‖~Pi‖2 = ‖~Pi,x‖2 + ‖~Pi,y‖2 + ‖~Pi,z‖2, we obtain:

IP =

+∞∫
−∞

· · ·
+∞∫
−∞

N∏
i=1

exp

(
−‖

~Pi,x‖2 + ‖~Pi,y‖2 + ‖~Pi,z‖2

2mikBT

)
d{~PN}. (73)
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For identical particles, Eq. (73) can be reduced to:

IP =

 +∞∫
−∞

exp

(
− P 2

2mkBT

)
dP

3N

, (74)

because the integrands as well as the components, P , of the momentum vectors can inde-
pendently assume any numerical value. Eq. (74) possesses an analytical solution, i.e. ([18],
p. 65):

IP =
√

(2πmkBT )3N . (75)

With these results, we can simplify the classical ensemble average into:

〈M〉 :=

∑
N

exp
(
µN
kBT

)
Λ3N

dsys∫
0

· · ·
dsys∫
0

M exp

(
−U({~rN})

kBT

)
d{~rN}

Zclass(µ, V, T )
, (76)

where Λ is the de-Broglie wavelength,

Λ =

√
h2

2πmkBT
. (77)

Note that Eq. (76) only provides the ensemble average of properties that depend on the
configuration of the system, {~rN}. As a consequence, Monte Carlo simulations are not suited
for obtaining dynamic properties of a system. From Eq. (76) we obtain the probability of
finding a system in any configuration,

P({~rN}) =

1

Λ3N
exp

(
−U({~rN})− µN

kBT

)
d{~rN}

Zclass(µ, V, T )
, (78)

where the denominator is referred to as the classical grand canonical partition function.

2.3 Principles of Molecular Simulations

In theory, the ensemble average provides us with an expression for determining the proper-
ties of a macroscopic system from the properties of its microscopic constituents. However, a
multidimensional integral such as occurring in Eq. (76) can only in a few instances be solved
analytically. Moreover, numerical quadrature often proves futile, because of the large number
of possible configurations for which we would need to determine the integrand. Molecular
simulations are often the only way to approximate the ensemble average. Classical molecu-
lar simulation methods aim to evaluate the ensemble average by generating a representative
sample of the microscopic states that replicate the macroscopic properties of a thermody-
namic system ([23], pp. 163–164). In Sections 2.3.1 and 2.3.2, we will discuss two methods
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for generating a representative sample of microscopic states: Monte Carlo simulations and
molecular dynamics simulations, and in Section 2.3.3, we will explain the force field approach
for calculating potential energies or forces in molecular simulations.

2.3.1 Monte Carlo Simulations

Monte Carlo simulations owe their name to the world-famous Casino de Monte-Carlo in
the Principality of Monaco. Stanisław Ulam and John von Neumann – the pioneers of
the Monte Carlo method – chose this name in allusion to the gambling-like nature of the
algorithm, which is based on sequences of random numbers [24]. In the field of molecular
modeling, Monte Carlo simulations aim to approximate the ensemble average by generating
a representative sample of configurations for a system. This sample is representative if the
probability of finding a configuration, {~rN}, in the sample is equivalent to the probability of
finding the configuration in the corresponding ensemble,

P({~rN}) ≈
l{~rN}
L{~rN}

, (79)

where l{~rN} is the number of any configuration within the sample and L{~rN} is the size of the
sample. Generating a representative sample of configurations is easier said than done. We are
often unable to draw configurations directly from P({~rN}), because we are unable to solve the
multidimensional integral in the partition function. The Metropolis-Hastings algorithm [25]
does not require the determination of the partition function for drawing configurations from
P({~rN}). The idea is to set up a Markov chain of successive configurations in which any new
configuration of the system, n, is obtained by a transition from the current configuration, o.
Transitions are designed to obey detailed balance,

P(o)π̄(o→ n) = P(n)π̄(n→ o), (80)

which states that any transition from o to (any) n is immediately balanced by a transition
from (any) n to o. We are able to separate the transition probability, π̄, into the probability
of proposing the transition and the probability of accepting the proposal,

π̄(o→ n) = α(o→ n)Pacc(o→ n), (81)

where α(o → n) is the proposal probability and Pacc(o → n) is the acceptance probability.
For the reverse transition holds:

π̄(n→ o) = α(n→ o)Pacc(n→ o). (82)

Proposal probabilities are determined by the manner of how the transition is performed.
Substituting Eq. (81) and Eq. (82) in Eq. (80) and solving for the acceptance probabilities
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provides the key equation of the Metropolis-Hastings algorithm ([26], p. 29):

Pacc(o→ n)

Pacc(n→ o)
=
α(n→ o)

α(o→ n)

P(n)

P(o)
, (83)

where the partition functions in P(n) and P(o) cancel out. Transitions that satisfy Eq. (83)
ensure that equilibrium is maintained once it is reached. It is thus the starting point for
developing transition algorithms, which are often dubbed as trial moves. Trial moves that
are used in the following studies are:

1. the translation of atoms or molecules,

2. the rotation of rigid molecules,

3. the identity change of molecules,

4. the configurational bias Monte Carlo (CBMC) move,

5. the insertion or deletion of atoms or molecules, including the continuous fractional
component Monte Carlo (CFCMC) move [27].

In what follows, we will illuminate the above mentioned trial moves for the grand canonical
ensemble and derive the proposal and acceptance probability for each of them.

Trial Move 1: Translation

The translational trial move is illustrated in Fig. 9. In essence, it consists of randomly
shifting the center of mass of a molecule. A random displacement can be achieved by adding
small numerical values to the spatial coordinates of a molecule,

~rx(n) = ~rx(o) + ∆max~r(2ζx − 1), (84)

~ry(n) = ~ry(o) + ∆max~r(2ζy − 1), (85)

~rz(n) = ~rz(o) + ∆max~r(2ζz − 1), (86)

where ~rx(o), ~ry(o), ~rz(o) and ~rx(n), ~ry(n), ~rz(n) are the vector components of the current or
new positions of the molecule, ∆max~r is the maximum possible spatial displacement, and ζx,
ζy, and ζz are three independent random numbers between 0 and 1 drawn from a uniform
distribution. Due to the limited floating-point precision of computers, there is a finite number
of uniformly distributed new positions to choose from, so that

α(o→ n) = α(n→ o). (87)

We obtain thus:
Pacc(o→ n)

Pacc(n→ o)
= exp

(
−U(n)− U(o)

kBT

)
. (88)
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Any criterion used to determine whether a proposed translation is accepted or rejected must
satisfy this equation. Commonly, the Metropolis-Hastings criterion is used ([26], p. 30),

Pacc(o→ n) = min

[
1, exp

(
−U(n)− U(o)

kBT

)]
. (89)

For U(n) ≤ U(o), the proposed translation is always accepted. For U(n) > U(o), the term in
the second argument of Eq. (89) is determined and compared to a random number between
0 and 1. If the term is larger than the random number, the proposed translation is accepted.
Otherwise it is rejected and the molecule remains in its current position.

Fig. 9: Illustration of the translational trial move. (a) One of the N available molecules is chosen
at random (bordered in red). (b) A new position is randomly proposed (red cross). We can imagine
that we span a 2 ∆max~r × 2 ∆max~r mesh of equidistant points from which the new position is
chosen. (c) The molecule is translated to the proposed position. The proposed position (bordered
in orange) is accepted or rejected according to the acceptance criterion in Eq. (89). Source: author’s
illustration inspired by Allen and Tildesley, 1987, p. 119 [28].

Trial Move 2: Rotation

There are many ways to perform a rotational trial move. The simplest one is illustrated
in Fig. 10 and is based on a coordinate transformation. Here, one of the Cartesian axes
is selected and the coordinate system is rotated by a random angle δω around the chosen
axis ([29], p. 420). We obtain the following set of equations to compute the new positions
of the atoms:

~rx(n) = dbond cos(ω + δω),

= dbond cos(ω) cos(δω)− dbond sin(ω) sin(δω), (90)

= ~rx(o) cos(δω)− ~ry(o) sin(δω),

~ry(n) = dbond sin(ω + δω),

= dbond cos(ω) sin(δω) + dbond sin(ω) cos(δω), (91)

= ~rx(o) sin(δω)− ~ry(o) cos(δω),

where dbond is the bond distance and δω is drawn randomly from the interval (δωmin, δωmax),
leading to α(o→ n) = α(n→ o). We obtain thus the acceptance criterion in Eq. (89).
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Fig. 10: Illustration of the rotational trial move for a diatomic molecule. (a) The positions of the
atoms in the molecule are determined. (b) A coordinate transformation is performed by rotating
the coordinate system by a random angle δω around the z-axis. (c) The new positions of the atoms
in the diatomic molecule are calculated using trigonometry. The proposed orientation is accepted
or rejected according to the acceptance criterion in Eq. (89).

Trial Move 3: Identity Change

Translation and rotation are two physically meaningful trial moves. But the real strength
of the Metropolis-Hastings algorithm lies in its ability to allow unphysical trial moves – as
long as they satisfy detailed balance. The identity change trial move is an example for such
an unphysical trial move, where a molecule of type A is replaced by a molecule of type B.
This is illustrated in Fig. 11. Choosing any of the NA molecules of type A in o possesses the
probability:

α(o→ n) =
1

NA
, (92)

while choosing any of the NB + 1 molecules in n possesses the probability:

α(n→ o) =
1

NB + 1
. (93)

The probability of finding o in the grand canonical ensemble is provided by:

P(o) =
Λ−3NA

A Λ−3NB
B exp

(
−U(o)−(µANA+µBNB)

kBT

)
d~r1 · · · d~rN

Z(µA, µB, V, T )
, (94)

where µA and µB are the chemical potentials of A or B and Z(µA, µB, V, T ) is the partition
function of the system. The probability of finding n is provided by:

P(n) =
Λ
−3(NA−1)
A Λ

−3(NB+1)
B exp

(
−U(n)−(µA(NA−1)+µB(NB+1))

kBT

)
d~r1 · · · d~rN

Z(µA, µB, V, T )
. (95)

Substituting Eqs. (92) to (95) in Eq. (83) yields:

Pacc(o→ n)

Pacc(n→ o)
=

NAΛ3
A

(NB + 1)Λ3
B

exp

(
µB − µA

kBT

)
exp

(
−U(n)− U(o)

kBT

)
, (96)
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which any acceptance criterion must satisfy. The Metropolis-Hastings criterion is [30]:

Pacc(o→ n) = min

[
1,

NAΛ3
A

(NB + 1)Λ3
B

exp

(
µB − µA

kBT

)
exp

(
−U(n)− U(o)

kBT

)]
, (97)

which depends both on the change in the chemical potential and in the potential energy.

Fig. 11: Illustration of the identity change trial move. (a) One of the available n-butane molecules
is chosen at random (bordered in red). (b) The chosen n-butane molecule is replaced by a propane
molecule (bordered in orange). The proposed identity change is accepted or rejected according to
the acceptance criterion in Eq. (97).

Trial Move 4: Configurational Bias Monte Carlo

In principle, it is possible to set up a Monte Carlo program in a way that treats molecules
as rigid entities when using the translational or rotational trial move. But in this case, the
configurational bias Monte Carlo (CBMC) trial move is often the only way to change the
internal conformation of molecules with non-negligible intramolecular degrees of freedom [31].
The CBMC move is illustrated in Fig. 12. A molecule in the system is randomly selected
and regrown segment by segment – either at the same location or at a different one. In
the process, the regrowth is biased toward acceptable conformations. Regrowing a molecule
with M̌ segments comprises three steps ([26], pp. 332–333):

1. Generate k̃ random trial positions for segment m. Select one of these trial positions
with probability:

Pint
m (i) =

exp
(
−Uint

m (i)
kBT

)
k̃∑
i=1

exp
(
−Uint

m (i)
kBT

) , (98)

where Uint
m (i) is the intramolecular energy of the ith trial position of segment m, which

interacts with the already grown m− 1 segments through intramolecular interactions.
The denominator is referred to as the internal Rosenbluth weight of segment m,

w̃int
m (n) =

k̃∑
i=1

exp

(
−Uint

m (i)

kBT

)
. (99)

2. Repeat the first step until l̃ trial positions are obtained. Select one of these trial
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positions with probability:

Pext
m (j) =

exp
(
−Uext

m (j)
kBT

)
l̃∑

j=1

exp
(
−Uext

m (j)
kBT

) , (100)

where Uext
m (j) is the intermolecular energy of the jth trial position of segment m due to

intermolecular interactions. The denominator is referred to as the external Rosenbluth
weight of segment m,

w̃ext
m (n) =

l̃∑
j=1

exp

(
−Uext

m (j)

kBT

)
. (101)

3. Repeat the first two steps until the molecule is fully regrown.

The probability of proposing n is provided by:

α(o→ n) =
M̌∏
m=1

Pint
m (i)Pext

m (j) =
exp

(
−U(n)

kBT

)
W(n)

, (102)

where i and j are the chosen trial positions, and W(n) is the Rosenbluth weight of the fully
regrown molecule,

W(n) =
M̌∏
m=1

w̃int
m (n)w̃ext

m (n). (103)

To find α(n→ o), the conformation of the molecule in o has to be retraced. This is achieved
in three steps ([26], pp. 332–333):

1. Generate k̃ − 1 random trial positions for the first segment m. The position of the
segment in o is the k̃th trial position (denoted by Υ), which is chosen with:

Pint
m (Υ) =

exp
(
−Uint

m (Υ)
kBT

)
k̃∑
i=1

exp
(
−Uint

m (i)
kBT

) =
exp

(
−Uint

m (Υ)
kBT

)
w̃int
m (o)

. (104)

2. Repeat the first step until l̃ − 1 trial positions are obtained. The position of m in o is
the l̃th trial position (denoted by Υ), which is chosen with probability

Pext
m (Υ) =

exp
(
−Uext

m (Υ)
kBT

)
l̃∑

j=1

exp
(
−Uext

m (j)
kBT

) =
exp

(
−Uext

m (Υ)
kBT

)
w̃ext
m (o)

. (105)

3. Repeat the first two steps until the molecule is fully retraced.
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The probability of retracing the old conformation is thus provided by:

α(n→ o) =
M̌∏
m=1

Pint
m (Υ)Pext

m (Υ) =
exp

(
−U(o)
kBT

)
W(o)

, (106)

where W(o) is the Rosenbluth weight of the fully retraced molecule,

W(o) =
M̌∏
m=1

w̃int
m (o)w̃ext

m (o). (107)

By substituting Eq. (78), Eq. (102), and Eq. (106) in Eq. (83), we obtain:

Pacc(o→ n)

Pacc(n→ o)
=

W(n)

W(o)
, (108)

which any acceptance criterion must satisfy. The Metropolis-Hastings criterion is ([26],
p. 334):

Pacc(o→ n) = min

[
1,

W(n)

W(o)

]
. (109)

Fig. 12: Illustration of the CBMC trial move. (a) One of the available n-butane molecules is chosen
at random (bordered in red). (b) The chosen n-butane molecule is removed and regrown segment by
segment (bordered in orange). (c) The fully regrown molecule (bordered in orange) is accepted or
rejected according to the acceptance probability in Eq. (109). Source: author’s illustration inspired
by Frenkel and Smit, 2002, p. 332 [26].

Trial Move 5: Insertion/Deletion of atoms or molecules

Changing the particle number in a system during simulation is important for sampling the
grand canonical ensemble. This is achieved by the insertion/deletion trial move illustrated
in Fig. 13. The system is allowed to exchange particles with an imaginary particle reservoir.
To import a particle from the reservoir, first, a random position in the system is chosen with
probability:

α(o→ n) =
d~r
V
, (110)

where we recall that d~r := d~rxd~ryd~rz.
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Eq. (110) is tantamount to the volume fraction that the molecule will be occupying. The
reverse trial move possesses the probability:

α(n→ o) =
1

N + 1
. (111)

By substituting Eq. (78), Eq. (110), and Eq. (111) in Eq. (83), we obtain:

Pacc(o→ n)

Pacc(n→ o)
=

V

(N + 1)Λ3
exp

(
−U(n)− U(o)− µ

kBT

)
, (112)

which is satisfied by the Metropolis-Hastings acceptance criterion ([26], p. 130),

Pacc(o→ n) = min

[
1,

V

(N + 1)Λ3
exp

(
−U(n)− U(o)− µ

kBT

)]
. (113)

For the deletion of a particle, the Metropolis-Hastings acceptance criterion is given by ([26],
p. 130):

Pacc(o→ n) = min

[
1,
NΛ3

V
exp

(
−U(n)− U(o) + µ

kBT

)]
. (114)

Both acceptance criteria in Eq. (113) and Eq. (114) depend on the change in the potential
energy and in the chemical potential of the particle reservoir. An equation for evaluating µ
is derived in Appendix C.

Fig. 13: Illustration of the insertion trial move. (a) A random position in the system is chosen
(red cross), (b) at which a new particle is going to be inserted. The proposed insertion is accepted
or rejected according to the acceptance criterion in Eq. (113).

With increasing particle density, it becomes harder and harder to successfully insert molecules
at random positions in the system. More sophisticated insertion techniques include the
CBMC insertion or the continuous fractional component Monte Carlo (CFCMC) method [27].
In the CBMC insertion trial move, a molecule is grown segment by segment into the system.
Similarly to the conventional CBMC method, the growth is biased toward acceptable con-
formations. Applying the previously obtained results, we obtain the probability of proposing
the insertion:

α(o→ n) =
exp

(
−U(n)

kBT

)
W(n)

d~r
V
, (115)

while the probability to propose the reverse trial move is provided in Eq. (111). By substi-
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tuting Eq. (78), Eq. (111), and Eq. (115) in Eq. (83), we obtain:

Pacc(o→ n)

Pacc(n→ o)
=

W(n)V

(N + 1)Λ3
exp

(
µ

kBT

)
, (116)

which is satisfied by the Metropolis-Hastings acceptance criterion [32]:

Pacc(o→ n) = min

[
1,

W(n)V

(N + 1)Λ3
exp

(
µ

kBT

)]
. (117)

The CBMC insertion method is often used when modeling systems with medium density.

The CFCMC method is illustrated in Fig. 14. It expands the system with a fractional
molecule for which intermolecular interactions are scaled [27]. The scaling factor, λ, can as-
sume values between 0 – where the fractional molecule does not interact with other molecules
– and 1 – where the molecule is fully present [32]. The CFCMC trial move attempts to change
λ [27],

λ(n) = λ(o) + (2ζλ − 1)∆maxλ, (118)

where ζλ is a random number between 0 and 1 drawn from a uniform distribution, and ∆maxλ

is the maximum possible change of λ. The CFCMC trial move results in one of the following
outcomes [33]:

1. The scaling factor remains between zero and one. In analogy to the translational trial
move, the new scaling factor is accepted with probability:

Pacc(o→ n) = min

[
1, exp

(
−Uλ(n)− Uλ(o)

kBT

)]
, (119)

where Uλ is the potential energy of the system including the fractional molecule.

2. The scaling factor becomes smaller than or equal to zero, i.e. λ = −δ. The fractional
molecule is removed and a molecule in the system is randomly chosen and made frac-
tional with scaling factor λ = 1 − δ. Similarly to the deletion of a random molecule,
the trial move is accepted with probability:

Pacc(o→ n) = min

[
1,
NΛ3

V
exp

(
−Uλ(n)− Uλ(o) + µ

kBT

)]
. (120)

3. The scaling factor becomes larger than or equal to one, i.e. λ = 1 + δ. The fractional
molecule is made fully present and a new fractional molecule with scaling factor λ = δ

is inserted at a random location in the system. Similarly to the insertion of a new
molecule, the trial move is accepted with probability:

Pacc(o→ n) = min

[
1,

V

(N + 1)Λ3
exp

(
−Uλ(n)− Uλ(o)− µ

kBT

)]
. (121)
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In between CFCMC trial moves, conventional Monte Carlo trial moves, such as translation
or rotation, are used to equilibrate the system. In this way, the system gently adapts to the
gradual insertion of the new molecule [34]. The CFCMC method unfolds its full potential
when used for high-density systems.

Fig. 14: Illustration of the CFCMC trial move. (a) A fractional molecule (bordered in red)
with λ = 0.24 is inserted into the system. (b) The scaling factor is increased. Metaphorically
speaking, the atoms in the molecule are „inflated.“ (c) The scaling factor becomes larger than one.
The fractional molecule (bordered in orange) is made fully present and a new fractional molecule
(bordered in green) is inserted with λ = 0.15. Source: author’s representation inspired by Torres-
Knoop et al., 2014, p. 942 [34].

2.3.2 Molecular Dynamics Simulations

Molecular dynamics simulations aim to generate a representative sample of microscopic states
by following the time-evolution of the system. Newton’s laws of motion form the foundation
for molecular dynamics simulations:

1. A particle remains in its state of rest or continues to move in a straight line at constant
velocity unless a force acts upon it.

2. The force, ~Fi, acting on a particle, i, equals the rate of change of momentum, ~Pi,

~Fi =
d~Pi
dt

. (122)

3. If particle i exerts a force on particle j, then an equal but opposite force from j acts
on i,

~Fi = −~Fj. (123)

From Newton’s laws of motion we are able to derive the Hamiltonian equations of motion.
First, we set up the total differential of the Hamiltonian in Eq. (66),

dH =
N∑
i=1

(
∂H

∂~ri

)
~rj 6=i,
~Pj∈N

• d~ri +
N∑
i=1

(
∂H

∂ ~Pi

)
~Pj 6=i,
~rj∈N

• d~Pi, (124)

=
N∑
i=1

(
∂U

∂~ri

)
~rj 6=i

• d~ri +
N∑
i=1

(
∂K

∂ ~Pi

)
~Pj 6=i

• d~Pi, (125)
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where • denotes the dot product. Second, we use Eq. (124) and Eq. (125) to obtain the
time-derivative of the Hamiltonian,

Ḣ =
N∑
i=1

(
∂H

∂~ri

)
~rj 6=i,
~Pj∈N

• ṙi +
N∑
i=1

(
∂H

∂ ~Pi

)
~Pj 6=i,
~rj∈N

• Ṗi, (126)

=
N∑
i=1

(
∂U

∂~ri

)
~rj 6=i

• ṙi +
N∑
i=1

(
∂K

∂ ~Pi

)
~Pj 6=i

• Ṗi, (127)

where ṙ and Ṗ are the time-derivatives of the position or momentum vector. Finally, com-
paring the coefficients in Eq. (126) and Eq. (127) provides Hamilton’s equations of motion:(

∂H

∂~ri

)
~rj 6=i,
~Pj∈N

=

(
∂U

∂~ri

)
~rj 6=i

= −~Fi, (128)

(
∂H

∂ ~Pi

)
~Pj 6=i,
~rj∈N

=

(
∂K

∂ ~Pi

)
~Pj 6=i

=
~Pi
mi

. (129)

Note that by substituting Eq. (128), Eq. (129), and Eq. (122) in Eq. (126), we obtain Ḣ = 0,
stating that the Hamiltonian equations of motion conserve the total energy of the system.
Solving the Hamiltonian equations of motion requires the evaluation of 6N first-order differ-
ential equations. These differential equations can often not be solved analytically, because
the force acting on a particle changes whenever it or another particle changes position. As
a consequence, Hamilton’s equations of motion are often solved using finite difference meth-
ods ([29], p. 355), which are based on a Taylor expansion of the position, ~r, velocity, ~v,
acceleration, ~a, and/or other dynamic variables around t,

~r(t+ ∆t) = ~r(t) +
d~r(t)
dt

∆t+
1

2

d2~r(t)

dt2
∆t2 + . . . , (130)

~v(t+ ∆t) = ~v(t) +
d~v(t)

dt
∆t+

1

2

d2~v(t)

dt2
∆t2 + . . . , (131)

~a(t+ ∆t) = ~a(t) +
d~a(t)

dt
∆t+

1

2

d2~a(t)

dt2
∆t2 + . . . . (132)

and solved using a finite time step, ∆t. Many methods were proposed to integrate this set
of equations. We will discuss two of these time-integration schemes below:

1. the velocity Verlet algorithm for simulating the motion of atoms or molecules with
non-negligible intramolecular degrees of freedom (i.e. flexible molecules), and

2. the rotational-velocity-Verlet algorithm [35] for simulating the motion of molecules with
negligible intramolecular degrees of freedom (i.e. rigid molecules).
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(1.) The velocity Verlet algorithm is based on a second-order Taylor expansion of the position
about t as well as a first-order Taylor expansion of the velocity about t and t + 1

2
∆t. The

algorithm consists of four steps ([29], p. 357):

1) Calculate the half-step velocity, ~vi(t + 1
2
∆t), of each mobile particle, i, in the system

from its current velocity, ~vi(t), and force-induced acceleration, ~ai(t),

~vi(t+ 1
2
∆t) = ~vi(t) +

1

2
~ai(t)∆t. (133)

2) Calculate the position, ~ri(t + ∆t), of each mobile particle, i, in the system from its
current position, ~ri(t), and half-step velocity, ~vi(t+ 1

2
∆t),

~ri(t+ ∆t) = ~ri(t) + ~vi(t+ 1
2
∆t)∆t. (134)

3) Calculate the acceleration, ~ai(t+∆t), of each mobile particle, i, in the system resulting
from the force, ~F (~ri(t+ ∆t)), acting at ~ri(t+ ∆t),

~ai(t+ ∆t) =
~F (~ri(t+ ∆t))

mi

. (135)

4) Calculate the velocity, ~vi(t + ∆t), of each mobile particle, i, in the system from its
half-step velocity, ~vi(t+ 1

2
∆t), and acceleration, ~ai(t+ ∆t),

~vi(t+ ∆t) = ~vi(t+ 1
2
∆t) +

1

2
~ai(t+ ∆t)∆t. (136)

The algorithm is started again at step 1 with the new values for ~ri, ~vi, and ~ai. Recall that
the velocity Verlet algorithm can solely be applied to particles that are modeled with only
translational degrees of freedom. However, in some instances, it is useful to constrain certain
intramolecular degrees of freedom. Within the velocity Verlet method, this can be achieved
by using the RATTLE algorithm [36] that is described in Appendix D.

(2.) Molecules with negligible intramolecular degrees of freedom are often modeled as rigid
bodies, which possess both translational and rotational degrees of freedom. While we can use
the velocity Verlet algorithm to describe the translational motion of the center of mass of a
rigid body, the rotational motion requires a separate time-integration scheme. One example
is the rotational-velocity-Verlet integration scheme developed by Rozmanov and Kusalik [35]
– a modified version of the velocity Verlet algorithm that uses rotational analogs of mass, m
(inertia tensor, I), position, ~r (orientation, q), momentum, ~P (angular momentum, ~L), and
force, ~F (torque, ~T ). Orientation is represented by normalized quaternions, q̂, as the rotation
of the local coordinate system of the rigid molecule in the global coordination frame. To em-
phasize the analogy to the velocity Verlet algorithm, we divide the rotational-velocity-Verlet
integration scheme into four steps [35]:
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1) Calculate the half-step angular momentum, ~L(t + 1
2
∆t), of the rigid molecule in the

global coordination system from the angular momentum, ~L(t), and torque, ~T (t),

~L(t+ 1
2
∆t) = ~L(t) +

1

2
~T (t)∆t. (137)

Transform ~L(t+ 1
2
∆t) to the local coordination system,

~L′(t+ 1
2
∆t) = q̂−1(t+ 1

2
∆t)~L(t+ 1

2
∆t)q̂(t+ 1

2
∆t), (138)

using the orientation of the rigid molecule,

q̂(t+ 1
2
∆t) = q̂(t) +

1

2
q̇(t+ 1

2
∆t)∆t. (139)

Calculate the quaternion time-derivative, q̇(t+ 1
2
∆t), from the local angular momentum,

~L′(t), its time-derivative, L̇′(t), and the local inertia tensor, I ′,

q̇(t+ 1
2
∆t) =

1

2
q̂(t+ 1

2
∆t)

([
I ′
]−1~L′(t) +

1

2

[
I ′
]−1

L̇′(t)∆t

)
. (140)

Notice: Eqs. (138) to (140) are codependent and need to be solved iteratively.

2) Calculate the rigid molecule’s orientation, q̂(t+∆t), from the current orientation, q̂(t),
and the quaternion time-derivative, q̇(t+ 1

2
∆t),

q̂(t+ ∆t) = q̂(t) + q̇(t+ 1
2
∆t)∆t. (141)

Determine the new center of mass, ~rcom(t+∆t), using Eq. (134) and position, ~ri(t+∆t),
of each interaction site, i, in the molecule,

~ri(t+ ∆t) = ~rcom(t+ ∆t) + q̂(t+ ∆t)
[
~ri(t)− ~rcom(t)

]
q̂−1(t+ ∆t). (142)

3) Calculate the torque, ~T (t+ ∆t), acting on the rigid molecule,

~T (t+ ∆t) =
∑
i

[
~ri(t+ ∆t)− ~rcom(t+ ∆t)

]
× ~F (~ri(t+ ∆t)). (143)

4) Calculate the global angular momentum, ~L(t+ ∆t), from the global half-step angular
momentum, ~L(t+ 1

2
∆t), and the new torque, ~T (t+ ∆t),

~L(t+ ∆t) = ~L(t+ 1
2
∆t) +

1

2
~T (t+ ∆t)∆t. (144)

The algorithm starts again at step 1 with the new values for q̂, ~L, and ~T .
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Constant Temperature Simulations

The time-integration schemes discussed above conserve the energy of the system, but it
is often more desirable to maintain the temperature at a fixed value. One reason is that
experiments are usually carried out at constant temperature rather than at constant energy.
To maintain the temperature in a molecular dynamics simulation, we apply thermostats that
rely on the definition of temperature in the kinetic theory of gases,

T =
2〈K〉
NfkB

, (145)

where Nf are the degrees of freedom of the system and 〈K〉 is the mean kinetic energy,

〈K〉 =
1

2

N∑
i=1

mi〈v2
i 〉, (146)

which holds for mi = const. and where the mean-squared speed of particle i, 〈v2
i 〉 = 〈‖~vi‖2〉,

is provided by:

〈v2
i 〉 =

∞∫
0

v2
iP(vi), (147)

where P(vi) is the Maxwell-Boltzmann distribution of speed (derived in Appendix E). In the
following, we will discuss two thermostats:

1. the canonical sampling through velocity rescaling (CSVR) algorithm [37, 38], and

2. the Nosé-Hoover thermostat [39, 40].

(1.) Velocity rescaling thermostats aim to impose the target temperature, Tt, by scaling the
instantaneous velocities of all particles in the system with the same scaling factor, κ [37].
The CSVR algorithm [38] is one of the few velocity rescaling algorithms that accurately
sample the canonical ensemble [41]. In the CSVR thermostat, the system is assumed of
being coupled to an external heat bath of constant temperature, Tt. The rate of change of
the kinetic energy in the system is proportional to the difference between the target, Kt, and
instantaneous kinetic energy, K, plus a stochastic term [38],

dK
dt

=
1

τ
(Kt −K) +

2√
τ

√
KtK

Nf

dW̌
dt

, (148)

where τ is the coupling parameter and dW̌ is called a Wiener noise – a stochastic process.
The coupling parameter allows to distribute the velocity rescaling over several time steps.
Solving Eq. (148) yields [38]:

κ =

√√√√e−
∆t
τ +

Kt

KNf

(
1− e−∆t

τ

) Nf∑
i=1

ζ2
i + 2e−

∆t
2τ

√
Kt

KNf

(
1− e−∆t

τ

)
ζ1, (149)
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where ζi is an independent random number drawn from a Gaussian distribution.

(2.) In the Nosé-Hoover thermostat, the heat bath is made an integral part of the sys-
tem by introducing an additional degree of freedom, s̄. Each state of the extended system,
{~r ′N , ~P ′N}, corresponds to a state of the original system, {~rN , ~PN}. Nosé [39] used the follow-
ing relationships to convert the dynamic variables from the extended to the original system:

~ri = ~r ′i , (150)

~Pi =
~P ′i
s̄ ′
, (151)

s̄ = s̄ ′, (152)

Ps̄ =
P ′s̄
s̄ ′
. (153)

To describe the motion of particles in the extended system, we need to modify Hamilton’s
equations of motion. The Hamiltonian of the extended system is provided by [39]:

HNosé =
N∑
i=1

‖~P ′i ‖2

2mis̄ ′ 2
+ U({~r ′N}) + kBTtNf ln s̄ ′ +

P ′ 2s̄
2Qs̄

, (154)

where Qs̄ is the fictitious mass of s̄ ′, and the last two terms on the right-hand side corre-
spond to the potential or kinetic energy of s̄ ′. We obtain Nosé’s equations of motion by
differentiation of Eq. (154) with respect to the dynamic variables,(

∂HNosé

∂~r ′i

)
=

(
∂U

∂~r ′i

)
= −d~P ′i

dt ′
, (155)

(
∂HNosé

∂ ~P ′i

)
=

~P ′i
mis̄ ′ 2

=
d~r ′i
dt ′

, (156)

(
∂HNosé

∂s̄ ′

)
=
kBTtNf

s̄ ′
−

N∑
i=1

‖~P ′i ‖2

s̄ ′ 3mi

= −dP ′s̄
dt ′

, (157)

(
∂HNosé

∂P ′s̄

)
=
P ′s̄
Qs̄

=
ds̄ ′

dt ′
. (158)

Combining Eq. (151) and Eq. (156) suggests that s̄ ′ is a time-scaling parameter [40],

dt =
dt ′

s̄ ′
. (159)

which will vary during the simulation as indicated by Eq. (158). A fluctuating time step
is inconvenient when seeking to determine dynamic properties of the system. As a result,
Nosé’s equations of motion are commonly used in the formulation of Hoover [40]. Hoover
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introduced the so-called friction coefficient [40],

ξ =
1

s̄

ds̄
dt
, (160)

and derived the Nosé-Hoover equations of motion [40],

d~ri
dt

=
~Pi
mi

, (161)

d~Pi
dt

=
d~P ′i
dt ′
− ξ ~Pi, (162)

ds̄
dt

= ξs̄ ′, (163)

dξ
dt

=
1

Qs̄

(
N∑
i=1

‖~P ′i ‖2

s̄2mi

− kBTtNf

)
. (164)

We are able to simplify Eq. (164),

dξ
dt

=
NfkB

Qs̄

[T − Tt] , (165)

which states that the rate of change of the friction coefficient depends on the difference
between the instantaneous temperature, T , and the target temperature, Tt. In addition, it
indicates that Qs̄ determines the coupling strength between the system and the heat bath.

2.3.3 Force Fields in Molecular Simulations

So far, we have skipped over how to determine the potential energies or forces in classical
molecular simulations. We will change that in the following. The potential energy of a
(classical) system is commonly approximated by using a set of functions and corresponding
interaction parameters: the force field. In most force fields, the potential energy is split into
contributions due to bonded, Uintra, and non-bonded interactions, Unb,

U = Uintra + Unb. (166)

Bonded interactions are often described as a sum of energy contributions due to bond stretch-
ing, Ubond, bond angle bending, Ubend, and torsion, Utor,

Uintra = Ubond + Ubend + Utor, (167)

while non-bonded interactions are commonly described by Lennard-Jones, ULJ, and electro-
static interactions, Uelec,

Unb = ULJ + Uelec. (168)
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Note that more advanced force fields may use additional terms to describe bonded or non-
bonded interactions. One of the most important aspects of a force field is its transferability.
The functional form and set of parameters should be applicable to a variety of problems
beyond those for which the force field was developed and tested ([29], pp. 231–232). The
Transferable Potentials for Phase Equilibria (TraPPE) [42] are an example for this type
of force fields. It was developed to best reproduce vapor-liquid properties of organic or
small inorganic molecules – typically vapor-liquid coexistence densities, vapor pressures, and
critical properties [43]. Most of the TraPPE force fields use:

• fixed bond lengths,
Ubond = 0, (169)

• a sum of harmonic potentials to describe the energy due to bond angle bending,

Ubend =
∑
angles

Cbend

2
(θ − θeq), (170)

where Cbend is the bend constant, θ is the instantaneous bond angle, and θeq is the
equilibrium bond angle,

• a sum of four-term Fourier expansions to describe the energy due to torsion,

Utor = Ctor,0 + Ctor,1[1 + cos(Φ)] + Ctor,2[1− cos(2Φ)] + Ctor,3[1 + cos(3Φ)], (171)

where Ctor,0, Ctor,1, Ctor,2, and Ctor,3 are the torsion constants and Φ is the torsion angle,

• a sum of Lennard-Jones (6,12) pair potentials to describe the energy due to short-range
interactions,

ULJ =
∑

non-bonded

4εi-j

[(
σ̄i-j
di-j

)12

−
(
σ̄i-j
di-j

)6
]
, (172)

where εi-j is the Lennard-Jones well depth, σ̄i-j is the Lennard-Jones distance, and di-j
is the distance between interaction sites i and j, and

• a sum of Coulomb potentials to describe the energy due to electrostatic interactions,

Uelec =
∑

non-bonded

q̃iq̃j
4πε0di-j

, (173)

where q̃i and q̃j are the partial charges of i or j, and ε0 is the vacuum permittivity.

Note that TraPPE also includes all bonded atoms in the summations in Eq. (172) and
Eq. (173) that are separated by more than three bonds [43]. Lennard-Jones parameters
between unlike interaction sites, i and j, are determined by the Lorentz-Berthelot mixing
rules [44, 45],

σ̄i-j =
σ̄i + σ̄j

2
, (174)
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εi-j =
√
εiεj. (175)

The TraPPE force fields often use a united atom (UA) representation of organic molecules,
in which each carbon atom is combined with its bonded hydrogen atoms to form a single
interaction site [46]. The TraPPE-UA force fields immensely reduce the number of in-
teraction pairs for which contributions to the potential energy need to be evaluated. By
design, TraPPE is able to accurately describe phase transitions and is thus often used to
study adsorption in nanoporous materials ([47], pp. 105–106). In adsorption simulations,
the Lennard-Jones parameters for the atoms that constitute the nanoporous material are
commonly taken from generic force fields, such as the Universal Force Field (UFF) [48] or
DREIDING force field [49], while partial charges need to be computed individually, because
they strongly depend on the distribution of electrons and protons in the material. Partial
charges are not observable properties. As a consequence, there exist many ways to compute
them. We will (roughly) divide them into two groups:

1. computing partial charges from quantum mechanical computations, for example via:

(a) Mulliken population analysis [50],

(b) Electrostatic potential (ESP) methods ([29], pp. 189–191), or

(c) Density derived electrostatic and chemical (DDEC) charge methods [51], and

2. computing partial charges based on information about atoms and the way in which
these atoms are connected, for example via:

(a) charge equilibration (Qeq) [52], or

(b) extended charge equilibration (EQeq) [53].

(1.) A short introduction to quantum mechanics and density functional theory (DFT) is
provided in Appendix F. These techniques form the foundation for the methods used to
determine partial charges discussed in the following. (1a) The Mulliken population analysis
will be illustrated using the example of a two-atomic molecule, assuming that the molecular
orbital, ψ, can be represented by a linear combination of two atomic orbitals, ϕA and ϕB,

ψ(~r) = wAϕA(~r) + wBϕB(~r), (176)

where wA and wB are the weights of the atomic orbitals. The electron distribution, ρe−(~r),
can be determined based on Born’s rule,

ρe−(~r) = ‖ψ(~r)‖2 = w2
Aϕ

2
A(~r) + w2

Bϕ
2
B(~r) + 2wAwBϕA(~r)ϕB(~r). (177)

Integration of this equation yields the number of electrons in the molecule,

Ne− = w2
A

∞∫
−∞

ϕ2
A(~r)d~r + w2

B

∞∫
−∞

ϕ2
B(~r)d~r + 2wAwB

∞∫
−∞

ϕA(~r)ϕB(~r)d~r. (178)
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Mulliken interpreted the result in Eq. (178) as follows: the first two integrals on the right-
hand side contain the number of electrons that belong to A or B, while the third integral
– the overlap integral – contains the number of electrons that are shared by A and B [50].
Mulliken evenly distributed the electrons in the overlap integral between atoms A and B.
Thus, the partial charge of A, q̃A, is calculated by:

q̃A = q+
A −

[
w2

A

∫
ϕ2

A(~r) + wAwB

∫
ϕA(~r)ϕB(~r)d~r

]
, (179)

where q+
A is the nucleus’ charge for atom A. Mulliken’s approach of evenly distributing the

electrons in the overlap integral is arbitrary and less chemical meaningful for atoms with
different electron affinities. In addition, Mulliken charges depend on the constitution of the
molecule rather than on reproducing electrostatic interaction properties. For this reason,
Mulliken charges possess little applications in molecular simulations. (1b) Often, partial
charges are used that reproduce the electrostatic potential (ESP) surrounding the molecule.
The electrostatic potential, φ(~r), is a continuous, observable property defined as the force
acting on a unit positive charge at any position in the system and can be calculated by ([29],
p. 189):

φ(~r) =
1

4πε0

 M̌∑
A=1

q+
A

‖~r − ~rA‖
−
∫

ρe−(~r)

‖~r − ~re−‖
d~re−

 , (180)

where M̌ is the number of atoms in the molecule, ~rA is the position of atom A, and ~re−

is the electron position. ESP methods calculate the electrostatic potential surrounding the
molecule at discrete points in space and fit partial charges that best reproduce φ at these
points,

f̃t =
∑
pi

ωpi(φ
∗
pi − φ

calc
pi ), (181)

where f̃t is target function to be minimized, pi is a grid point for which φ∗pi is calculated
according to Eq. (180), ωpi is the weight for pi, and φcalc

pi is the electrostatic potential at
pi calculated for the set of point charges. In essence, ESP methods differ in the way on
how Eq. (181) is solved and which points are used for fitting. ESP charges are well-suited
for describing interactions, but may produce chemically less reasonable partial charges for
embedded atoms ([29], p. 191). (1c) The DDEC charge method developed by Manz and
coworkers [51] is among the most recent approaches to determine partial charges, and pro-
vides several benefits. DDEC charges are [51]:

• able to accurately describe electrostatic interactions,

• applicable to periodic or non-periodic, as well as porous or non-porous systems, and

• chemically meaningful.

Manz and coworkers point out that the DDEC charge method is not so much the result of
a mathematical approach as it is the outcome of trial and error [54]. Despite its novelty,
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DDEC charges are often used to study adsorption in nanoporous materials ([47], p. 110).

(2.) Methods that determine partial charges based on information about atoms and the
way in which they are bonded are very fast, but often suffer from lower accuracy ([29],
pp. 192–195). (2a) One example is the Qeq method developed by Rappé and Goddard [52].
Starting point for the derivation of the Qeq method is a second-order Taylor expansion of
the electrostatic energy of atom A, Uelec,A, around q̃∗A = 0,

Uelec,A(q̃A) = Uelec,A(0) +

(
∂Uelec,A(q̃A)

∂q̃A

)
q̃∗A=0

q̃A +
1

2

(
∂2Uelec,A(q̃A)

∂q̃2
A

)
q̃∗A=0

q̃2
A. (182)

Assuming a positively or negatively charged atom, we obtain:

Uelec,A(+1) = Uelec,A(0) +

(
∂Uelec,A(q̃A)

∂q̃A

)
q̃∗A=0

+
1

2

(
∂2Uelec,A(q̃A)

∂q̃2
A

)
q̃∗A=0

, (183)

or
Uelec,A(−1) = Uelec,A(0)−

(
∂Uelec,A(q̃A)

∂q̃A

)
q̃∗A=0

+
1

2

(
∂2Uelec,A(q̃A)

∂q̃2
A

)
q̃∗A=0

. (184)

Subtracting Eq. (184) from Eq. (183) yields the electronegativity of A,

χA =

(
∂Uelec,A(q̃A)

∂q̃A

)
q̃∗A=0

=
Uelec,A(+1)− Uelec,A(−1)

2
, (185)

while adding Eq. (184) to Eq. (183) yields the idempotential of A,

JA =

(
∂2Uelec,A(q̃A)

∂q̃2
A

)
q̃∗A=0

= Uelec,A(+1) + Uelec,A(−1). (186)

Values for χ and J are provided in the literature. By substituting Eq. (185) and Eq. (186)
in Eq. (182), we obtain [52]:

Uelec,A(q̃A) = Uelec,A(0) + χAq̃A +
1

2
JAq̃

2
A, (187)

while the total electrostatic energy of the system is provided by:

Uelec(q̃1, · · · , q̃N) =
N∑
A=1

Uelec,A(q̃A) +
N∑
A=1

N∑
B>A

q̃Aq̃B
4πε0di-j

, (188)

where the first term on the right-hand side is the sum of individual electrostatic energies, and
the second term on the right-hand side is the sum of intermolecular electrostatic energies. At
equilibrium, the electrostatic energy of the system will be minimal, and the partial derivatives
of Uelec(q1, · · · , qN) with respect to each partial charge will be equal,

∂Uelec(q̃1, · · · , q̃N)

∂q̃1
=
∂Uelec(q̃1, · · · , q̃N)

∂q̃2
= · · · = ∂Uelec(q̃1, · · · , q̃N)

∂q̃N
, (189)
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leading to N − 1 linear equations. In combination with:

q̃tot =
N∑
A=1

q̃A, (190)

where q̃tot is the total charge of the system, we obtain N equations for the N unknown partial
charges we wish to determine. The Qeq method solves these equations by iteration [52]. (2b)
Snurr and coworkers [53] improved the Qeq method by avoiding iteration through directly
solving the N equations via Matrix calculus and a Taylor expansion around q̃∗ 6= 0, which
increases the accuracy of the method for strongly charged atoms. They dubbed this method
as extended charge equilibration (EQeq) method.

Evaluating Interactions

Molecular simulations aim to provide information about the properties of a macroscopic
system, often comprising more than 1020 particles. Even with today’s computation power, it
is not possible to store such a large number of particle coordinates in memory. For this reason,
molecular simulations are often performed for a representative sample of the macroscopic
system with a relatively small number of particles. When designing this model system, it is
important to choose boundaries that mimic the presence of the surrounding infinite bulk in
the macroscopic system. One way is by using periodic boundary conditions (see Fig. 15).

Fig. 15: Two-dimensional illustration of periodic boundary conditions. An infinite bulk is mimicked
by replicating the model system (red-framed) in every direction. Every particle in the model system
interacts with every particle in the periodic image systems (faint). When a particle leaves the model
system on one side, one of its images enters from the opposite side. Source: author’s illustration
inspired by Frenkel and Smit, 2001, p. 34 [26].
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When using periodic boundary conditions, the model system is replicated in every direction
to mimic the macroscopic system. Each particle in the replica cells moves exactly like its
original in the model system. When a particle leaves the model system on one side, one of
its images enters from the opposite side. Only the coordinates of the particles in the model
system need to be stored in memory, because the coordinates of the particles in the replica
cell can be calculated by translational vectors,

~n = lx~nx + ly~ny + lz~nz, (191)

where lx, ly, and lz are integers, and ~nx, ~ny, and ~nz are the box vectors of the model system.
Each particle in the model system interacts with each (image) particle in the replica cells.
Without further simplifications, we would still need to determine the interactions between
the particles of the model system and each particle of the (now mimicked) macroscopic
system. Short-range interactions – such as Lennard-Jones interactions – can be truncated
at a certain cutoff distance, dcut, without distorting the results,

ULJ(di-j) =

 ULJ(di-j) for di-j ≤ dcut,

0 otherwise.
(192)

Electrostatic interactions – such as Coulomb interactions – can not be efficiently truncated,
one reason is that Coulomb energies decay with 1/di-j and are thus considered long-range
interactions ([26], p. 291). Electrostatic interactions are often evaluated using the Ewald
summation technique [55] illustrated in Fig. 16. The idea behind the Ewald summation is
to surround each point charge, q̃i, by a smoothly varying compensation charge distribution,
ρi, of equal magnitude but opposite sign (see Fig. 16b). The compensation charge cloud is
often chosen to be Gaussian,

ρi = q̃i
$3

√
π3
e−$

2d2
c , (193)

where$ is the Ewald splitting parameter and dc the distance to the center of the distribution.
The Gaussian distribution in Eq. (193) has a standard deviation of σdc =

√
2/$ and a zero

mean. The interactions of an ion with an electrostatic potential due to compensated charges
are short-ranged and can thus be truncated by a spherical cutoff. However, our aim is to
determine electrostatic interactions of ions with point charges, not compensated charges ([26],
pp. 293–294). Thus, the electrostatic interaction of ions with the compensation charge
distribution has to be subtracted (see Fig. 16c). Since the compensation charge cloud is a
periodic, smoothly varying function, its contribution to the electrostatic potential can be
solved by a rapidly converging sum in Fourier space. The Coulomb potential becomes ([29],
p. 338):

Uelec =
∑
~n

∑
i

∑
j>i

q̃iq̃j
4πε0

erfc($‖~di-j + ~n‖)
‖~di-j + ~n‖

(194)
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+
1

2V

∑
~k 6=0

∑
i

∑
j

q̃iq̃j
ε0

1

‖~k‖2
e−
‖~k‖2

4$2 cos(~k • ~di-j) (195)

− $√
π

∑
i

q̃2
i

4πε0
, (196)

where ~k are the reciprocal space vectors,

~k =
2π

V

[
ľx(~ny × ~nz) + ľy(~nz × ~nx) + ľz(~nx × ~ny)

]
. (197)

The three terms on the right-hand side of Eq. 196 are (1) the interaction energy between ions
and the electrostatic potential due to compensated charges (truncated by a real-space cutoff
dcut with di-j ≤ dcut), (2) the interaction energy between ions and the electrostatic potential
due to compensation charge clouds (truncated by maximum number of simulation box replica
ľcut with ľx + ľy + ľz ≤ ľcut), and (3) the correction for ion self-interactions implicit in the
second term to ensure periodicity of the compensation charge distribution. By using the
formulation of the Ewald summation in Eq. (196), the sphere of simulation boxes being built
up is assumed to be surrounded by a conducting medium ([28], p. 157). Appropriate values
for the Ewald splitting parameter, $, and maximum number of simulation box replica, ľcut,
can be estimated based on the desired accuracy, εacc, of the Ewald Coulombic energy ([26],
pp. 304–306):

εacc = exp(−s̃2)/s̃2, (198)

$ =
s̃

dcut
, (199)

ľcut =
$s̃

π
min (~nx, ~ny, ~nz), (200)

where s̃ is an integer.

Fig. 16: The Ewald summation splits (a) a set of point charges into (b) a set of screened point
charges and (c) the canceling screening background. Source: reproduction of Author’s illustra-
tion [56] inspired by Frenkel and Smit, 2002, p. 294 [26].
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3 Separating Alcohols and Alcohol-Water Mixtures by

Exploiting Entropic Effects in CAU-10

3.1 Motivation

Short-chain alcohols obtained by fermentation play a key role in the transformation toward
green chemistry, because of their use as fuel additives, fuels, or for their conversion into
olefins. The fermentation broth is often a highly diluted aqueous solution that requires sep-
aration. Common separation strategies exploit differences of the components’ boiling points
(distillation) or diffusion rates through porous membranes (pervaporation) [57]. Both meth-
ods have their limitations. Simple distillation is often incapable of providing high-purity
alcohols, because most of them form azeotropic mixtures with water. Moreover, distillation
is inefficient, both in terms of environmental compatibility and economic profitability. Perva-
poration, on the other hand, is more energy efficient than distillation but less versatile. The
choice of membrane is based on the composition of the mixture to be separated, which can
vary greatly in fermentation processes [58, 59]. Adsorption is an alternative to distillation
and pervaporation – even if its application has so far often been limited to the drying of
alcohol distillates. One of the several advantages of adsorption is its ability to separate alco-
hol mixtures from the liquid phase, making it well suited for separating fermentation broths.
In the following, we will study the separation of aqueous alcohol mixtures by liquid phase
adsorption in CAU-10 – an ultramicroporous MOF with internal hydrophobicity. The prime
objective of this study is to understand the impact of water on the separation of alcohols
from the liquid phase. To this end, we perform grand canonical Monte Carlo simulations to
predict both the unary gas adsorption isotherms of linear short-chain alcohols or water, as
well as the multicomponent liquid phase adsorption isotherms of water-alcohol mixtures.

3.2 State of the Research

The separation of alcohol mixtures by adsorption has been intensively studied. For instance,
Krishna and van Baten [60] showed that the all-silica CHA zeolite is capable of efficiently sep-
arating linear short-chain alcohols based on differences in their saturation capacity. The au-
thors performed CBMC simulations at 300 K to obtain the unary vapor adsorption isotherms
of methanol, ethanol, n-propanol, n-butanol, n-pentanol, or n-hexanol, as well as the bi-
nary vapor adsorption isotherms for the equimolar mixtures: methanol/ethanol, ethanol/n-
propanol, n-butanol/n-pentanol, n-pentanol/n-hexanol, or ethanol/n-hexanol. The unary
vapor adsorption isotherms exhibited a sigmoid shape for a logarithmic scale on the pressure
axis. As the chain length of the alcohols increases, the inflection point of the sigmoid curve
shifts to lower pressures (due to increasing host-guest interactions), while the saturation
capacity decreases (due to the decreasing packing efficiencies of the components in the pore
channels). The saturation capacities are shown in Tab. 2, and their course can be described
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by the following sequence:

methanol > ethanol > n-propanol = n-butanol > n-pentanol = n-hexanol.

The vapor adsorption isotherms for the equimolar mixtures: methanol/ethanol, ethanol/n-
propanol, n-butanol/n-pentanol, or ethanol/n-hexanol exhibit three characteristics:

1. At low loading, the longer alcohol is preferentially adsorbed, because the separation is
governed by differences in the adsorption strength.

2. As the loading increases, the differences in packing efficiency come into play. A se-
lectivity reversal occurs, resulting in the longer alcohol being desorbed in favor of the
shorter one.

3. At high loading, the mole fraction of the shorter alcohol in the adsorbed phase is
significantly higher than that of the longer alcohol. For some mixtures, the longer
alcohol is completely excluded from the adsorbed phase.

Krishna and van Baten concluded that selectivity reversal is guaranteed under saturation
conditions, such as present in adsorption from liquids. On a side note, no selectivity reversal
was observed for mixtures of components that possess the same saturation capacity [60].

Tab. 2: Saturation capacities for linear short-chain alcohols in all-silica CHA zeolite at 300 K [60].

Species Saturation capacities
[mmol/g]

methanol 1.27

ethanol 0.92

n-propanol, n-butanol 0.46

n-pentanol, n-hexanol 0.23

The study of Krishna and van Baten implies that differences in the saturation capacity of
the components will mainly be responsible for the separation of aqueous alcohol mixtures by
liquid phase adsorption. Differences in the saturation capacity result from varying packing
efficiencies of the guest species, for example due to [61]:

• Size exclusion, which favors the adsorption of whichever guest species can occupy
the highest number of distinct adsorption sites at saturation of the adsorbent. An
example is the separation of n-hexane and 3-methylpentane in silicalite [62] – a zeolite
which consists of straight ellipsoidal and zigzag channels that cross at intersections.
While n-hexane can adsorb in both the straight and zigzag channels, 3-methylpentane
can only occupy the intersections. As a consequence, the saturation capacity of n-
hexane is significantly higher than that of 3-methylpentane, leading to the almost
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complete exclusion of 3-methylpentane from the adsorbed layer when adsorbing from
an equimolar binary mixture of the two components at saturation.

• Commensurate stacking, which favors the adsorption of whichever guest species has
a stacking arrangement commensurate with the dimensions of the one-dimensional
channel. An example is the separation of styrene and ethylbenzene in MIL-47 [61] –
a MOF which consists of diamond-shaped one-dimensional channels. While styrene
(planar) can adsorb flat on the channel walls, ethylbenzene (non-planar) can not.
This results in a more efficient packing of styrene compared to ethylbenzene, and the
exclusion of ethylbenzene from the adsorbed layer when adsorbing from an equimolar
binary mixture at saturation.

• Face-to-face stacking, which favors the adsorption of whichever guest species signifi-
cantly decreases its footprint when reoriented. An example is the separation of styrene
and ethylbenzene in AFI zeolite with one-dimensional channels [61]. At low loading,
styrene and ethylbenzene adsorb flat on the channel walls. As the loading increases,
both styrene and ethylbenzene undergo reorientation. While styrene (planar) can sig-
nificantly reduce its footprint by stacking in piles, ethylbenzene (non-planar) can not.
As a result, adsorption of styrene is strongly favored over that of ethylbenzene when
adsorption occurs under saturation conditions.

Separations that exploit differences in the saturation capacity are driven by maximizing the
configurational entropy. Krishna [63] provided a quantitative explanation for these entropic
separations based on the statistical-mechanical Boltzmann expression for entropy,

S = kB lnw, (201)

where kB is Boltzmann’s constant and w is the number of configurations (in Sec. 2.2 dubbed
as number of realizations). Eq. (201) applies to a macroscopic system with only equally
probable microscopic states, i.e. one in which every state has the same energy. This is
guaranteed if: (1) the channels of the porous material consist of one-dimensional lattices of
M̃ adsorption sites where molecules can only adsorb flatly, (2) the adsorption energy per
lattice site is independent of the adsorbed guest species, and (3) no adsorbate-adsorbate
interactions are present. Qualitatively, Eq. (201) states that the guest species with the
largest number of configurations has the highest configurational entropy. Krishna used the
model of Dávila et al. [64],

w =
(M̃ − (k − 1)Nk − (l − 1)Nl)!

(M̃ − kNk − lNl)!Nk!Nl!
, (202)

to express the number of configurations for adsorbing Nk k-mers and Nl l-mers – occupying k
or l adsorptions sites per molecule. The author obtained the following quantitative expression
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for the description of entropic separations by maximizing Eq. (201):

xk =
1

1 + 1
Ω

, (203)

where Ω was dubbed as entropy factor,

Ω =

(
1− (k − 1)xkΘ̃mix − (l − 1)(1− xk)Θ̃mix

)l−k
(

1− kxkΘ̃mix − l(1− xk)Θ̃mix

)l−k , (204)

xk is the adsorbed phase mole fraction of the k-mer, and Θ̃mix is the mixture occupancy of
adsorption sites,

Θ̃mix =
kNk + lNl

M̃
. (205)

Eqs. (203) and (204) need to be solved simultaneously. In doing so, Krishna recognized that:

1. independent of the mixture occupancy, no entropic separation occurs for k = l, because
Ω = 1 and xk = 0.5,

2. for k < l and vanishing mixture occupancies (Θ̃mix → 0), separation is not driven by
entropy, because Ω→ 1 and xk → 0.5, and

3. for k < l and high mixture occupancies (Θ̃mix → 1), separation is completely driven
by entropy, because Ω→∞ and xk → 1.

Krishna’s model confirms the assumption of Krishna and van Baten that differences in
the saturation capacity of the components will govern the separation of alcohol mixtures
by liquid phase adsorption (i.e. for Θ̃mix → 1) [63]. For aqueous mixtures, the entropic
separation would probably result in the accumulation of water in the adsorbed layer – even
for adsorbents with internal hydrophobicity. Evidence is provided by Zhang et al. [65], who
studied the vapor phase separation of short-chain alcohols and water in ZIF-90. The authors
measured the unary adsorption isotherms of methanol, ethanol, n-propanol, isopropanol,
or n-butanol at 308 K and predicted the separation selectivity of liquid binary alcohol-
water mixtures containing up to 5 mol% alcohol using the ideal adsorbed solution theory
(IAST) [66], described in more detail in Appendix G. The unary alcohol isotherms exhibit
type I characteristics according to the IUPAC classification, with saturation capacities of
10 mmol/g (methanol), 6 mmol/g (ethanol), or 4 mmol/g (n-propanol, isopropanol, or n-
butanol), while the unary water isotherm confirms the internal hydrophobicity of ZIF-90
(type V isotherm according to the IUPAC classification) and indicates a saturation capacity
of ca. 18 mmol/g. The significantly higher saturation capacity of water compared to the
alcohols results in the preferential adsorption of water over the whole range of liquid phase
mole fractions of water considered, as predicted by IAST. Based on the findings of Zhang
et al., this chapter aims to investigate the entropic impact on the separation of alcohols or
alcohol-water mixtures in CAU-10, an ultramicroporous MOF with internal hydrophobicity.
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3.3 Methodology

Grand canonical Monte Carlo simulations were performed to predict:

1. the vapor phase adsorption of ethanol, n-butanol, n-hexanol, or water, and

2. the liquid phase adsorption for the mixtures: ethanol/n-butanol, n-butanol/n-hexanol,
water/ethanol, water/n-butanol, water/n-hexanol, or water/ethanol/n-butanol

in CAU-10 at 298.15 K. CAU-10, [Al(OH)(benzene-1,3-dicarboxylate)], was first synthe-
sized in 2012 by Stock and coworkers [5] by linking chains of cis-connected corner-sharing
AlO4(OH)2 polyhedra via 1,3-benzenedicarboxylate (isophthalic acid). The pore geometry
is shown in Fig. 17 and is best described as being a sequence of rectangular cavities (cuboids)
that are rotated 90◦ to each other. Previous studies on isostructural MIL-160, [Al(OH)(furan-
2,5-dicarboxylate)], revealed that this pore geometry causes highly efficient entropy-based
separations of hexane isomers at room temperature [67, 68]. In contrast to MIL-160, CAU-10
has a larger pore size – which is commensurate with the size of short-chain alcohols – and a
more pronounced internal hydrophobicity – confirmed by type V water adsorption isotherms
with inflection points at p/p0 ≈ 0.08 (MIL-160) or p/p0 ≈ 0.18 (CAU-10) [7]. CAU-10 is thus
a good candidate for studying the entropic separation of aqueous alcohol mixtures. Tab. 3
provides a brief summary of the geometric properties of CAU-10 and MIL-160.

Fig. 17: Pore geometry of CAU-10 (colored blue). (a) Front view with shown pore dimensions.
Coloring of atoms following the Jmol coloring scheme – i.e. aluminum - pink swan, carbon - gray,
hydrogen - white, oxygen - red. (b) Diagonal view. The pore geometry was automatically calculated
with iRASPA [69] using nitrogen as probe molecule with Lennard-Jones interactions only.

Tab. 3: Geometric properties of CAU-10 [5] and MIL-160 [70].

CAU-10 MIL-160
Pore Dimensions [Å] ca. 4× 7 ca. 2.5× 5

Pore Volume [ml/g] 0.25 0.45
Surface Area [m2/g] 564 – 656 776
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GCMC simulations were carried out with the RASPA software package [31]. Five types
of trial moves were used: (1) insertion/deletion, (2) rigid body translation, (3) rigid body
rotation, (4) CBMC reinsertion, and (5) identity change of guest molecules. Unary vapor
adsorption isotherms were calculated up to the vapor pressure, with gas phase fugacities au-
tomatically computed by RASPA using the Peng-Robinson equation of state [71]. Adsorption
from binary or ternary liquid mixtures was simulated following the procedure described by
Low and coworkers [72] (see Appendix H for details on the mixture compositions). The pro-
cedure mimics the conditions in the experiment, where the liquid mixture and adsorbent are
kept in a sealed tube at constant temperature. The closed system consists of three phases:
vapor, liquid, and solid. At thermodynamic equilibrium, the components in the system have
the same chemical potential in all three phases. There is thus no need to explicitly simulate
the liquid phase in GCMC simulations, because the chemical potential can be determined
from the fugacity and composition of the vapor phase. We used the modified Universal Qua-
sichemical Functional Group Activity Coefficients (Dortmund) (UNIFAC (Do)) model [73] to
determine the vapor phase fugacities and compositions for every liquid mixture.2 For binary
or ternary mixtures containing water, 1000 water molecules were created and equilibrated in
the canonical ensemble before running GCMC simulations with CFCMC to accelerate equi-
libration. Details on the number of Monte Carlo cycles are given in Tab. I1 of Appendix I.
Non-bonded interactions were described by an interatomic potential consisting of Lennard-
Jones and Coulomb interactions using periodic boundaries. Lennard-Jones interactions were
truncated by means of a 12 Å cutoff, while the Ewald summation [55] with an accuracy of
10−6 was used to handle long-range Coulomb interactions. The simulation box consisted of
2 × 2 × 4 unit cells of CAU-10, whose atomic positions were maintained fixed during the
simulations. The atomic coordinates of CAU-10 were taken from previous work [74]. The
Lennard-Jones parameters for each atom of the MOF were taken from the DREIDING force
field [49] (organic linker) and the Universal force field [48] (metal atoms and their bridging
ions). Following the work of Cadiau et al. [7], we neglected the Lennard-Jones contribu-
tions of the aluminum atoms and the hydrogen atoms of their bridging hydroxyl groups,
as well as those of the hydrogen atoms of the benzene ring. These modifications to the
force field allow water to form hydrogen bonds with the otherwise shielded hydroxyl groups
that bridge the aluminum atoms. Similar interactions are observed if the flexibility of the
isophthalate linker is accounted for in the force field, as shown by Grenev et al. [75]. Par-
tial charges were determined by performing single point energy calculations followed by a
Mulliken analysis [50] in DMol3 as implemented in Materials Studio 7.0 (BIOVIA) using the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional [76]
combined with a double-numeric quality basis set with polarization functions (DNP). Al-
cohols were modeled according to the TraPPE-UA model [77], while water was modeled
according to the TIP4P/2005 model [78]. Lennard-Jones parameters between unlike atomic
species were computed by means of the Lorentz-Berthelot mixing rules [44, 45].

2 UNIFAC (Do) calculations were performed by Dr. Mandy Klauck; ORCID iD: 0000-0001-8922-8295.
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Adsorption isotherms, snapshots, adsorption heats, and radial distribution functions (RDFs)
give insight into the adsorption mechanism. RDFs were determined over 105 cycles of the pro-
duction run. The simulated isotherms were fitted to the dual-site Langmuir-Sips model [60],

Γi = Γm
i,1

bi,1p
νi,1

1 + bi,1pνi,1
+ Γm

i,2

bi,2p
νi,2

1 + bi,2pνi,2
, (206)

where Γi is the loading of adsorbate i, Γm
i,1 and Γm

i,2 are the saturation capacities for adsorption
of i on site 1 or 2, bi,1 and bi,2 are the Langmuir constants for adsorption of i on site 1 or
2, and νi,1 and νi,2 are the number of adsorbate molecules that can simultaneously adsorb
on site 1 or 2. The simulation results suggest νi,1 = νi,2 = 1 for n-butanol or n-hexanol, and
νi,1 = νi,2 = 2 for ethanol. The curve_fit function of the scipy python software package [79]
was used to fit the constants in Eq. (206) to match the simulated isotherms by means of
the Levenberg-Marquardt algorithm [80]. The fitted parameters are shown in Tab. K1 of
Appendix K. Experimental isotherms for the unary adsorption of ethanol, n-butanol, and
water at 298.15 K on CAU-10 were measured in collaboration with the research group of
Dr. Jens Möllmer of the Institut für Nichtklassische Chemie e.V. (INC) in Leipzig. The
experimental method used by the INC is described in Appendix J. The n-hexanol isotherm
proved impossible to measure, because of the long time that is required to attain equilibrium.
For comparison with the simulated unary isotherms, Eq. (21) was used to convert the specific
relative surface excess measured in the experiment to the absolute loading determined in the
simulations. The density of the gas phase, ρg, in Eq. (21) was estimated using the van-der-
Waals equation of state, (

p+ ãρ2
g

)( 1

ρg
− b̃
)

= RT, (207)

where ã and b̃ are the van-der-Waals parameters. The van-der-Waals parameters were deter-
mined from the critical data taken from the CRC Handbook of Chemistry and Physics ([81],
pp. 6-67–6-82). Eq. (207) was solved for ρg using the roots function of the numpy python
package [82]. Eq. (31) was used to calculate the reduced surface excess for the liquid multi-
component mixtures. The simulation results for the liquid binary mixtures are compared to
IAST calculations. IAST is based on the assumption of an ideal adsorbed phase [66]. This
assumption is valid for chemically similar guest species (e.g. short-chain alcohols, as shown
by Krishna and van Baten [60]), but probably not for alcohol/water mixtures. However,
the deviation of the IAST predictions from the simulation results helps to identify cooper-
ative adsorption phenomena. IAST calculations were performed with the pyIAST software
package [83] using the unary adsorption isotherms obtained in simulations or experiments
(simulated isotherm for n-hexanol only) and vapor phase fugacities of the liquid mixtures as
input. The UNIFAC (Do) model was used to determine the vapor phase fugacities for every
liquid mixture. Spreading pressures in pyIAST were determined by numerical quadrature
using Eq. (G12). The first integral in Eq. (G12) was solved by assuming that the adsorption
isotherm follows Henry’s law for pressures lower than the lowest observed pressure in the
adsorption isotherm. The second term in Eq. (G12) was solved using the trapezoid rule, and
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the third integral was solved by linear interpolation of the adsorption isotherm. The adsorp-
tion capacity was assumed constant for pressures beyond the highest pressure observed in the
adsorption experiment, because adsorption isotherms are sufficiently saturated. Hydrogen
bonding between water and alcohol might lead to co-adsorption, meaning that the loading
of a component of the mixture exceeds the loading observed for the pure component under
similar thermodynamic conditions [84]. Co-adsorption is examined by comparing the com-
ponent loadings obtained from the binary liquid simulations or IAST calculations with the
component loadings occurring in unary adsorption at fugacities corresponding to the partial
fugacities arising for the binary liquid mixtures. Eq. (206) was used in conjunction with
the fitted parameters in Tab. K1 to determine the unary component loadings. The reduced
surface excesses for the components of the ternary liquid mixture are presented in ternary
contour plots. Contour lines were determined based on an interpolation that uses a marching
squares algorithm in conjunction with centripetal Catmull–Rom splines [85] as implemented
in the create_ternary_contour function of the plotly python package. Isometric log-ratio
transformation of the composition data was applied to improve the accuracy of the interpo-
lation. Lines parallel to the triangle edges have a constant amount of one component. By
determining the reduced surface excess at different points on several of these parallel lines,
we are able to evaluate the influence of the increase of one component on the separation of
the two remaining components. The reduced surface excess obtained for each parallel line
was fitted to the Bi-Langmuir function,

Γ
σ(n)
i = ȟ2

(
ȟ1

K1x
′
i

1 + (K1 − 1)x′i
+ (1− ȟ1)

K2x
′
i

1 + (K2 − 1)x′i
− x′i

)
, (208)

where ȟ1, ȟ2, K1, or K2 are the fitting parameters and x′i is the liquid phase mole fraction
of component i [86]. The curve_fit function of the scipy python software package [79] was
used to fit all the four constants in Eq. (208) to match the simulated reduced surface excess
data by means of the Levenberg-Marquardt algorithm [79]. The fitted parameters are shown
in Tab. K2 – Tab. K4 of Appendix K.

3.4 Results and Discussion

3.4.1 Single-Component Adsorption

Fig. 18 shows the simulated and experimental unary adsorption isotherms for water, ethanol,
n-butanol, and n-hexanol in CAU-10 at 298.15 K using a linear scale on the abscissa for all
adsorptives (Fig. 18a) or a logarithmic one (Fig. 18b) for alcohols only. The secondary
ordinate indicates the number of molecules per CAU-10 unit cell ([molec/uc]). The sim-
ulated adsorption isotherms are able to describe the course of the experimental isotherm
qualitatively (water) or quantitatively (alcohols). The water isotherms in Fig. 18a show no
adsorption at low relative pressure and then a sudden increase in water adsorption up to
15 mmol/g (simulation) or 17.5 mmol/g (experiment) at a relative pressure of about 0.25
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(simulation) or 0.18 (experiment) followed by low water uptake up to a saturation capacity
of 17.5 mmol/g (simulation) or 21.5 mmol/g (experiment). The results of Grenev et al. [75]
suggest that the increased hydrophilicity and higher saturation capacity in the experiment
are caused by defects in CAU-10 that were not accounted for in our force field. The alcohol
isotherms in Fig. 18a show a sharp increase in alcohol adsorption at a low relative pressure
and quickly attain a plateau. The course of the alcohol isotherms is best described using the
semi-logarithmic representation in Fig. 18b.

Fig. 18: Unary isotherms for water (blue triangles), ethanol (green squares), n-butanol (orange
circles), and n-hexanol (red diamonds) in CAU-10 at 298.15 K: simulation (solid symbols) and
experiment (outlined symbols). (a) Linear plot for all adsorptives or (b) a semi-logarithmic one
for alcohols. The continuous solid lines are fits using linear interpolation (water) or the dual-site
Langmuir-Sips model (alcohols). The following vapor pressures, obtained from the UNIFAC (Do)
calculations, were used: p0 = 3173.2 Pa (water), p0 = 7940.9 Pa (ethanol), p0 = 926.2 Pa (n-
butanol), and p0 = 109.2 Pa (n-hexanol).

The ethanol isotherms in Fig. 18b show no adsorption at low relative pressure and then a
sudden increase in ethanol adsorption up to 4.8 mmol/g at a relative pressure of about 0.01.
The simulated and experimental ethanol isotherms agree very well. The only relevant differ-
ence is the slight increase in ethanol uptake for p/p0 > 2 · 10−2 observed in the experiment,
which might be caused by adsorption/condensation on the external surface of CAU-10. The
n-butanol isotherms in Fig. 18b show no adsorption at low relative pressure and then two
elongated increases in n-butanol adsorption up to: (1) 1.2 mmol/g at a relative pressure of
about 10−4 (simulation) or 10−3 (experiment) and (2) 2.4 mmol/g at a relative pressure of
about 10−2. The agreement between the simulated and experimental n-butanol isotherm is
good. However, the first increase in n-butanol adsorption in the simulated isotherm occurs
at a relative pressure which is an order of magnitude lower than that which is observed in the
experiment, while the second increase is well described. A possible explanation for the dif-
ference between the simulated and experimental n-butanol isotherm will be presented when
discussing the water/n-butanol mixture adsorption on p. 66 ff. The simulated n-hexanol
adsorption in Fig. 18b isotherm shows no adsorption at low relative pressures and then two

55



elongated increases in n-hexanol adsorption up to: (1) 1.2 mmol/g at a relative pressure of
about 10−5 and (2) 2.4 mmol/g at a relative pressure of about 10−2. Both n-butanol and
n-hexanol show an inflection in the isotherm at a loading of 1.2 mmol/g. An inflection in the
isotherm is often an indication for the reorientation of the adsorbate molecules due to the
filling of adsorption sites of different energies. Short-chain organic molecules tend to fill the
adsorption sites of high adsorption energy at low loading first, but are often able to signif-
icantly increase their packing efficiency (and thus configurational entropy) when adsorbing
on the low-energy adsorption sites. This can generally only be achieved if the adsorbate
molecules are reoriented. The adsorption uptake at low relative pressures is a measure of the
adsorption strength (i.e. the degree of adsorbate-adsorbent interactions). The adsorption
strengths of the investigated adsorptives in CAU-10 is given by the sequence:

water << ethanol < n-butanol < n-hexanol,

which is consistent with the simulated heats of adsorption at zero coverage and 298.15 K, i.e.
−31.2± 0.1 kJ/mol (water), −47.7± 1.1 kJ/mol (ethanol), −61.5± 0.5 kJ/mol (n-butanol),
or −75.8±0.5 kJ/mol (n-hexanol), and confirms the internal hydrophobicity of CAU-10 due
to the preferential adsorption of the more hydrophobic species. The saturation capacity, on
the other hand, is a measure of the packing efficiency of the adsorbate molecules in CAU-10.
The packing efficiency is given by the sequence:

water >> ethanol > n-butanol ≈ n-hexanol.

Fig. 19: RDFs of distances for oxygen in water (Ow) and hydrogen in the hydroxyl groups that
bridge the aluminum atoms of CAU-10 (Hc, red) or hydrogen in water (Hw, blue) and corresponding
snapshots of water in CAU-10 at 298.15 K and (a, b) low loading at p/p0 = 0.2, (c, d) medium
loading at p/p0 = 0.28, or (e, f) saturation at p/p0 = 0.95. Note the secondary ordinate for atom
pair Ow – Hc in (a).
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Insights into these sequences and the mechanisms of adsorption can be gained from snapshots
and RDFs. Fig. 19 shows the RDFs of distances for selected atom pairs and the corresponding
snapshots for water in CAU-10 at 298.15 K and low loading at p/p0 = 0.2 (Fig. 19a, b),
medium loading at p/p0 = 0.28 (Fig. 19c, d), or saturation at p/p0 = 0.95 (Fig. 19e, f).
These loading regimes are analyzed to elucidate the simulated adsorption isotherm of water
in Fig. 18a, namely the reason for the sudden water uptake at p/p0 = 0.25 and the following
low increase in water adsorption. Atom pairs for determining the RDFs were chosen to
illustrate the most dominant interactions in the system. For the adsorption of water in
CAU-10, dominant interactions are those between oxygen atoms in water (Ow) and hydrogen
atoms in water (Hw) or hydrogen atoms in the hydroxyl groups that bridge the aluminum
atoms in CAU-10 (Hc). RDFs for the remaining atom pairs can be found in Fig. L2 – L4 of
Appendix L. The results in Fig. 19 are interpreted as follows:

1) Low loading: The first peaks in the RDFs in Fig. 19a occur at a distance that is
characteristic for hydrogen bonding, i.e. 2.0 Å (Ow – Hc) or 1.8 Å (Ow – Hw). The
height of the first peaks indicate the degree of hydrogen bonding, which is significantly
larger for Ow – Hw (peak height ca. 380) than for Ow – Hc (peak height ca. 1.5).
The extremely high peak for Ow – Hw is also a result of the very low loading, because
there are fewer water molecules to average over when determining the RDF. In this
light, it seems remarkable that water molecules tend to adsorb close to each other.
We conclude two points from the RDFs. First, water adsorbs cooperatively. Adsorbed
water molecules act as strong adsorption sites for further water adsorption – explaining
the sudden uptake at p/p0 = 0.25 in the isotherm in Fig. 18a. Second, CAU-10
has (more) hydrophilic adsorption sites. The snapshot in Fig. 19b indicates that the
hydrophilic sites are located in the processes of the pore channels (framed in yellow).
The framed area also shows the cooperative adsorption of water.

2) Medium loading: The first peaks in the RDFs in Fig. 19c occur at the same distances
as observed at low loading, indicating hydrogen bonding for the atom pairs Ow – Hc
and Ow – Hw. The degree of hydrogen bonding for Ow – Hw (peak height ca. 8)
dominates relative to Ow – Hc (peak height ca. 1.0), but is significantly decreased
compared to the situation observed at low loading. This does not necessarily indicate
that hydrogen bonding between water molecules is less favored at medium loading,
but that there are more water molecules to average over when determining the RDF
due to an increased loading. The increased loading is also indicated by the snapshot
in Fig. 19d. Some water molecules appear to be adsorbed „outside“ the boundaries
of the pore channel (framed in lime green), but this is deceptive because iRASPA
estimates the pore geometry based on Lennard-Jones interactions only, thus ignoring
electrostatic interactions which are often used to describe hydrogen bonding.

3) Saturation: The first peaks in the RDFs in Fig. 19e occur at the same distances as
observed at low loading or medium loading, again indicating hydrogen bonding for the
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atom pairs Ow – Hc and Ow – Hw. The degree of hydrogen bonding for Ow – Hw
(peak height ca. 3) dominates relative to Ow – Hc (peak height ca. 1.5), but is
further decreased compared to the situation observed at medium loading – indicating
an increased loading and thus more water molecules to average over when determining
the RDF. The increased loading is also indicated by the snapshot in Fig. 19f. Many
water molecules are now adsorbed „outside“ the boundaries of the pore channel. The
slight increase in water uptake for p/p0 > 0.25 is probably due to the filling of these
adsorption sites with increasing pressure.

Fig. 20 shows the RDFs of distances for selected atom pairs and the corresponding snapshots
for ethanol in CAU-10 at 298.15 K and medium loading at p/p0 = 6 · 10−3 (Fig. 20a, b) or
saturation at p/p0 = 0.88 (Fig. 20c, d). These loading domains are analyzed to elucidate the
simulated adsorption isotherm of ethanol in Fig. 18b. Atom pairs for determining the RDFs
were chosen to illustrate the most dominant interactions in the system. For the adsorption of
ethanol in CAU-10, dominant interactions are those between hydrogen atoms in the hydroxyl
group of ethanol (Ha) and oxygen atoms in the hydroxyl group of ethanol (Oa) or carboxyl
oxygen atoms in CAU-10 (Oc), as well as those between the terminal alkyl group in ethanol
(CH3) and the terminal alkyl group of other ethanol molecules or benzene carbon in CAU-10
(Cb). RDFs for the remaining atom pairs can be found in Fig. L5 and Fig. L6 of Appendix L.
The results in Fig. 20 are interpreted as follows:

1) Medium loading: The first peaks in the RDFs in Fig. 20a occur at a distance that
either suggests hydrogen bonding, i.e. 1.8 Å (Ha – Oa) or 2.2 Å (Ha – Oc), or that
which is commonly observed for carbon-carbon interactions, i.e. 4.0 Å (CH3 – CH3) or
4.4 Å (CH3 – Cb). The degree of hydrogen bonding for Ha – Oa (peak height ca. 3.5) is
larger than for Ha – Oc (peak height ca. 1.4), and also larger than the degree of carbon-
carbon interactions for CH3 – Cb (peak height ca. 2.4) or CH3 – CH3 (peak height ca.
1.8), but is still in the same order of magnitude. Ethanol is both hydrophilic (hydroxyl
group) and hydrophobic (alkyl group). The RDFs imply that ethanol interacts to
a similar degree via its hydroxyl group with the hydroxyl groups of other ethanol
molecules or the more hydrophilic adsorption sites of CAU-10, and via its alkyl group
with the alkyl groups of other ethanol molecules or the more hydrophobic adsorption
sites of CAU-10. The snapshot in Fig. 20b confirms the adsorption mechanism of
ethanol in CAU-10. Ethanol molecules adsorb with their hydroxyl groups toward the
hydrophilic adsorption sites in the processes of the pore channel (framed in blue), and
with their alkyl groups toward the hydrophobic adsorption sites along the benzene
ring (framed in brown). The snapshot also confirms the high degree of hydrogen
bonding between ethanol molecules (see the four ethanol molecules on the right-hand
side). We conclude that ethanol molecules adsorb cooperatively: the hydroxyl groups of
adsorbed ethanol molecules act as strong adsorption sites for further ethanol adsorption
– explaining the sudden increase in ethanol adsorption at p/p0 = 0.01 observed in the
isotherm in Fig. 18b.
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2) Saturation: The first peaks in the RDFs in Fig. 20c occur at the same distances as those
observed at medium loading, again indicating hydrogen bonding for the atom pairs
Ha – Oa or Ha – Oc, as well as carbon-carbon interactions for atom pairs CH3 – CH3 or
CH3 – Cb. However, the degree of hydrogen bonding for Ha – Oa (peak height ca. 12)
is now significantly larger than for Ha – Oc (peak height ca. 0.3), and also dominates
compared to the atom pairs CH3 – CH3 (peak heights ca. 1.5) and CH3 – Cb (peak
heights ca. 2.1). We conclude that the adsorption at saturation is mainly governed by
hydrogen bonding between ethanol molecules – confirming the cooperative adsorption
of ethanol. The high degree of hydrogen bonding for Ha – Oa is also indicated by the
snapshot in Fig. 20d. The dimensions of the pore channels in CAU-10 allow to host
two ethanol molecules per cuboid (framed in red). Most of these ethanol pairs align
their hydroxyl groups with each other (and often with the ethanol pair of adjacent
cuboids), while only few ethanol molecules adsorb with their hydroxyl groups toward
the hydrophilic adsorption sites of CAU-10.

Fig. 20: RDFs of distances for hydrogen in ethanol (Ha) and carboxyl oxygen in CAU-10 (Oc,
blue) or oxygen in ethanol (Oa, red), as well as for the terminal alkyl groups in ethanol (CH3) and
benzene carbon in CAU-10 (Cb, brown) or CH3 (green), and corresponding snapshots of ethanol in
CAU-10 at 298.15 K and (a, b) medium loading at p/p0 = 6·10−3 or (c, d) saturation at p/p0 = 0.88.

Fig. 21 shows the RDFs of distances for selected atom pairs and the corresponding snapshots
of n-butanol in CAU-10 at 298.15 K and medium loading at p/p0 = 1.1 ·10−3 (Fig. 21a, b) or
saturation at p/p0 = 0.54 (Fig. 21c, d). These loading domains are analyzed to elucidate the
simulated adsorption isotherm of n-butanol in Fig. 18b, namely the reason for the occurrence
of the inflection at 1.2 mmol/g as well as for the decreased saturation capacity compared to
ethanol. Atom pairs for determining the RDFs were chosen to illustrate the most dominant
interactions in the system. For the adsorption of n-butanol in CAU-10, dominant interactions
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are those between hydrogen atoms in the hydroxyl group of n-butanol (Ha) and oxygen atoms
in the hydroxyl group of n-butanol (Oa) or carboxyl oxygen atoms in CAU-10 (Oc), as well
as those between the internal alkyl groups in n-butanol (CH2) and the internal alkyl groups
of other n-butanol molecules or benzene carbon in CAU-10 (Cb). RDFs for the remaining
atom pairs can be found in Fig. L7 and Fig. L8 of Appendix L. The results in Fig. 21 are
interpreted as follows:

1) Medium loading: The first peaks in the RDFs in Fig. 21a occur at a distance that
either suggests hydrogen bonding, i.e. 1.9 Å (Ha – Oa) or 2.5 Å (Ha – Oc), or that
which is commonly observed for carbon-carbon interactions, i.e. 4.4 Å (CH2 – Cb),
or 4.6 Å (CH2 – CH2). These distances are similar to those observed for ethanol at
medium loading. But for n-butanol, the degree of adsorbate-adsorbate interactions is
significantly lower than the degree of adsorbent-adsorbate interactions, as indicated
by peak heights of 0.16 (Ha – Oa) or 0.17 (CH2 – CH2) versus 1.6 (Ha – Oc) or 2.0
(CH2 – Cb). We conclude that the adsorption of n-butanol at medium loading is
mainly governed by the interaction with CAU-10 – involving both the interaction of
the hydroxyl group with the more hydrophilic adsorption sites of CAU-10 and the
interaction of the alkyl group with the more hydrophobic adsorption sites of CAU-10.
The snapshot in Fig. 21b confirms the adsorption mechanism. n-Butanol molecules
adsorb with their hydroxyl groups toward the hydrophilic adsorption sites (framed in
blue), and with their alkyl groups toward the hydrophobic adsorption sites (framed in
brown). This adsorption mechanism is similar to that observed for ethanol at medium
loading, but the longer alkyl group of n-butanol allows a stronger interaction with
the more hydrophobic adsorption sites – explaining the increased adsorption heat of
n-butanol relative to ethanol.

2) Saturation: The first peaks in the RDFs in Fig. 21c occur for the same distances
as those observed at medium loading. The degree of hydrogen bonding for Ha – Oa
(peak height ca. 0.07) is negligible compared to the degree of alkyl-alkyl interaction
(peak height ca. 1.7 for CH2 – CH2), which is now similar to the degree of adsorbent-
adsorbate interactions for CH2 – Cb (peak height ca. 1.8) and Ha – Oc (peak height
ca. 1.6). Fig. 21d confirms the increased degree of CH2 – CH2 interaction. n-Butanol
molecules undergo reorientation to move from the configuration at medium loading
to that at saturation. During this reorientation, most n-butanol molecules align their
alkyl groups along the longitudinal axis of the cuboid – increasing both the packing
efficiency of n-butanol as well as the degree of CH2 – CH2 interaction with the n-
butanol molecules in adjacent cuboids –, while their hydroxyl groups remain aligned
with the hydrophilic adsorption sites of CAU-10. We conclude two points regarding
the simulated n-butanol isotherm in Fig. 18b. First, the inflection at 1.2 mmol/g is
caused by the reorientation of n-butanol in CAU-10. One reason why the experimental
n-butanol isotherm does not show a similarly pronounced inflection might be that the
flexibility of the isophthalate linker facilitates reorientation. Recall that CAU-10 was
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modeled rigid. Second, the different saturation capacities for ethanol (4.8 mmol/g or
16 molec/uc) and n-butanol (2.4 mmol/g or 8 molec/uc) are caused by the different
packing efficiencies. The pore geometry of CAU-10 allows each cuboid of the pore
volume to host two ethanol molecules but only one n-butanol molecule.

Fig. 21: RDFs of distances for hydrogen in n-butanol (Ha) and carboxyl oxygen in CAU-10 (Oc,
blue) or oxygen in n-butanol (Oa, red), as well as for the internal alkyl groups in n-butanol (CH2)
and benzene carbon in CAU-10 (Cb, brown) or CH2 (green), and corresponding snapshots of n-
butanol in CAU-10 at 298.15 K and (a, b) medium loading at p/p0 = 1.1 · 10−3 or (c, d) saturation
at p/p0 = 0.54.

Fig. 22: RDFs of distances for hydrogen in n-hexanol (Ha) and carboxyl oxygen in CAU-10 (Oc,
blue) or oxygen in n-hexanol (Oa, red), as well as for the internal alkyl groups in n-hexanol (CH2)
and benzene carbon in CAU-10 (Cb, brown) or CH2 (green), and corresponding snapshots of n-
hexanol in CAU-10 at 298.15 K and (a, b) medium loading at p/p0 = 9.2 · 10−5 or (c, d) saturation
at p/p0 = 0.92.

Fig. 22 shows the RDFs of distances for selected atom pairs and the corresponding snapshots
of n-hexanol in CAU-10 at 298.15 K and medium loading at p/p0 = 9.2 · 10−5 (Fig. 22a,
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b) or saturation at p/p0 = 0.92 (Fig. 22c, d). These loading domains are analyzed to
elucidate the simulated adsorption isotherm of n-hexanol in Fig. 18b, namely the reason for
the occurrence of the inflection at 1.2 mmol/g and the similar saturation capacity compared
to n-butanol. Atom pairs for determining the RDFs were chosen to illustrate the most
dominant interactions in the system. For the adsorption of n-hexanol in CAU-10, dominant
interactions are the same as those for n-butanol, i.e. Ha – Oa, Ha – Oc, CH2 – Cb, and
CH2 – CH2. RDFs for the remaining atom pairs can be found in Fig. L9 and Fig. L10 of
Appendix L. The results in Fig. 22 are interpreted as follows:

1) Medium loading: The first peaks in the RDFs occur at 1.9 Å (Ha – Oa), 2.5 Å (Ha
– Oc), 4.5 Å (CH2 – Cb), or ca. 12 Å (CH2 – CH2). These distances indicate hydro-
gen bonding for Ha – Oa and Ha – Oc, carbon-carbon interaction for CH2 – Cb, or
negligible interaction for CH2 – CH2. The degree of adsorbate-adsorbate interaction
is significantly lower than the degree of adsorbent-adsorbate interaction, as indicated
by a peak height of 0.25 (Ha – Oa) or the late CH2 – CH2 peak versus peak heights
of 1.7 (Ha – Oc) or 2.2 (CH2 – Cb). The RDFs for the atom pairs Ha – Oa, Ha – Oc,
and CH2 – Cb are almost identical to those observed for n-butanol at medium loading,
while the RDF for CH2 – CH2 differs mainly by the missing peak around 4.6 Å for n-
hexanol. As with n-butanol, we conclude that the adsorption of n-hexanol at medium
loading is mainly governed by the interaction with CAU-10 – involving both the in-
teraction of the hydroxyl group with the more hydrophilic adsorption sites of CAU-10
and that of the alkyl group with the more hydrophobic adsorption sites of CAU-10.
The snapshot in Fig. 22b confirms the conclusions drawn from the RDFs. n-Hexanol
molecules adsorb with their hydroxyl groups toward the hydrophilic adsorption sites
(framed in blue), and with their alkyl groups toward the hydrophobic adsorption sites
(framed in brown). This adsorption mechanism is similar to that observed for ethanol
and n-butanol at medium loading, but the longer alkyl group of n-hexanol allows a
stronger interaction with the more hydrophobic adsorption sites – explaining the higher
adsorption energy compared to n-butanol.

2) Saturation: The first peaks in the RDFs occur at 3.0 Å (Ha – Oa), 2.2 Å (Ha – Oc),
4.5 Å (CH2 – Cb), or ca. 4.6 Å (CH2 – CH2). Compared to the situation observed at
medium loading, the hydrogen bond lengths are shifted to higher distances for Ha – Oa
and to lower distances for Ha – Oc, and the „missing“ CH2 – CH2 peak emerges. The
degree of hydrogen bonding for Ha – Oa (peak height ca. 0.08) is negligible compared
to the degree of alkyl-alkyl interaction (peak height ca. 1.5 for CH2 – CH2), which
is now similar to the degree of adsorbent-adsorbate interactions for CH2 – Cb (peak
height ca. 1.9) and Ha – Oc (peak height ca. 2.0). The results are similar to the
situation observed for n-butanol at saturation. The snapshot in Fig. 22d confirms
that, much like n-butanol, n-hexanol molecules undergo reorientation to move from
the configuration at medium loading to that at saturation. During this reorientation,
most n-hexanol molecules align their alkyl groups along the longitudinal axis of the
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cuboid – increasing both the packing efficiency of n-hexanol as well as the degree
of CH2 – CH2 interaction with the n-hexanol molecules in adjacent cuboids –, while
their hydroxyl groups remain aligned with the hydrophilic adsorption sites of CAU-
10. Their chain lengths often force n-hexanol molecules to push their hydroxyl groups
toward the more hydrophilic adsorption sites of CAU-10 – explaining the shift of the
Ha – Oc peak toward lower distances in Fig. 22c. As with n-butanol, we conclude two
points regarding the simulated n-hexanol isotherm in Fig. 18b. First, the inflection
at 1.2 mmol/g is caused by the reorientation of n-hexanol in CAU-10. The increased
adsorbent-adsorbate interaction of n-hexanol compared to n-butanol explains the more
pronounced inflection observed for the n-hexanol isotherm in Fig. 18b. Second, the sim-
ilar saturation capacities for n-butanol and n-hexanol (both 2.4 mmol/g or 8 molec/uc)
are caused by the similar packing efficiency. The pore geometry of CAU-10 allows any
cuboid of the pore volume to host one n-butanol molecule or one n-hexanol molecule.

We can draw the following conclusions by comparing the results from the RDFs and snapshots
of water, ethanol, n-butanol, or n-hexanol:

1. The significance of hydrogen bonding between adsorbate molecules decreases with in-
creasing length of the alkyl group.

2. The significance of adsorbent-adsorbate interaction increases with increasing length of
the alkyl group – once again confirming the internal hydrophobicity of CAU-10.

3.4.2 Two-Component Adsorption

Fig. 23 compares the simulated reduced surface excess (Fig. 23a) and associated component
loadings (Fig. 23b) observed for water/ethanol mixture adsorption in CAU-10 at 298.15 K
with the corresponding IAST calculations based on the simulated or experimental unary
isotherms. The U-shape of the simulated reduced surface excess in Fig. 23a confirms the
preferred adsorption of water over ethanol over the whole range of liquid phase mole frac-
tions of water (type I isotherm according to Schay and Nagy). The IAST calculations based
on the simulated unary isotherms provide qualitatively wrong results and even predict a
negative excess adsorption of water at high liquid phase mole fractions of water (S-shaped
isotherm), while the IAST calculations based on the experimental unary isotherms give qual-
itatively good results, but differ quantitatively. The associated component loadings of water
and ethanol shown in Fig. 23b help to explain the gap between the simulated and IAST
predicted surface excesses. The simulated component loadings show a continuous increase
in water adsorption with a simultaneous decrease in ethanol uptake with increasing liquid
phase mole fraction of water. The IAST calculations based on the simulated unary isotherms
give qualitatively similar results, but underestimate the water uptake and overestimate the
ethanol uptake – explaining the S-shaped excess isotherm in Fig. 23a. The decreased water
uptake in the IAST calculations presumably results from the erroneous assumption of IAST
that water and ethanol form an ideal adsorbed layer. Instead, the increased water adsorption
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in the simulation relative to the IAST prediction suggests that water adsorbs cooperatively
with ethanol. Co-adsorption is also confirmed by comparing the simulated component load-
ings observed for the binary mixtures with those occurring in unary adsorption at fugaci-
ties corresponding to the partial fugacities arising for the binary liquid mixtures shown in
Fig. 23b. For x′water < 0.13, the comparison reveals that water adsorption is significantly
higher for water/etanol adsorption than for unary water adsorption. Remarkably, IAST is
able to predict the occurring co-adsorption to some extent as well. This phenomenon was
first described by Claessens et al. [84], who studied the separation of ethanol and n-butanol in
ZIF-8. What appears contradictory at first glance is in fact the result of IAST’s assumption
of an ideal adsorbed phase – implying some degree of water/ethanol interaction (compared
to the negligible water/water interaction for x′water < 0.13 in Fig. 23b). The IAST calcula-
tions based on the experimental unary isotherms overestimate the water uptake and predict
similar ethanol loadings compared with the simulation results. The decreased water uptake
observed in the simulation is probably due to the increased hydrophilicity of CAU-10 and
an increased saturation capacity of water observed in the experiment.

Fig. 23: (a) Reduced surface excess of water for water/ethanol adsorption in CAU-10 at 298.15 K:
simulation (blue squares) and IAST calculations based on the simulated unary isotherms (cornflower
blue, dotted line) or on the experimental unary isotherms (dark blue, dashed line). (b) Correspond-
ing component loadings of water (shades of blue) or ethanol (shades of green): simulation (blue
squares for water or green squares for ethanol), IAST calculations based on the simulated unary
isotherms (dotted lines, cornflower blue for water or seagreen for ethanol) or on the experimental
unary isotherms (dashed lines, dark blue for water or dark green for ethanol), and unary adsorption
isotherms (dash-dotted lines, pale blue for water or pale green for ethanol).

Insights into the adsorption mechanism can be gained from the RDFs of distances for the
atom pairs of the most dominant interactions and the corresponding snapshots in Fig. 24.
RDFs and snapshots are shown for low water loading at x′water = 0.1 (Fig. 24a, b) or medium
water loading at x′water = 0.5 (Fig. 24c, d). Adsorption is governed by hydrogen bonding
between the guest species, and dominant interactions are those between hydrogen atoms in
water (Hw) and oxygen atoms in water (Ow), hydroxyl hydrogen atoms in ethanol (Ha) and
Ow, or Ha and hydroxyl oxygen atoms in ethanol (Oa). RDFs for the remaining atom pairs
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can be found in Fig. L11 and Fig. L12 of Appendix L.

Fig. 24: RDFs of distances for hydrogen atoms in water (Hw) and oxygen atoms in water (Ow,
red), as well as for hydroxyl hydrogen atoms in ethanol (Ha) and hydroxyl oxygen atoms in ethanol
(Oa, blue) or Ow (green), and corresponding snapshots at (a, b) low water loading at x′water = 0.1
or (c, d) medium water loading at x′water = 0.5.

The results in Fig. 24 are interpreted as follows:

1) Low water loading: The first peaks in the RDFs in Fig. 24a occur at distances that
are characteristic for hydrogen bonding, i.e. 1.8 Å (all atom pairs). The height of the
first peaks indicate the degree of hydrogen bonding, which is largest for water/ethanol
pairs (peak height ca. 9.8 for Ha – Ow), followed by water/water pairs (peak height
ca. 9.3 for Hw – Ow), and lowest for ethanol/ethanol pairs (peak height ca. 4.9 for Ha
– Oa). The high degree of hydrogen bonding between water/ethanol pairs supports
the previous assumption of co-adsorption. The snapshot in Fig. 24b confirms the co-
adsorption of water and ethanol as well. Small clusters of water are commonly found in
the vicinity of the hydroxyl groups of ethanol molecules (framed in green) – explaining
the high degree of hydrogen bonding between water/water or water/ethanol pairs.

2) Medium water loading: The first peaks in Fig. 24c occur at the same distances as those
observed at low water loading, indicating hydrogen bonding between water/water,
water/ethanol, and ethanol/ethanol pairs. The degree of hydrogen bonding is now
strongest for the interaction between similar guest species, i.e. ethanol/ethanol (peak
height ca. 5.2 for Ha – Oa) or water/water (peak height ca. 4.7 for Hw – Ow),
and weakest for water/ethanol pairs (peak height ca. 4.0 for Ha – Ow) – implying
that clusters of water molecules replace ethanol molecules with increasing liquid phase
mole fraction of water. This is confirmed by the snapshot in Fig. 24d, which shows
that most of the pore volume is occupied by water. While water molecules adsorb
in a configuration that is similar to that observed at medium loading in unary water
adsorption, ethanol molecules adsorb in pairs (framed in blue), or with their hydroxyl
groups toward the more hydrophilic adsorption sites of CAU-10 (framed in green).
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Fig. 25: (a) Reduced surface excess of water for water/n-butanol adsorption in CAU-10 at 298.15 K:
simulation (blue squares) and IAST calculations based on the simulated unary isotherms (cornflower
blue, dotted line) or on the experimental unary isotherms (dark blue, dashed line). (b) Correspond-
ing component loadings of water (shades of blue) or n-butanol (shades of orange): simulation (blue
squares for water or orange squares for n-butanol), IAST calculations based on the simulated unary
isotherms (dotted lines, cornflower blue for water or light orange for n-butanol) or on the experi-
mental unary isotherms (dashed lines, dark blue for water or dark orange for n-butanol), and unary
adsorption isotherms (dash-dotted lines, pale blue for water or pale orange for ethanol).

Fig. 25 compares the simulated reduced surface excess (Fig. 25a) and associated compo-
nent loadings (Fig. 25b) observed for water/n-butanol mixture adsorption in CAU-10 at
298.15 K with the corresponding IAST calculations based on the simulated or experimen-
tal unary isotherms. The simulated reduced surface excess of water in Fig. 25a shows a
steep increase for x′water < 0.1 up to the maximum at x′water ≈ 0.18 and a subsequent linear
decrease with increasing liquid phase mole fraction of water. Note the miscibility gap for
0.3555 < x′water < 0.9708. The U-shape (type II isotherm according to Schay and Nagy)
indicates a strong preference for water adsorption over the whole range of liquid phase mole
fractions of water. The IAST calculations based on the simulated unary isotherms provide
qualitatively satisfactory results, although predicting a negative excess adsorption of water
at very high liquid phase mole fractions of water. The IAST calculations based on the ex-
perimental unary isotherms agree well with the simulation results. We will elucidate the
reason why the IAST calculations based on the experimental isotherms agree much better
with the simulation results than the IAST calculations based on the simulated isotherms
below. We achieve this by comparing the simulated component loadings of water and n-
butanol with those predicted by IAST in Fig. 25b. The simulated component loadings show
a steep increase in water adsorption at x′water < 0.1 with a simultaneous, rapid decrease
in n-butanol uptake up to the complete exclusion of n-butanol from the adsorbed layer for
x′water > 0.2. The IAST calculations based on the simulated isotherms, on the other hand,
predict a gradual increase in water adsorption and n-butanol desorption up to the beginning
of the miscibility gap and then a sudden increase in water adsorption after the miscibility
gap is left, while the IAST calculations based on the experimental isotherms agree well with
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the simulation results, differing mainly in the increased water uptake for x′water > 0.12. As
with water/ethanol adsorption, the deviation of the IAST calculations based on the simu-
lated isotherms from the simulation results is a consequence of the erroneous assumption of
IAST that water and n-butanol form an ideal adsorbed layer. Instead, the increased water
adsorption in the simulation suggests co-adsorption of water and n-butanol. Co-adsorption
is also confirmed by comparing the simulated component loadings observed for the binary
mixtures with those occurring in unary adsorption at fugacities corresponding to the partial
fugacities arising for the binary liquid mixtures in Fig. 25b. For x′water < 0.08, the compari-
son reveals that water adsorption is significantly higher for water/n-butanol adsorption than
for unary water adsorption. Again, IAST is able to predict the occurring co-adsorption to
some extent. Although the IAST calculations based on the experimental isotherms suffer
from the same erroneous assumption of an ideal adsorbed layer, they agree well with the
simulations. There are two reasons why. First, the IAST calculations based on the exper-
imental isotherms predict the complete exclusion of n-butanol from the adsorbed layer for
x′water > 0.2 – tantamount to an ideal adsorbed layer. Second, the increased water adsorption
in the experiment might somewhat compensate for the inability of IAST to account for the
non-ideality of the adsorbed phase for x′water < 0.2.

Fig. 26: RDFs of distances for hydrogen atoms in water (Hw) and oxygen atoms in water (Ow, red)
as well as for hydroxyl hydrogen atoms in n-butanol (Ha) and hydroxyl oxygen atoms in n-butanol
(Oa, blue) or Ow (green), and corresponding snapshots at (a, b) low water loading at x′water = 0.05
or (c, d) medium water loading at x′water = 0.1.

Insights into the adsorption mechanism can be gained from the RDFs of distances for the
atom pairs of the most dominant interactions and the corresponding snapshots in Fig. 26.
RDFs and snapshots are shown for low water loading at x′water = 0.05 (Fig. 26a, b) or medium
water loading at x′water = 0.1 (Fig. 26c, d). Dominant interactions are those between hydrogen
atoms in water (Hw) and oxygen atoms in water (Ow), hydrogen atoms in n-butanol (Ha)
and Ow, or Ha and oxygen atoms in n-butanol (Oa). RDFs for the remaining atom pairs
can be found in Fig. L13 and Fig. L14 of Appendix L. The results in Fig. 26 are interpreted
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as follows:

1) Low water loading: The first peaks in the RDFs in Fig. 26a occur at distances that
are characteristic for hydrogen bonding, i.e. 1.8 Å (all atom pairs). The height of the
first peaks indicate the degree of hydrogen bonding between the atom pairs, which is
significantly higher for water/water pairs (peak height ca. 20.8 for Hw – Ow) than
for water/n-butanol pairs (peak height ca. 6.5 for Ha – Ow) or n-butanol/n-butanol
pairs (peak height ca. 1.4 for Ha – Oa). The high degree of hydrogen bonding between
water/water or water/n-butanol pairs indicates the preference of water to adsorb in
pairs or to co-adsorb with n-butanol. The snapshot in Fig. 26b confirms the pairwise
adsorption of water molecules and the co-adsorption of water with n-butanol (framed in
yellow). The snapshot further indicates that n-butanol often adsorbs in a configuration
that is similar to that observed in unary adsorption at saturation – explaining the low
degree of hydrogen bonding between n-butanol/n-butanol pairs.

2) Medium water loading: The first peaks in Fig. 26c occur at the same distances as those
observed at low water loading, indicating hydrogen bonding between water/water,
water/n-butanol, and n-butanol/n-butanol pairs. The degree of hydrogen bonding be-
tween water/water pairs (peak height ca. 4.4 for Hw – Ow) is still dominant compared
to n-butanol/n-butanol pairs (peak height ca. 3.8 for Ha – Oa) or water/n-butanol
pairs (peak height ca. 2.2 for Ha – Ow), but significantly decreased compared to the
situation observed at low water loading. Moreover, the degree of interaction between
n-butanol/n-butanol pairs is now significantly higher than for water/n-butanol pairs.
The snapshot in Fig. 26d shows the reason. The snapshot suggests that water molecules
adsorbed „outside“ the pore channel constitute strong adsorption sites for the hydroxyl
group of n-butanol molecules – allowing n-butanol to adsorb pairwise (framed in blue).
Water contamination of the n-butanol sample in the experiment (e.g. because of the
hygroscopy of n-butanol) might induce the pairwise adsorption of n-butanol in CAU-10
– a configuration that was not observed in the simulation of the unary adsorption – and
explain the less pronounced adsorption step at ca. 1.2 mmol/g in Fig. 18b, because
the pairwise adsorption requires only minor reorientation of n-butanol relative to the
reorientation that is required to achieve the saturation configuration in Fig. 21d.

Fig. 27 compares the simulated reduced surface excess (Fig. 27a) and associated compo-
nent loadings (Fig. 27b) for water/n-hexanol mixture adsorption in CAU-10 at 298.15 K
with the corresponding IAST calculations based on the simulated or experimental unary
isotherms. The simulated reduced surface excess of water in Fig. 27a shows a steep in-
crease for x′water < 0.1 up to the maximum at x′water ≈ 0.15 and a subsequent linear decrease
with increasing liquid phase mole fraction of water, interrupted by the miscibility gap for
0.1971 < x′water < 0.9978. The U-shape (type II isotherm according to Schay and Nagy)
indicates a strong preference for water adsorption over the whole range of liquid phase mole
fractions of water. The IAST calculations based on the simulated unary isotherms provide
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qualitatively satisfactory results, although predicting a negative excess adsorption of wa-
ter at very high liquid phase mole fractions of water. The IAST calculations based on the
experimental unary isotherms agree well with the simulation results.

Fig. 27: (a) Reduced surface excess of water for water/n-hexanol adsorption in CAU-10 at 298.15 K:
simulation (blue squares) and IAST calculations based on the simulated unary isotherms (cornflower
blue, dotted line) or on the experimental unary isotherms (dark blue, dashed line). (b) Correspond-
ing component loadings of water (shades of blue) and n-hexanol (shades of red): simulation (blue
squares for water or red squares for n-hexanol), IAST calculations based on the simulated unary
isotherms (dotted lines, cornflower blue for water or light red for n-hexanol) or on the experimental
unary isotherms (dashed lines, dark blue for water or dark red for n-hexanol), and unary adsorption
isotherms (dash-dotted lines, pale blue for water or pale red for n-hexanol).

The component loadings in Fig. 27b elucidate the reason why the IAST calculations based
on the experimental isotherms agree much better with the simulation results than the IAST
calculations based on the simulated isotherms. The simulated component loadings show a
steep increase in water adsorption at x′water ≈ 0.05 with a simultaneous, rapid decrease in
n-hexanol uptake up to the complete exclusion of n-hexanol from the adsorbed layer for
x′water > 0.1. Note that the desorption of n-hexanol begins at a loading that is significantly
lower than the saturation capacity of unary n-hexanol in CAU-10. This is surprising because
adsorption occurs under thermodynamic conditions similar to those present for the adsorp-
tion of unary n-hexanol at saturation. We will illuminate this phenomenon when discussing
the snapshots in Fig. 28. The IAST calculations based on the simulated isotherms show a
gradual increase in water adsorption and n-hexanol desorption up to the beginning of the
miscibility gap and then a sudden increase in water adsorption after the miscibility gap is
left, while the IAST calculations based on the experimental isotherms agree well with the
simulation results, differing mainly in the increased water uptake for x′water > 0.1. Sim-
ilarly to water/ethanol and water/n-butanol adsorption, IAST erroneously assumes water
and n-hexanol to form an ideal adsorbed layer. However, the increased water adsorption in
the simulation suggests co-adsorption of water and n-hexanol. Co-adsorption of water and
n-hexanol is also confirmed by comparing the binary with the unary component loadings
that occur at fugacities corresponding to the partial fugacities arising for the binary liquid
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mixtures in Fig. 27b. The comparison shows considerable water uptake for x′water < 0.05, al-
though water uptake is supposed to be negligible according to the unary component loadings.
IAST is able to describe the occurring co-adsorption to some extent, but is unable to predict
the reduced loading of n-hexanol at very low water loading. Although the IAST calculations
based on the experimental isotherms suffer from the same erroneous assumption of an ideal
adsorbed layer, they agree well with the simulations. There are two reasons why. First, the
IAST calculations based on the experimental isotherms predict the complete exclusion of
n-hexanol from the adsorbed layer for x′water > 0.1 – tantamount to an ideal adsorbed layer.
Second, the increased water adsorption in the experiment might somewhat compensate for
the inability of IAST to account for the non-ideality of the adsorbed phase for x′water < 0.1.

Fig. 28: RDFs of distances for hydrogen atoms in water (Hw) and oxygen atoms in water (Ow,
red), as well as hydroxyl hydrogen atoms in n-hexanol (Ha) and hydroxyl oxygen atoms in n-hexanol
(Oa, blue) or Ow (green), and corresponding snapshots at (a, b) low water loading at x′water = 0.01
or (c, d) medium water loading at x′water = 0.05.

Insights into the mechanisms of adsorption can be gained from the RDFs of distances for the
atom pairs of the most dominant interactions and the corresponding snapshots in Fig. 28.
RDFs and snapshots are shown for low water loading at x′water = 0.01 (Fig. 28a, b) or medium
water loading at x′water = 0.05 (Fig. 28c–e). Adsorption is governed by hydrogen bonding
between the guest species, and dominant interactions are those between hydrogen atoms in
water (Hw) and oxygen atoms in water (Ow), hydrogen atoms in n-hexanol (Ha) and Ow, or
Ha and oxygen atoms in n-hexanol (Oa). RDFs for the remaining atom pairs can be found
in Fig. L15 and Fig. L16 of Appendix L. The results in Fig. 28 are interpreted as follows:

1) Low water loading: The first peaks in the RDFs in Fig. 28a occur at a distance that
is characteristic for hydrogen bonding, i.e. 1.8 Å (all atom pairs). The height of the
first peaks indicate the degree of hydrogen bonding between the atom pairs, which is
significantly higher for water/water pairs (peak height ca. 43.0 for Hw – Ow) than
for water/n-hexanol pairs (peak height ca. 7.2 for Ha – Ow) or n-hexanol/n-hexanol
pairs (peak height ca. 2.5 for Ha – Oa). The high degree of hydrogen bonding between
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water/water or water/n-hexanol pairs indicates the preference of water to adsorb in
pairs or to co-adsorb with n-hexanol. This is also confirmed by the snapshot in Fig. 28b
(framed in yellow). The snapshot indicates that n-hexanol often adsorbs flat on the
walls of the pore channel – a configuration that is similar to that observed in unary n-
hexanol adsorption at low loading. This configuration is probably induced by adsorbed
water molecules, which represent strong adsorption sites for the hydroxyl group of n-
hexanol. The alkyl chain of n-hexanol is consequently pushed to adsorb flat on the
pore wall, which may cause adjacent n-hexanol molecules to follow suit – explaining the
significantly reduced n-hexanol uptake for high liquid phase mole fractions of n-hexanol
in Fig. 27 relative to the saturation capacity of n-hexanol.

2) Medium water loading: The first peaks in the RDFs indicate hydrogen bonding between
water/water or water/n-hexanol pairs (peaks occurring at 1.8 Å), but not between n-
hexanol/n-hexanol pairs (peaks occurring at 3.8 Å). The degree of hydrogen bonding
between water/water pairs (peak height ca. 5.9 for Hw – Ow) dominates relative to
water/n-hexanol pairs (peak height ca. 1.0 for Ha – Ow), which is similar to the
situation observed at low water loading. The absence of hydrogen bonding between
n-hexanol/n-hexanol pairs suggests that the configuration of n-hexanol is similar to
that observed in unary adsorption at saturation (see Fig. 22c, d). The snapshots in
Fig. 28d and e indicate that the pores are either almost exclusively filled with water
(Fig. 28d) or n-hexanol (Fig. 28e). The strong segregation of n-hexanol and water is
likely due to the hydrophobic alkyl group of n-hexanol, making it unfavorable for water
clusters to adsorb along with n-hexanol molecules. The snapshots further suggest that
water and n-hexanol adsorb in configurations that are similar to those observed in the
unary adsorption simulations at saturation – indicating that the segregation pushes
n-hexanol to increase its packing efficiency – different to the situation observed at low
water loading. Even in its saturation configuration, n-hexanol molecules are able to
interact with water molecules (framed in green).

Fig. 29 compares the simulated reduced surface excess (Fig. 29a) and associated component
loadings (Fig. 29b) for ethanol/n-butanol mixture adsorption in CAU-10 at 298.15 K with the
corresponding IAST calculations based on the simulated or experimental unary isotherms.
The simulated reduced surface excess in Fig. 29a confirms the preferential adsorption of
ethanol over n-butanol over the whole range of liquid phase mole fractions of ethanol, because
of the U-shaped excess isotherm (in between type I and type II according to Schay and
Nagy). The IAST calculations based on the simulated unary isotherms agree well with
the simulation results, differing only in a decreased ethanol excess for 0.1 < x′ethanol < 0.5.
The IAST calculations based on the experimental unary isotherms provide qualitatively
good results, but overestimate the ethanol excess over the whole range of liquid phase mole
fractions of ethanol. The associated component loadings of ethanol and n-butanol shown
in Fig. 29b help to explain the deviation between simulation results and IAST calculations.
The simulated component loadings show a hyperbolic increase in ethanol adsorption up to
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saturation with a simultaneous decrease in n-butanol uptake up to the complete exclusion of
n-butanol from the adsorbed layer at high liquid phase mole fractions of ethanol. The IAST
calculations based on the simulated isotherms agree well with the simulations, differing
only in a decreased ethanol uptake for 0.1 < x′ethanol < 0.5. This deviation is probably
caused by cooperative adsorption of ethanol and n-butanol. The IAST calculations based on
the experimental isotherms provide qualitatively good results, but overestimate the ethanol
uptake and underestimate the n-butanol uptake compared to the simulation results. This
deviation is probably caused by the increased saturation capacity of ethanol or the weaker
adsorption strength of n-butanol observed in the experiment (see Fig. 18b or Eq. (G8)).

Fig. 29: (a) Reduced surface excess of ethanol for ethanol/n-butanol adsorption in CAU-10 at
298.15 K: simulation (green squares) and IAST calculations based on the simulated unary isotherms
(seaweed green, dotted line) or on the experimental unary isotherms (dark green, dashed line). (b)
Corresponding component loadings of ethanol (shades of green) and n-butanol (shades of orange):
simulation (green squares for ethanol or orange squares for n-butanol), IAST calculations based on
the simulated unary isotherms (dotted lines, seaweed green for ethanol or light orange for n-butanol)
or on the experimental unary isotherms (dashed lines, dark green for ethanol or dark orange for
n-butanol), and unary adsorption isotherms (dash-dotted lines, pale green for ethanol or pale orange
for n-butanol).

Insights into the adsorption mechanism can be gained from the RDFs of distances for the
atom pairs of the most dominant interactions and the corresponding snapshots in Fig. 30.
RDFs and snapshots are shown for low ethanol loading at x′ethanol = 0.05 (Fig. 30a, b) or
medium ethanol loading at x′ethanol = 0.5 (Fig. 30c, d). Dominant interactions are those
between hydrogen atoms in ethanol (Ha(et)) and oxygen atoms in ethanol (Oa(et)), hydro-
gen atoms in n-butanol (Ha(but)) and Oa(et), or Ha(but) and oxygen atoms in n-butanol
(Oa(but)). RDFs for the remaining atom pairs can be found in Fig. L17 and Fig. L18 of
Appendix L. The results in Fig. 30 are interpreted as follows:

1) Low ethanol loading: The first peaks in the RDFs in Fig. 30a occur at distances that
are characteristic for hydrogen bonding, i.e. 1.8 Å (all atom pairs). The height of
the first peaks indicate the degree of hydrogen bonding between the atom pairs, which
is significantly higher for ethanol/ethanol pairs (peak height ca. 36.1 for Ha(et) –
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Oa(et)) than for ethanol/n-butanol pairs (peak height ca. 1.8 for Ha(but) – Oa(et)),
and is negligible for n-butanol/n-butanol pairs (peak height ca. 0.1 for Ha(but) –
Oa(but)). The RDFs suggest that the majority of ethanol and n-butanol molecules
adsorb in a segregative manner, as shown in Fig. 30b. Ethanol and n-butanol are
commonly found to occupy different cuboids of the pore channel. While the relatively
few ethanol molecules can sometimes adsorb in pairs as suggested by the RDF in
Fig. 30a – explaining the high degree of hydrogen bonding between ethanol/ethanol
pairs –, n-butanol molecules rarely co-adsorb with ethanol and never with other n-
butanol molecules.

2) Medium ethanol loading: The first peaks in Fig. 30c occur at the same distances as
those observed at low ethanol loading, indicating hydrogen bonding between ethanol/
ethanol, ethanol/n-butanol, or n-butanol/n-butanol pairs. The degree of hydrogen
bonding for ethanol/ethanol pairs (peak height ca. 13.0 for Ha(et) – Oa(et)) domi-
nates relative to ethanol/n-butanol pairs (peak height ca. 10.2 for Ha(but) – Oa(et))
or n-butanol/n-butanol pairs (peak height ca. 0.2 for Ha(but) – Oa(but)), but is sig-
nificantly decreased compared to the situation observed at low ethanol loading. The
importance of ethanol/n-butanol interactions is significantly increased. The snapshot
in Fig. 30d indicates that ethanol molecules commonly adsorb in pairs (framed in
red), or cooperatively with n-butanol molecules (framed in green) – explaining the
increased degree of hydrogen bonding for ethanol/n-butanol pairs. It is reasonable to
assume that, given the longer alkyl chain of n-butanol, ethanol/n-butanol pairs inter-
act more strongly than ethanol/ethanol pairs – confirming the earlier assumption of
co-adsorption. Still, entropic effects favor the adsorption of ethanol.

Fig. 30: RDFs of distances for hydrogen atoms in ethanol (Ha(et)) and oxygen atoms in ethanol
(Oa(et), red), hydrogen atoms in n-butanol (Ha(but)) and Oa(et) (green), or Ha(but) and oxygen
atoms in n-butanol (Oa(but), blue), as well as corresponding snapshots at (a, b) low ethanol loading
at x′water = 0.05 or (c, d) medium ethanol loading at x′water = 0.5.
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Fig. 31: (a) Reduced surface excess of n-hexanol for n-butanol/n-hexanol adsorption in CAU-10
at 298.15 K (red squares) and IAST calculations based on the simulated unary isotherms (light red,
dotted line) or on the experimental unary isotherms (dark red, dashed line). (b) Corresponding
component loadings of n-butanol (shades of orange) and n-hexanol (shades of red): simulation (or-
ange squares for n-butanol or red squares for n-hexanol), IAST calculations based on the simulated
unary isotherms (dotted lines, light orange for n-butanol or light red for n-hexanol) or on the exper-
imental unary isotherms (dashed lines, dark orange for n-butanol or dark red for n-hexanol), and
unary adsorption isotherms (dash-dotted lines, pale orange for n-butanol or pale red for n-hexanol).

Fig. 31 compares the simulated reduced surface excess (Fig. 31a) and associated compo-
nent loadings (Fig. 31b) for n-butanol/n-hexanol mixture adsorption in CAU-10 at 298.15 K
with the corresponding IAST calculations based on the simulated or experimental unary
isotherms. The simulated reduced surface excess of n-hexanol in Fig. 31a shows a steep in-
crease for x′hexanol < 0.1 up to the maximum at x′hexanol ≈ 0.3 and a subsequent linear decrease
with increasing liquid phase mole fraction of n-hexanol. The U-shape (type II isotherm ac-
cording to Schay and Nagy) indicates a strong preference for n-hexanol adsorption over the
whole range of liquid phase mole fractions of n-hexanol. In contrast to the previously dis-
cussed binary mixtures, separation is not driven by entropic effects, because n-butanol and
n-hexanol have the same saturation capacity in CAU-10 (see Fig. 18). The IAST calcula-
tions based on the simulated unary isotherms agree well with the simulation results, differing
only in a reduced n-hexanol excess. The IAST calculations based on the experimental unary
isotherms provide qualitatively good results, but overestimate the n-hexanol excess over the
whole range of liquid phase mole fractions of n-hexanol. The associated component loadings
of n-butanol and n-hexanol shown in Fig. 31b help to explain the deviation between simu-
lation results and IAST calculations. The simulated component loadings show a hyperbolic
increase in n-hexanol adsorption up to saturation with a simultaneous decrease in n-butanol
uptake up to the complete exclusion of n-butanol from the adsorbed layer at very high liquid
phase mole fractions of n-hexanol. The IAST calculations based on the simulated isotherms
agree qualitatively with the simulations, but slightly underestimate the n-hexanol uptake
and slightly overestimate the n-butanol uptake over the whole range of liquid phase mole
fractions of n-hexanol. This minor difference between the simulation results and the IAST
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calculations is probably due to a deviation of the adsorbed layer from ideality. The IAST
calculations based on the experimental isotherms give qualitatively good results, but under-
estimate the n-butanol uptake and overestimate the n-hexanol uptake. This is deviation is
probably caused by the weaker interaction energy of n-butanol and CAU-10 observed in the
experiment (see Fig. 18b and Eq. (G8) in Appendix G).

Fig. 32: RDFs of distances for alkyl groups in n-butanol (CH2(but)) and CH2(but) (purple),
Ha(but) and alkyl groups in n-hexanol (CH2(hex), brown), CH2(hex) and CH2(hex) (orange) as
well as corresponding snapshots at (a, b) low n-hexanol loading at x′water = 0.1 or (c, d) medium
n-hexanol loading at x′water = 0.5.

In Sec. 3.4.1, we already established that n-hexanol interacts more strongly with the CAU-10
framework than n-butanol – explaining the preferred adsorption of n-hexanol over n-butanol.
RDFs of atom pairs representing the guest/guest interactions in the system and the corre-
sponding snapshots in Fig. 32 will help to examine the non-ideality of the adsorbed layer.
Guest/guest interactions are represented by the interactions between the alkyl groups of
n-butanol or n-hexanol, i.e. CH2(but) – CH2(but), CH2(but) – CH2(hex), or CH2(hex) –
CH2(hex). RDFs and snapshots are shown for medium n-hexanol loading at x′hexanol = 0.1

(Fig. 32a, b) or high n-hexanol loading of at x′hexanol = 0.5 (Fig. 32c, d). RDFs for the
remaining atom pairs can be found in Fig. L19 and Fig. L20 of Appendix L. The results in
Fig. 32 are interpreted as follows:

1) Medium n-hexanol loading: The first peaks in Fig. 32a occur at distances that are
characteristic for carbon-carbon interactions, i.e. 4.7 Å (CH2(but) – CH2(but) or
CH2(but) – CH2(hex)) or 5.0 Å (CH2(hex) – CH2(hex)). These distances are similar
to those observed in unary adsorption and suggest that both n-butanol and n-hexanol
adsorb in individual cuboids (recall Fig. 21d or Fig. 22d). The heights of the first
peaks indicate that the degree of interaction between n-hexanol/n-hexanol pairs (peak
height ca. 1.6 for CH2(hex) – CH2(hex)) dominates relative to n-butanol/n-hexanol
pairs (peak height ca. 1.0 for CH2(but) – CH2(hex)) or n-butanol/n-butanol pairs
(peak height ca. 0.5 for CH2(but) – CH2(but)). The increased degree of interaction for
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n-butanol/n-hexanol compared to n-butanol/n-butanol confirms the non-ideality of the
adsorbed layer – explaining the increased n-butanol uptake in the simulation relative
to the IAST calculations based on the simulated isotherms. The snapshot in Fig. 32b
shows that both n-butanol and n-hexanol adsorb in configurations that correspond to
the ones observed at saturation in unary adsorption.

2) High n-hexanol loading: The first peaks in Fig. 32c occur at the same distances as those
observed at low n-hexanol loading. The degree of interaction for n-butanol/n-butanol
(peak height ca. 5.5 for CH2(but) – CH2(but)) now dominates relative to n-butanol/n-
hexanol (peak height ca. 2.7 for CH2(but) – CH2(hex)) or n-hexanol/n-hexanol (peak
height ca. 1.1 for CH2(hex) – CH2(hex)). The high degree of interaction between n-
butanol/n-butanol pairs is probably caused by the low n-butanol loading, resulting in
fewer n-butanol molecules to average over when determining the RDF. The snapshot in
Fig. 32d shows a great similarity to the one observed at low n-hexanol loading, differing
only in the reduced amount of n-butanol molecules, because of energetic effects that
favor the adsorption of n-hexanol.

We can draw the following conclusions by comparing the results obtained for water/ethanol,
water/n-butanol, water/n-hexanol, ethanol/n-butanol, or n-butanol/n-hexanol adsorption in
CAU-10 discussed above:

1. Commonly, separation is driven by entropic effects that favor the adsorption of the
component with the higher saturation capacity, i.e. water over ethanol, water over n-
butanol, water over n-hexanol, or ethanol over n-butanol. But for n-butanol/n-hexanol,
adsorption is driven by energetic effects that favor the adsorption of the component
with the highest adsorption strength, i.e. n-hexanol over n-butanol.

2. Entropic effects decrease with increasing similarity of the saturation capacities of the
components. Compare, for example, water/n-butanol adsorption (type II isotherm ac-
cording to Schay and Nagy) with water/ethanol adsorption (type I isotherm according
to Schay and Nagy).

3. Strong interactions between guest molecules, such as hydrogen bonding, reduce the
efficiency of entropic separations; this is most evident in the separation of water and
ethanol in CAU-10.

4. IAST is able to describe weak co-adsorption effects, such as those observed at low
water loading for water/ethanol adsorption, but fails when co-adsorption becomes more
significant.

3.4.3 Three-Component Adsorption

Fig. 33 shows the ternary contour plots of the reduced surface excesses for water/ethanol/n-
butanol mixture adsorption at 298.15 K in CAU-10. Fig. 33a confirms the preferential
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adsorption of water over the entire range of liquid phase compositions, because of the positive
reduced surface excess of water over the whole range of liquid phase compositions. Water
excess is strongest in the n-butanol rich corner and decreases with increasing mole fraction of
ethanol in the liquid phase. This behavior is consistent with the conclusions drawn from the
results obtained for water/n-butanol and water/ethanol adsorption discussed in the previous
section. The strong water excess in the n-butanol rich corner is a result of the large difference
in packing efficiency of water and n-butanol (see discussion of water/n-butanol separation
on pp. 66ff.), while the decreasing water excess with increasing liquid phase mole fraction
of ethanol is both due to a high degree of hydrogen bonding between ethanol and water,
and a lower difference in packing efficiency (see discussion of water/ethanol separation on
pp. 63ff.).

Fig. 33: Ternary contour plots showing the reduced surface excess of (a) water, (b) ethanol, or (c)
n-butanol for water/ethanol/n-butanol mixture adsorption at 298.15 K in CAU-10 as a function of
the liquid phase composition. Areas between contour lines are colored. Note the miscibility gaps
(gray).

Fig. 33b shows a positive ethanol excess for low liquid phase mole fractions of water, which
rapidly decreases and becomes negative with increasing mole fraction of water in the liquid
phase. Positive and negative ethanol excess are separated by an azeotrope for x′n-butanol :

x′water ≈ 4 : 1. The course of the ethanol excess is consistent with the conclusions drawn
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from the results obtained for adsorption from the liquid binary mixtures of water, ethanol,
and n-butanol discussed in the previous section. The positive ethanol excess for x′n-butanol :

x′water > 4 : 1 is both due to the different packing efficiency of ethanol and n-butanol (see
discussion of water/n-butanol separation on pp. 71ff.) and the low water selectivity for
water/ethanol adsorption at low liquid mole fractions of water because of the high degree of
hydrogen bonding between ethanol and water (see discussion of water/ethanol separation on
pp. 63ff.). The negative ethanol excess for x′n-butanol : x′water < 4 : 1, on the other hand, is due
to the higher packing efficiency of water relative to ethanol or n-butanol. Fig. 33c indicates
the preferential desorption of n-butanol over the entire range of liquid phase compositions,
because the reduced surface excess of n-butanol is never positive. The preferential desorption
of n-butanol – despite having the greatest adsorption strength of all three components in
CAU-10 – confirms the entropic separation. n-Butanol excess is lowest in the n-butanol rich
corner and increases with increasing mole fraction of ethanol or water in the liquid phase.
This behavior is due to the same effects as those identified in the discussion of Fig. 33a.

Fig. 34: Slices of the ternary contour plots showing the influence of the increment of (a) ethanol
(EtOH) on the water excess, (b) n-butanol (ButOH) on the water excess, or (c) water (H2O) on the
ethanol excess. Simulation (colored squares) and Bi-Langmuir fits (solid lines). Miscibility gaps are
not shown in the diagrams.
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Fig. 34 shows slices of the ternary contour plots in Fig. 33 to determine the influence of
the increment of one component in the ternary mixture on the excess of the remaining two
components. Fig. 34a confirms the decreasing selectivity for water adsorption with increasing
liquid phase mole fraction of ethanol, because the water excess isotherm changes from type II
(high preference for water adsorption) to type I (moderate preference for water adsorption)
according to the classification of Schay and Nagy. As pointed out above, the reduction of the
water excess with increasing liquid phase mole fraction of ethanol is both due to a high degree
of hydrogen bonding between ethanol and water and a lower difference in packing efficiency
for water/ethanol relative to water/n-butanol. Fig. 34b confirms the increasing selectivity
for water adsorption with increasing liquid phase mole fraction of n-butanol, because the
water excess isotherm changes from type I (moderate preference for water adsorption) to
type II (high preference for water adsorption) according to the classification of Schay and
Nagy. The situation observed in Fig. 34b is reversed to what is observed in Fig. 34a. The
increasing water excess with increasing liquid phase mole fraction of n-butanol is due to
a higher difference in packing efficiency for water/n-butanol compared to water/ethanol.
Fig. 34c confirms the rapid decrease in ethanol selectivity with increasing liquid phase mole
fraction of water, because the ethanol excess changes rapidly from being positive to being
strongly negative. The decrease in ethanol excess with increasing liquid phase mole fraction
of water is due to a higher difference in packing efficiency for water/ethanol compared to
ethanol/n-butanol. Note that for x′water = 10 %, ethanol excess is slightly increased for low
liquid phase mole fractions of ethanol – but this phenomenon is based on a single data point.
The increased ethanol excess here can be explained by the conclusions drawn for water/n-
butanol and water/ethanol adsorption The liquid phase in this range consists primarily of
n-butanol and contains only minor amounts of ethanol and water. The results obtained
for water/n-butanol adsorption suggest a significant enrichment of water in the adsorbed
layer with decreasing liquid phase mole fraction of n-butanol (see discussion of water/n-
butanol separation on pp. 66ff.), which in turn leads to increased ethanol adsorption due to
co-adsorption of ethanol and water (see discussion of water/ethanol adsorption on pp. 63ff.).

3.5 Conclusions

Grand canonical Monte Carlo simulations were conducted to study the separation of alco-
hol/alcohol or alcohol/water mixtures in a nanoporous material with internal hydrophobicity
– a separation process conceivable for the extraction of alcohols from fermentation broths.
The results indicate that separation from the liquid phase is commonly driven by entropic
effects – favoring adsorption of the component with the highest packing efficiency –, while
differences in the adsorption strength only have a significant impact on the separation of
components with similar packing efficiencies. However, strong interactions between guest
molecules (e.g. between water and the hydroxyl groups of alcohols) reduce the efficiency of
entropic separations. In conclusion, entropic effects complicate the separation of fermenta-
tion product by adsorption, because of competing water adsorption.
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4 Studying Microscopic Water Droplets on the Surface

of Metal-Organic Frameworks3

4.1 Motivation

Although metal-organic frameworks (MOFs) are among the most recent classes of nanoporous
materials, they have already received a high level of attention. Composed of inorganic nodes
connected by organic linkers, MOFs present almost unlimited opportunities to design the
pore environment. MOFs are thus promising candidates for application in fluid separation,
energy storage, and catalysis [87]. However, competing adsorption of water often reduces
this potential, for example in CO2 capture [88], Lewis acid catalysis [89], or hydrocarbon
adsorption [90]. For industrial application, sound knowledge of the hydrophobicity of MOFs
is therefore crucial. The hydrophobicity of any nanoporous material is usually determined by
means of adsorption or contact angle measurements, which differ in their approach of bring-
ing the nanoporous material into contact with water. Whereas the amount of (vapor) water
is increased gradually in adsorption experiments or simulations, the solid surface is faced
with a whole (liquid) droplet for contact angle measurements. In addition, contact angle
experiments provide information about the external surface, while adsorption measurements
(mainly) focus on the internal surface. If the external surface structure differs significantly
from the internal one, the experiments should provide different results. But frequently no
distinction is made between the internal and external hydrophobicity of MOFs based on the
unstated assumption that both methods provide similar results [87, 91].

In what follows, we will study the difference between the external and internal hydropho-
bicity of MOFs. To this end, we conduct molecular dynamics simulations to examine how
the design of the external surface influences the spreading of microscopic water droplets on
MOFs, and grand canonical Monte Carlo simulations to predict the adsorption of water on
the internal MOF surface.

4.2 State of the Research

Contact angle experiments are easy to perform and have thus become a popular technique
for characterizing solid surfaces as hydrophilic (Θapp < 90◦) or hydrophobic (Θapp > 90◦).
They are also frequently used to make statements about the hydrophobicity of nanoporous
materials. For example:

• Lv et al. [92] reported the synthesis of a novel iron-based MOF, {[Fe3(µ3-O)](2,2-
bis(4-carboxyphenyl)-hexafluoropropane)3 · 2DMF}, and showed that it is capable of
separating hexane isomers with remarkable selectivity. In an attempt to prove that

3 The content of Section 4 is reproduced in part with permission from A. von Wedelstedt, H. Chen, G.
Kalies, and R. Q. Snurr, Langmuir, 2020, 36, 13070–13078. Copyright 2020 American Chemical Society.
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separation efficiency will not be affected by competing water adsorption, the authors
measured the contact angle of water and obtained Θapp = 110◦.

• Hu et al. [93] studied the separation of propane and propene in node-functionalized
versions of UiO-66 (i.e. [Zr6O4(OH)4(benzene-1,4-dicarboxylate)6]). Functionalization
was achieved by adding ortho-, meta-, or para-(trifluoromethyl)benzoic acid during
synthesis. Accordingly, we will refer to the resulting MOFs as ortho-UiO-66, meta-
UiO-66, or para-UiO-66. The authors showed that their node-functionalized MOFs
are able to separate propane and propene with remarkable selectivity. To prove that
competing water adsorption will not affect the separation efficiency, they measured the
contact angle of water and obtained Θapp = 52.1◦ (UiO-66), Θapp = 128.2◦ (ortho-UiO-
66), Θapp = 92.6◦ (meta-UiO-66), and Θapp = 93.2◦ (para-UiO-66).

• Gan et al. [94] reported a novel Cu(II)-based MOF, {Cu4(1,7-di(4-carboxyphenyl)-1,7-
dicarba-closo-dodecaborane)4(1.4-diazabicyclo[2.2.2]octane)(H2O)}, and showed that
it is capable of separating n-butanol from mixtures of acetone, n-butanol, and ethanol.
Aqueous acetone/n-butanol/ethanol (ABE) mixtures are formed during fermentation
and contain almost exclusively water. In an attempt to prove that competing water
adsorption will not affect the separation performance, the authors measured the contact
angle of water (Θapp = 144◦) and the adsorption isotherm of vapor water (type II
isotherm according to the IUPAC classification). Gan et al. concluded that both
results confirm the hydrophobicity of their MOF, which is incorrect, because Type II
isotherms indicate favorable adsorbate-adsorbent interactions due to the formation of
an adsorbate monolayer at low pressures.

All authors make the unstated assumption that contact angle measurements and water ad-
sorption experiments provide similar results. But both methods differ in the surface they
examine. Contact angles provide information on the external surface, while adsorption stud-
ies focus (mainly) on the internal surface. If the external surface structure differs significantly
from the internal one, the experiments should provide different results. This assumption is
supported in particular by the findings of Gan et al. [94] above, who measured a hydrophobic
external MOF surface (contact angle) and a hydrophilic internal MOF surface (water ad-
sorption isotherm) [94]. This chapter aims to investigate the difference between the external
and internal hydrophobicity of MOFs.

Before we move one, we should point out that there is strong evidence that droplets – whether
microscopic or macroscopic ones – on real surfaces are usually trapped in metastable states.
For example, Liu and Choi [95] conducted studies on the condensation of microscopic water
droplets on lotus leaves and found that droplets can be transitioned from the intermediate
Wenzel/Cassie-Baxter state to the pure Cassie-Baxter state by supplying a slight amount of
kinetic energy through vibration. Similarly, Decker and Gareff [96] studied the influence of
vibrations on the contact angle of water by means of a (macroscopic) capillary rise exper-
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iment and showed that the apparent contact angle decreases with increasing input energy
until an equilibrium contact angle is reached at higher input energies. Marmur [14] concluded
that real solid surfaces have many energy barriers that a droplet must overcome. The higher
the kinetic energy initially supplied to the droplet, the higher the number of energy barriers
it can overcome before all the initial kinetic energy is dissipated by friction (resulting in
mechanical instead of thermodynamic equilibrium) ([11], p. 43).

4.3 Methodology

Molecular dynamics simulations were conducted to examine how the design of the external
surface influences the spreading of microscopic water droplets on MOFs, and grand canon-
ical Monte Carlo simulations were performed to predict the adsorption of water on the
internal MOF surface. The true nature of MOF external surfaces is normally not known,
but Jung et al. [97] confirmed the existence of a certain amount of carboxylate groups (as
present in organic linkers) on the external surface of a novel In(III)-based MOF, [In(1,4-
phenylenediacetate)2((C2H5)2NH2)]n, and two zinc-based MOFs, IRMOF-3 and [Zn(2,2′-
bipyridine-5,5′-dicarboxylate)(H2O)2]n, by activation with carbodiimides and conjugation of
an enhanced green fluorescent protein. Based on the results of Jung et al., we decided to
model the external surfaces of MOF-5 and CAU-10 completely with protruding organic link-
ers and to control the hydrophobicity of the surface model by the selection of the protruding
linkers. This approach allows us to investigate the relationship between surface nature and
contact angle but could provide different results than in experiments.

4.3.1 Surface Modeling

MOF-5 and CAU-10 were modeled with external surfaces of different hydrophobicities,
while the internal surfaces were maintained. MOF-5, [Zn4O(1,4-benzenedicarboxylate)3],
was first synthesized by Yaghi and coworkers [98] in 1999 by linking Zn4O tetrahedra via
1,4-benzenedicarboxylate (H2BDC) linkers to yield a microporous MOF with cubic symmetry
(space group Fm3̄m). Depending on the orientation of the benzene ring in the BDC linker,
MOF-5 possesses two pore types with different diameters (see Tab. 4) [99]. Several studies
concern the hydrophobicity of MOF-5, for instance contact angle experiments conducted by
Nguyen and Cohen [100] or water adsorption experiments performed by Ming et al. [101].
At first glance the results are contradictory: while Nguyen and Cohen report an immediate
absorption of the droplet in their contact angle measurements, which is characteristic for
superhydrophilic materials, Ming and coworkers obtained a type V isotherm (according to
the IUPAC classification), which is characteristic for a hydrophobic material [100, 101]. It
is now known that the MOF-5 framework is degraded upon water adsorption connecting
the results of Nguyen et al. and Ming et al. [100, 102]. Since the degradation of MOF-5
interferes with the aims of this study, we decided to ignore the degradation of the framework
during the construction of our force field. The results for MOF-5 reported in the following
can hence be understood to illustrate the behavior of microscopic droplets on MOF-5 and
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the influence of the external surface design on the contact angle if no degradation of MOF-5
would occur. CAU-10, [Al(OH)(benzene-1,3-dicarboxylate)], was first synthesized in 2012
by Stock and coworkers [5] by linking chains of cis-connected corner-sharing AlO6 polyhedra
via 1,3-benzenedicarboxylate to yield a tetragonal lattice (space group I/41). Thanks to its
high pH and solvothermal stability, CAU-10 has already received a remarkable level of atten-
tion, in particular for the application in adsorption-driven chillers [103]. The experimental
and simulated water adsorption isotherms of CAU-10 reported by several groups confirm
the internal hydrophobicity of CAU-10 [7, 104]. A brief compilation of important geometric
properties of MOF-5 and CAU-10 can be found in Tab. 4.

Tab. 4: Geometric properties of MOF-5 and CAU-10.

MOF-5 CAU-10

Pore Diameters [Å] 7.8, 15.2 [99] 4, 7 [5]

Pore Volume [ml/g] 0.6 [105] 0.25 [5]

Surface Area [m2/g] 3320 [105] 564 – 656 [5]

Fig. 35: Building of surface models using the example of MOF-5-phenyl. (a) The unit cell of
MOF-5 (orange framed) is vertically replicated, and (b) then terminated at a desired desired upper
and lower plane. (c) The resulting lower and upper cuts are capped with hydrogen atoms to form a
surface module of protruding phenyl linkers, which is replicated in both directions of the interfacial
plane to form the external surface model.

The investigated MOF surfaces were modeled using the crystal structure data of MOF-5
and CAU-10 available in the Cambridge Structural Database [5, 98]. Fig. 35 illustrates the
general procedure for building the external surfaces. First, the unit cell of the investigated
MOF (orange frame in Fig. 35a) was vertically replicated, and the obtained supercell was
terminated at a desired upper and lower plane (Fig. 35b). The resulting lower cuts were
then capped with hydrogen atoms and the upper cuts by either carboxylic acid groups
or hydrogen atoms to form external surfaces of different hydrophobicity (Fig. 35b). The
thus obtained surface layer was geometrically optimized by means of the DMol3 software
package implemented in Materials Studio 7.0 (BIOVIA) using the Perdew-Burke-Ernzerhof
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(PBE) generalized gradient approximation (GGA) functional [76] combined with a double-
numeric quality basis set with polarization functions (DNP). The calculations comprised
only the relaxation of the atomic positions of the metal-organic framework, whereas the cell
parameters and angles between the cell vectors were maintained fixed at the initial values.
To form the surface models of MOF-5 and CAU-10, each geometrically optimized surface
layer module was replicated in both directions of the interfacial plane as shown in Fig. 35c.

Fig. 36: Side views of surface layer modules of (a, b) MOF-5 and (c-e) CAU-10 with either
protruding (a, c) phenyl or (b, d) benzoic acid linkers, and (e) with accessible pores for CAU-10
based on an alternative orientation of its unit cell.

The five different external surface models used in this study are illustrated in Fig. 36. In the
following, MOF surfaces with protruding phenyl or benzoic acid linkers will be identified by
the suffix phenyl or benzoic, and the surface model of CAU-10 with accessible pores on the
surface in Fig. 36e will be denoted CAU-10-open. For CAU-10-open, electric charges of the
exposed inorganic nodes are neutralized by means of one water molecule and one hydroxyl
group. Although phenyl linkers will not be present after synthesizing MOF-5, as this would
require the dissociation of the BDC linker during synthesis, capping reagents or modulators
are often used to control the crystal size and hence the nature of the external surface [106].
The modification of the external surface of MOF-5 in the literature comprises for instance the
use of capping reagents like triphenylacetic acid, diphenylacetic acid, trimethylacetic acid,
acetic acid, diisopropylethylamine and triethylamine by Homan et al. [107] or 4-decylbenzoic
acid by Zacher et al. [106]. Benzoic acid is another common capping reagent [108–110] and
while it has, to the best of our knowledge, not yet been used to modify the external surface of
MOF-5, this approach allows the formation of surface models with very different structures
for contact angle simulations.

4.3.2 Simulation Details

The freely movable droplet used in each simulation comprised 3301 water molecules, and
was formed by initially arranging 3375 water molecules in a cubic block within an otherwise
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empty simulation box of dimensions 300 Å× 300 Å× 300 Å and performing molecular dy-
namics simulations for 106 time steps in the canonical (NVT) ensemble. Molecular dynamics
simulations were performed using the LAMMPS software package developed at Sandia Na-
tional Laboratories [111]. Newton’s equations of motion were integrated numerically using
the velocity Verlet algorithm [26] with a time step of 1 fs. The Nosé-Hoover thermostat [40]
with a damping factor of 100 time steps was used to maintain the temperature of the system
at 298 K. Water molecules were represented by the TIP4P-Ew model, which consists of a
single Lennard-Jones interaction site (oxygen) and three charged sites, i.e. two hydrogen
atoms and a massless unit in between which bears the charge of oxygen [78]. Non-bonded
interactions were described by an interatomic potential consisting of Lennard-Jones and
Coulomb interactions, while the SHAKE algorithm was used to maintain the internal bond
lengths and bond angle [112]. Lennard-Jones parameters between unlike atomic species i
and j are computed by means of the Lorentz-Berthelot mixing rules [44, 45]. Lennard-Jones
interactions were truncated by means of a 12.8 Å cutoff, while the particle-particle particle-
mesh (PPPM) [113] with an accuracy of 10−6 was used to handle long-range Coulombic
interactions. Once a spherical droplets was formed, all water molecules that were not in its
liquid phase were discarded.

The droplet, now comprising 3301 water molecules, was placed in the vicinity of each of
the five MOF surfaces illustrated in Fig. 36, and molecular dynamics simulations in the
canonical (NVT) ensemble were conducted for (usually) 5 · 106 time steps to reach equilib-
rium. The atomic positions of the metal-organic framework were maintained fixed during
the simulation, and interactions between the atoms of the framework were neglected to re-
duce computation time. The Lennard-Jones parameters for each atom of the metal-organic
frameworks were taken from the DREIDING force field [49] (organic linker) and the Universal
force field [48] (metal atoms and their bridging ions), while their partial charges were deter-
mined by performing single point energy calculations followed by a Mulliken analysis [50] in
DMol3 implemented in Materials Studio 7.0 (BIOVIA) using the PBE GGA functional [76]
combined with a DNP basis set. The thus obtained partial charges for the periodic unit
cells agree well with those reported in the literature (see Appendix M). To use the PPPM
long-range interaction solver, periodic boundary conditions had to be applied, defining a
series of stacked plates of solid material separated by empty space. This vacuum space was
enlarged by using a vertical cell parameter of 300 Å to prevent interactions between the
droplet and the periodic image of the MOF surface adjacent to the upper boundary of the
simulation box. Apart from that, molecular dynamics simulations were carried out using the
same settings as for the formation of the spherical droplets. Simulations were repeated for
a system starting from a perturbed starting configuration if the results indicated the possi-
bility of a trajectory dependence. For the repetitions of the simulations, the initial position
of the droplet was slightly altered to perturb the system, and such instances are mentioned
in the discussion. During the simulation, some water molecules will leave the liquid water
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droplet and form the vapor phase of the system. The pressure of the vapor phase above the
curved droplet interface will exceed the vapor pressure of water, as indicated by Kelvin’s
equation ([114], pp. 5–6),

ln

(
p0,Dc

p0

)
=

2σVm

rDcRT
, (209)

where p0,Dc is the vapor pressure above the curved droplet interface, p0 is the vapor pressure
of water above a flat interface, rDc is the radius of the (convex) droplet curvature, and Vm

is the molar volume of water. Kelvin’s equation obeys thermodynamics and provides thus
a criterion to determine whether the system is not in thermodynamic equilibrium, i.e. if
p0 > p0,Dc. The pressure of the vapor phase in the simulation, p0,Dc, was determined by
dividing the simulation box into three different regions: solid phase, liquid (droplet) phase,
and vapor phase, and summing and averaging the per-atom stress tensor for each water
molecule in the vapor phase over 106 time steps.

Grand canonical Monte Carlo (GCMC) simulations were performed to predict the adsorp-
tion of water in MOF-5 and CAU-10 at 298 K using the same force field as stated above.
The simulation boxes consisted of a single unit cell for MOF-5 or 2 × 2 × 4 unit cells for
CAU-10. The van-der-Waals interactions were truncated by means of a 12 Å cutoff, and
the Ewald summation [55] was used to handle long-range Coulombic interactions. Water
molecules were represented by the TIP4P-Ew model [78]. For MOF-5, 50 water molecules
were created and equilibrated in the canonical ensemble before running the GCMC simu-
lations to accelerate the uptake. All GCMC simulations were performed using the RASPA
simulation package [31] with automatically computed gas-phase fugacity values by means of
the Peng-Robinson equation of state [71]. The simulations comprised on average 1.7 × 106

cycles for equilibration and 105 cycles for the production run. Further simulation details can
be found in Appendix M.

4.3.3 Contact Angle Determination

The extraction of the contact angle, Θapp, from the simulated data is explained and illustrated
in Fig. 37. After equilibration, a production run using the above mentioned simulation
settings and comprising 106 time steps is performed. Over the course of this production
run, a three-dimensional lattice consisting of cubes with edge lengths of 3 Å (sketched in
Fig. 37a) is overlaid on the droplet, which rests on the external surface of the MOF. For each
cube, the number of enclosed water molecules and hence the density is calculated every 20th
time step and subsequently averaged over all computed values to yield a three-dimensional
water density map. Two axial slices of this density map (green cubes in Fig. 37b) and for
MOF-5 in addition two diagonal slices (grey cubes in Fig. 37b) are selected and plotted as
tile images (see Fig. 37c). Subsequently, a least-square circle fit is used to define the contour
line of the droplet [115]. Following the work of Isaiev et al. [116], the contour line is based
on points of the periphery of the water droplet with a density value of about half of the bulk
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density of water (to be specific: 0.4 g/ml – 0.6 g/ml), and points of the density map within
5 Å of the tip of the protruding linkers are not taken into account to exclude the influence
of the MOF surface irregularities and density fluctuations occurring in the vicinity of the
solid-liquid interface. Knowing the droplet radius, rDrop, the center of the fitted circle, and
the surface height, we are able to calculate the apparent contact angle,

Θapp =


180◦ − arccos

(
dsf-cc
rDrop

)
, if dsf-cc ≥ 0;

arccos
(
dsf-cc
rDrop

)
, otherwise,

(210)

where dsf-cc is the distance between the surface level (sf) and the circle center (cc).

Fig. 37: Calculating the contact angle. (a) During production run, a three-dimensional grid of
cubes is overlaid on the droplet. The average density of water is calculated for each cube, resulting
in a three-dimensional water density map. (b) Four slices are selected from the density map to
calculate the contact angle, designated Axial 1, Axial 2, Dia 1, and Dia 2. (c) For each of these
slices, the contour line of the droplet is determined using a least-square circle fit.

4.4 Results and Discussion

Insights into the wetting of the MOF surface models can be gained from the movie files on
the CD-ROM that accompanies this dissertation or the snapshots shown below. Snapshots
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of the droplet resting on the surface of MOF-5-phenyl and MOF-5-benzoic are shown in
Fig. 38. The side views in Fig. 38a and b for MOF-5-phenyl as well as in Fig. 38d and e
for MOF-5-benzoic indicate the internal hydrophobicity of MOF-5, because no water enters
the framework of MOF-5. The internal hydrophobicity of MOF-5 is also confirmed by the
computed water adsorption isotherm of MOF-5 in Fig. 39a, which shows no adsorption at
low pressure and then a sudden increase in water adsorption up to 130 wt % at a relative
pressure of about 0.4. The top views in Fig. 38c and f show that the droplets adapt their
spreading to the nature of the external surface and form angular (MOF-5-phenyl) or square
contact areas (MOF-5-benzoic). Since MOF-5-phenyl and MOF-5-benzoic have the same
internal hydrophobicity, the different spreading of the droplet is mainly determined by the
different external surfaces. As a result, the hydrophobicity and orientation of the protruding
linkers affect the size of the propagation area. In the case of MOF-5-phenyl, the protruding
phenyl linkers (red colored in the enlarged section of Fig. 38c) impede the spreading of the
droplet and lead to a compression in the z-direction, which is also visible in the side views
in Fig. 38a and b, and has been reproduced in a repetition of the simulation starting from
a perturbed starting configuration. Because of the lower hydrophobicity of the protruding
benzoic acid linkers, the contact area of the droplet on MOF-5-benzoic is increased and the
propagation in a certain direction is not favored. By employing a force field that allows for
flexibility of the protruding organic linkers, the limitation of the droplet spreading might be
lifted. But, due to the long simulation time of approximately 4 weeks for a single system,
no internal degrees of freedom were considered.

Fig. 38: Snapshots of the droplet on (a-c) MOF-5-phenyl and (d-f) MOF-5-benzoic from different
perspectives.

The corresponding contact angles can be found in Tab. 5. The contact angles of the first
column of Tab. 5 confirm the hydrophobic nature of the external surface of MOF-5-phenyl
and account for the limited spreading in the z-direction by means of an increased contact
angle for the slice Axial 2. Furthermore, the contact angles calculated from the diagonal
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slices Dia 1 and Dia 2 provide similar results, representing the approximate mean of the
axial contact angles. In the case of MOF-5-benzoic, the contact angles shown in the second
column of Tab. 5 can be assigned to the threshold between hydrophobicity and hydrophilicity.
Considering that benzoic acid linkers consist of a carboxylic acid group (hydrophilic) and a
benzene ring (hydrophobic), the obtained contact angles of about 90◦ are reasonable. The
slightly different contact angles for the axial and diagonal slices in case of MOF-5-benzoic are
likely caused by the quadratic shape of the contact area, inducing a not fully hemispherical
droplet.

Fig. 39: Simulated water adsorption isotherms at 298 K of (a) MOF-5 and (b) CAU-10. The
water uptake in weight percent (wt %) is given by [mass(water)/mass(MOF)] × 100, and the vapor
pressure, p0, of the TIP4P-Ew model at 298 K was considered to be 3749 Pa [117]. A comparison
of the shown simulated adsorption isotherms with the experimental ones by Ming et al. [101] or
Cadiau et al. [7] can be found in Fig. P1 in Appendix P.

Tab. 5: Contact angles for MOF-5-phenyl and MOF-5-benzoic. Compare Fig. 37b for the naming
of the slices.

Slice MOF-5-phenyl MOF-5-benzoic

Axial 1 101◦ 91◦

Axial 2 115◦ 91◦

Dia 1 106◦ 85◦

Dia 2 105◦ 89◦

The results obtained from the simulations are logically consistent, but do not agree with
the contact angle experiments conducted by Nguyen and coworkers [100], in which the ab-
sorption of the droplet into MOF-5 was immediate, leading to a Θapp ≈ 0◦ contact angle.
The discrepancy between the experimental and simulated contact angles can be clarified
by the adsorption isotherms measured by Ming et al. [101] which indicate an alteration of
MOF-5 upon water adsorption. The adsorption isotherms of Ming et al. [101] show a sudden
increase in water adsorption up to 12 wt % at a relative humidity of about 45 % as well
as a large hysteresis (type V isotherm according to the IUPAC classification), along with
a negligible desorption of adsorbed water (see Fig. P1 in Appendix P). The significantly
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reduced adsorption capacities in subsequent adsorption/desorption cycles indicate an alter-
ation of MOF-5 [101]. It is now known that the framework of MOF-5 is degraded at a
water content of 4 wt % or more [102], providing an explanation for the difference between
simulated and experimental contact angles. The computed adsorption isotherm in Fig. 39a
does not consider the degradation of the framework upon water adsorption. In accordance
with the experimental adsorption isotherm of Ming and coworkers, the computed isotherm
shows a turning point at a relative pressure of about 0.4, but a significantly higher saturation
capacity of up to 130 wt %. The reduced adsorption capacity in the experiment is probably
due to the degradation of the MOF-5 framework. At the first glance, it is not immediately
apparent why the droplets in the molecular dynamics simulations do not enter the framework
of MOF-5-phenyl or MOF-5-benzoic although the simulated water adsorption isotherm in
Fig. 39a indicates the saturation of MOF-5 at relative pressures close to 1 (i.e. at a condition
corresponding to the presence of liquid water) and the pore openings are sufficiently large
for water molecules to enter (see Fig. P2 in Appendix P). It is conceivable that the droplet
on MOF-5-phenyl or MOF-5-benzoic is trapped in a metastable state, which the system
cannot escape within the typical time scale of a molecular dynamics simulation. The idea of
metastability is confirmed by the vapor phase pressures, p0,Dc, calculated for MOF-5-phenyl
(2514 Pa) or MOF-5-benzoic (1728 Pa), which are significantly lower than the vapor pressure
of water (p0 = 3749 Pa for TIP4P-Ew model) at 298 K (recall Eq. (209)). Moreover, there is
experimental evidence that an adsorption isotherm that indicates the saturation with water
at relative pressures close to 1 does not necessarily correspond to an absorption of a droplet
in contact angle experiments. For instance, the water adsorption isotherm and contact angle
of CAU-1 or UiO-66 were measured at 298 K by Zheng et al. [118] or He et al. [119]. While
the water adsorption isotherms show high uptake of water, the contact angle experiments
indicate no absorption of the droplet [118, 119]. These experiments also support the idea of
a metastability.

Snapshots of the microscopic droplet resting on the external surface of the hydrothermally
stable metal-organic framework CAU-10 are shown in Fig. 40. The top views of the droplet
on CAU-10-phenyl and CAU-10-benzoic in Fig. 40c and f indicate a preferred propagation
in the z-direction caused by the orientation of the protruding linkers that form obstacles for
the droplet propagation in the x-direction (enlarged sections in Fig. 40c and f). It can be
assumed that the contact angle and the shape of the solid-liquid contact area depend on
both size and shape of the droplet. As a result, the hydrophobicity of the protruding linkers
has a greater influence on the droplet propagation in the z-direction than in the x-direction.
However, in a repetition of the simulations, it was observed that in case of CAU-10-phenyl
the droplet can surpass a row of protruding linkers, which impede the propagation in the
x-direction. The movie file named „Re_CAU-10-phenyl_xz.mp4“ on the CD-ROM accompa-
nying this dissertation shows that the propagation in the x-direction is caused by a collapse
of the droplet flank shortly after its contact with the MOF surface. A repetition of the
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simulation of the droplet on CAU-10-benzoic confirmed the results in Fig. 40d-f. The vapor
phase pressures calculated for CAU-10-phenyl (2037 Pa) or CAU-10-benzoic (861 Pa) are
significantly lower than the vapor pressure of water (3749 Pa for the TIP4P-Ew model) at
the same temperature, and indicate that the systems are metastable. In the case of CAU-
10-open, Fig. 40g and h show an absorption of the droplet into the MOF interior. Recalling
the look of the pore in Fig. 36e, it seems that the inorganic nodes form a guidance, directing
the droplet into the framework.

Fig. 40: Snapshots of the droplet on (a–c) CAU-10-phenyl, (d–f) CAU-10-benzoic and (g, h)
CAU-10-open from different perspectives.

The contact angles calculated by means of Eq. (210) and found in Tab. 6 agree with the
explanation of the snapshots in Fig. 40. The large difference in contact angles for the slices
Axial 1 and Axial 2 is due to the preferred propagation of the droplet in the z-direction
based on the orientation of the protruding organic linkers as explained above. Because of
the restricted droplet spreading in the x-direction no diagonal slices were analyzed. The
contact angles of the slice Axial 1 for CAU-10-phenyl and CAU-10-benzoic confirm the
assumption that the propagation in the x-direction is largely predetermined by the size of
the droplet and less dependent on the hydrophobicity of the protruding organic linkers than
the propagation along the z-axis (Axial 2). In case of CAU-10-open, contact angles were
not calculated explicitly, since the absorption of the droplet indicates a superhydrophilic
character of the external surface corresponding to a contact angle of zero degrees. However,
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this superhydrophilicity is contradictory to the hydrophobic character of CAU-10 from the
simulated water adsorption isotherm in Fig. 39b. This isotherm shows very low adsorption
at low pressure and then a steep increase in water adsorption up to 25 wt % at a relative
pressure of about 0.2 and is in good agreement with the experimental isotherm measured
by Cadiau et al. [7], which indicates only small hysteresis (type V isotherm according to
the IUPAC classification). Due to the lack of experimental contact angles for CAU-10, no
statement can be made about the validity of the droplet simulations. The different adsorption
energies of water, i.e. −30.16 ± 0.65 kJ/mol for CAU-10 versus −18.38 ± 0.56 kJ/mol for
MOF-5, support the preferred absorption of the droplet into CAU-10-open.

Tab. 6: Contact angles for CAU-10-phenyl, CAU-10-benzoic and CAU-10-open. Compare Fig. 37b
for the naming of the slices.

Slice CAU-10-phenyl CAU-10-benzoic CAU-10-open

Axial 1 110◦ 103◦ ≈ 0◦

Axial 2 76◦ 60◦ ≈ 0◦

The presented results for MOF-5 and CAU-10 indicate that in droplet simulations the behav-
ior of a droplet sensitively depends on the nature of the external MOF surface. An analogous
situation, in which the nature of the external surface significantly influences the results of the
simulations, can be observed when comparing simulated and experimental transport resis-
tances inside zeolites and during the passage through the external zeolite surface. While the
simulated and experimental transport resistances inside the zeolites are essentially identical
(analogous to the adsorption isotherms in this study), the transport resistance during passage
through the external zeolite surface depends on the chosen surface structure in the simula-
tions and deviates from the experimental ones (analogous to the contact angle simulations
in this study) [120–122].

4.5 Conclusions

Molecular dynamics simulations of microscopic droplets on the external surfaces of metal-
organic frameworks were conducted to study to what extent the nature of the external
surface influences the contact angle, a quantity that is commonly considered to make general
statements about the hydrophobicity of porous materials. The external surfaces of the metal-
organic frameworks MOF-5 and CAU-10 were designed with either protruding phenyl or
benzoic acid linkers, whereas the internal surface was maintained. A third surface model of
CAU-10 was studied to account for the crystallographic asymmetry in the z-direction. We
can draw two conclusions from the results:

1. The external surface nature of a metal-organic framework has a major impact on the
contact angle and spreading, suggesting the necessity of a clear distinction between
internal and external hydrophobicity. The hydrophobicity determined from a contact
angle and from an adsorption isotherm experiment do not necessarily have to correlate.
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2. Comparison of the vapor phase pressures above the curved droplet interface with the
vapor phase of water above a flat interface support the idea of Marmur [14] that
droplets on real surfaces are trapped in metastable states.
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5 MOF-VR: A Virtual Reality Tool to Study Diffusion

in Metal-Organic Frameworks4

5.1 Motivation

MOFs are promising emerging materials due to their wide range of potential applications,
including gas storage, carbon capture, fluid separation, catalysis, drug delivery, or elec-
trocatalysis. For use in adsorption processes, nanoporous MOFs are of particular interest,
because of the high surface-to-volume ratio. The modular structure – MOFs consist of inor-
ganic nodal building blocks that are connected by organic linking building blocks –, allows
the prediction of yet unknown nanoporous MOFs in computer experiments [56, 123]. These
hypothetical MOFs can be used in molecular dynamics simulations to study the diffusion of
guest molecules. The emergence of immersive visualization techniques such as virtual reality
(VR) greatly simplifies the interpretation of atomic or molecular trajectories in molecular
dynamics simulations. VR tools offer a number of advantages in research and education:

• Enhanced Immersion:Enhanced Immersion: Head-mounted displays and haptic feedbacks give the user the
impression of being fully immersed in a virtual reality [124].

• Simplified Interpretation:Simplified Interpretation: Three-dimensional visualization of atomic or molecular tra-
jectories facilitates the identification of subtle processes in a dynamic system [125].

• Improved Understanding:Improved Understanding: Virtual reality tools can complement education to provide a
deeper understanding of what is being taught [126].

In the following, MOF-VR is presented: a virtual reality program for performing and visual-
izing interactive molecular dynamics simulations in MOFs. It is further shown that consumer
technology is capable of performing state-of-the-art molecular dynamics simulations in vir-
tual reality and that the molecular dynamics routine implemented in MOF-VR is able of
providing reliable simulation results.

5.2 State of the Research

In recent years, virtual reality applications have become popular in industry [127–129], re-
search [130–132], and education [133–135]. When we speak of virtual reality applications, we
mean technologies that place users in a completely virtual world with which they can interact
in a realistic way ([136], p. 2). This virtual world is often displayed using cave automatic
virtual environments (CAVEs) or head-mounted displays (HMDs). CAVEs are room-sized
boxes in which projectors are used to project the virtual world onto the walls, while HMDs
are headsets or goggles with displays instead of lenses to show the virtual world [137, 138].
In the field of molecular chemistry, virtual reality applications are used either for:

4 The content of Section 5 is reproduced in part with permission from A. von Wedelstedt, G. Goebel,
and G. Kalies, J. Chem. Inf. Model., 2022, 62, 1154–1159. Copyright 2021 American Chemical Society.
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I) visualizing molecular models or trajectories of atoms and molecules, or

II) performing and visualizing interactive molecular dynamics simulations.

(I) Some virtual reality applications for visualizing molecular models or trajectories of atoms
and molecules have been developed. For example, Salvadori et al. [139] introduced Caffeine
in 2016: a molecular viewer designed for virtual reality systems that allows to visualize
static or dynamic molecular structures, molecular orbitals, and simulation data (using the
desktop version of Caffeine) by reading Protein Databank (PDB), XYZ, or Gaussian Cube
files. Caffeine was developed for CAVEs with three to six projection walls. Users can in-
teract with the virtual system via a mobile device to translate, rotate, or scale molecular
structures. Another example of a molecular viewer for virtual reality systems is ProteinVR
which was developed by Cassidy et al. [140] in 2020. ProteinVR is a web application that
allows to visualize static molecular models of proteins in virtual reality using HMDs. Due
to the web-based approach of ProteinVR, no installation of programs or plugins other than
the web browser itself is required. However, ProteinVR does not support the visualization
of trajectories of completed molecular dynamics simulations.

(II) Virtual reality techniques have also been used to develop applications that allow perform-
ing and visualizing interactive molecular dynamics simulations in real-time in virtual reality.
In 1998, Ai and Fröhlich [137] have introduced RealMol : a virtual environment for rational
drug design. RealMol was specifically developed for the CAVE installed at Fraunhofer-IGD,
which consisted of a 2.4 m× 2.4 m box with 5 projection areas (i.e. ceiling, floor, and three
walls). In RealMol, a small number of users is able to enter the CAVE and examine or
discuss molecular models that were read from PDB files. Active shutter glasses are used
to generate three-dimensional images of the projected virtual environment, and cybergloves
allow to interact with or modify molecular models. RealMol uses NAMD [141] as back-end
simulation engine to allow the use of a (modified) molecular model in an energy minimiza-
tion or molecular dynamics simulation. The molecular model is then updated and visualized
with the information provided by NAMD. In addition, physical properties of the dynamic
system are displayed, such as temperature or forces acting on each atom, and changes in the
potential energy are indicated by sound effects. The pitch of these sound effects depends on
the magnitude of the energy change. RealMol was one of the first programs to allow inter-
active molecular dynamics simulations in virtual reality. But the interactivity is restricted,
because simulations need to be restarted after each modification of the molecular model.
Also, CAVEs are cost-expensive fixed installations, strongly limiting the target audience of
RealMol.

HMDs such as the HTC Vive or Occulus Rift have become popular in research and in-
dustry thanks to their increasing affordability. Even the unique selling point of CAVEs –
i.e. the possibility of several people being simultaneously present in virtual reality – remains
no longer untouched. In 2019, O’Connor et al. [125] introduced Narupa: a multiperson vir-
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tual reality program for performing interactive molecular dynamics simulations in real-time.
Narupa calculates and visualizes the trajectory of a system based on forces it receives by
sending atom positions to a back-end simulation engine. A broad range of back-end sim-
ulation engines is supported, such as LAMMPS [111], GROMACS [142], or NAMD [141].
In addition, users can define biasing forces to interactively steer the trajectories of subunits
of proteins or large molecules. Biasing forces are defined by selecting a subunit that will
feel the biasing force and the position to which the subunit will be pulled, plus a scaling
factor that controls the strength of the biasing force [143]. Among a broad range of sci-
entific research applications, O’Connor et al. used Narupa to study molecular transport of
small molecules in zeolites using DL_POLY [144] as back-end simulation engine. During the
molecular dynamics simulation, Narupa allows to navigate the guest molecule through the
channels of the zeolite or to inspect the zeolite by translation or rotation. Another program
for performing interactive molecular dynamics simulations in virtual reality was developed by
Juárez-Jiménez et al. [143] in 2020. Similar to Narupa, this program calculates and visualizes
the trajectory of a system by receiving forces from a back-end simulation engine (i.e. GRO-
MACS [142]) and allows to steer the trajectories of subunits of proteins or large molecules by
applying biasing forces. In contrast to Narupa, the program developed by Juárez-Jiménez et
al. allows to initiate molecular dynamics simulations (with or without biasing forces) from
snapshots of trajectories of previously conducted molecular simulations. This approach helps
to study protein folding, which can have time scales of several microseconds or longer. In
combination with statistical methods such as Markov state modeling, Juárez-Jiménez et al.
find that the initiation of molecular dynamics simulations from trajectory snapshots is well
suited for the systematic description of a system.

The overview of the state of research on the application of virtual reality techniques in
the field of molecular chemistry shows that there is still room for improvement or further
application possibilities:

• Practically all applications for performing interactive molecular dynamics simulations
in virtual reality depend on back-end simulation engines. But the use of back-end sim-
ulation engines complicates the widespread use of virtual reality applications, because
it often requires access to high-performance computer clusters or a local installation
of a simulation engine. Virtual reality applications would be accessible to a broader
audience if molecular dynamics routines were directly implemented into the software.

• Most virtual reality applications have been developed specifically with the study of
protein folding in mind, such as ProteinVR [140], RealMol [137], or Narupa [125]. No
virtual reality application has yet been developed that allows for hypothetical MOFs
to be constructed and tested in molecular dynamics simulations of guest molecules.

To fill these gaps, we developed MOF-VR: a virtual reality program for performing and vi-
sualizing interactive molecular dynamics simulations in MOFs. MOF-VR provides a number
of features to support research, education, and science outreach, such as:
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1. facilitating the understanding of the modular structure of MOFs by allowing to create
hypothetical MOFs from MOF building blocks,

2. giving insights into the dynamics of guest molecule diffusion in MOFs by allowing to
perform interactive molecular dynamics simulations, or

3. providing three dimensional representations of pre-computed or real-time simulated
atomic or molecular trajectories.

5.3 Implementation

MOF-VR is an open-source code released under the FreeBSD license. It is developed for
Microsoft Windows and HTC Vive and written in object-oriented C# using the Unity game
engine (version 2020.1.7) and SteamVR Unity plugin (version 2.6.1). The source code, man-
ual, and a compiled version of MOF-VR are provided on the CD-ROM that accompanies
this dissertation. The reader is advised to test MOF-VR or consult the accompanying man-
ual to complement the following descriptions. MOF-VR consists of three subroutines: a
construction routine to create hypothetical MOFs by hand, a molecular dynamics routine
to simulate guest molecule adsorption in nanoporous materials, and a visualization routine
to visualize molecular trajectories. Before discussing these subroutines in detail, we will set
the scene by explaining the basic terms and concepts of a game engine.

5.3.1 Basics: Game Engine

Game engines are at the heart of any computer game and provide core functions required
to run a game, such as graphics rendering, collision detection, or physics calculations. Most
game engines are component-based: objects in a game (GameObjects) acquire functionalities
according to the components they own. For example, collider components enable collision
detection (i.e. trigger colliders) or represent the physical shape of a GameObject, mesh
renderer components contain information about the three-dimensional mesh of vertices and
triangle-arrays to visualize the shape and coloring of a GameObject, and transform com-
ponents store or modify the position, orientation, and scale of a GameObject. In addition,
GameObjects can be parents of other GameObjects, and in this case, child GameObjects
will move, rotate, and scale just like their parent GameObjects.

5.3.2 Subroutine 1: Construction Routine

MOF-VR’s construction routine allows the creation of hypothetical MOFs that can be used
in molecular dynamics simulations. For a hands-on demonstration, the interested reader
is referred to the video trailer on the CD-ROM that accompanies this dissertation. The
construction routine consists of two parts:

I) combining MOF building blocks to form non-periodic crystal structures, and
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II) using these non-periodic crystal structures to form periodic MOF crystals.

Fig. 41: Algorithm for recombining nodal and linking building blocks in MOF-VR. (a) Each
connection site of a building block is equipped with two trigger colliders (green): a box(-shaped)
collider to store information about the bond vector and a capsule(-shaped) collider to store informa-
tion about the torsional orientation of the building block. (b) When the connection site of a nodal
building block is approached by a connection site of a linking building block, the building block
released from hand (here, the linker) is rotated so that the (blue) bond vectors are anti-parallel.
(c) A torsional rotation around the bond vector is performed so that the (green) torsion vectors are
either parallel or anti-parallel. (d) The new position of the released building block is determined
by two vectors: a (purple) vector starting from the connection site of the non-released building
block, parallel to its bond vector and having a magnitude equal to the typical (single) bond length
between the connection site elements, and an (orange) vector starting from the connection site of
the released building block and ending at its geometrical center.

(I) The algorithm implemented in MOF-VR for combining MOF building blocks into non-
periodic crystal structures is illustrated in Fig. 41 and was inspired by the procedure for
generating hypothetical MOFs described by Wilmer et al. [145], who decomposed experi-
mental crystal structures of existing MOFs into nodal and linking building blocks and re-
combined them to form hypothetical MOFs using geometric rules. Nodal building blocks
were defined as the inorganic nodes of MOFs including the terminal carboxylate groups of
connected organic linkers, while linking building blocks were defined as organic molecules
with terminal unsaturated nitrogen atoms or organic dicarboxylic acids without carboxy-
late groups. MOF-VR follows the concepts proposed by Wilmer et al. and uses similar
geometric rules to allow recombination of nodal and linking building blocks in virtual real-
ity. Several nodal and linking building blocks are available in MOF-VR (see Appendix Q)
that were read from Crystallographic Information Files (CIF) provided in the Topologically
Based Crystal Constructor (ToBaCCo) of Colón et al. [123, 146] or created from mfpx struc-
ture files provided at https://www.mofplus.org from Schmid and coworkers [147–149]. In
MOF-VR, nodal and linking building blocks possess connection sites to which other building
blocks can be connected. For nodal linking blocks, these connections site are either open
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metal sites or carbon atoms in carboxylate groups, while for linking building blocks these
connection sites are terminal unsaturated carbon or nitrogen atoms. Each connection site is
equipped with a box(-shaped) and a capsule(-shaped) trigger collider (see Fig. 41a). While
the vector from the connection site to the box collider (i.e. bond vector) stores information
about the direction of the chemical bond formed by the connection with another building
block, the vector from the connection site to the capsule collider (torsion vector) stores in-
formation about the torsional rotation of the connected building block about the (mutual)
bond vector. Box colliders are furthermore responsible for detecting approaching connection
sites of other building blocks. Two building blocks are combined if the connection site of a
nodal building block is approached by the suitable connection site of a linking building block
(and vice versa) and one of the building blocks is released from hand. The new position and
orientation of the released building block is calculated and set in three steps:

1) The detached building block is rotated so that the bond vectors of the triggered con-
nection sites are anti-parallel (see Fig 41b).

2) The released building block is rotated about the bond vector so that the torsion vectors
of the triggered connection sites are either parallel or anti-parallel to ensure the correct
torsional orientation of the released building block (see Fig 41c).

3) The position of the detached building block is determined with the help of two vectors:
a vector starting from the triggered connection site of the non-detached building block,
which is parallel to its bond vector and has a magnitude equal to the typical (single)
bond length between the connection site elements (purple vector in Fig. 41d), and a
vector starting from the connection site of the detached building block and ending at
its geometrical center (orange vector in Fig 41d). The typical (single) bond length is
calculated as the sum of the covalent radii of the connection site elements, following
the work of Cordero et al. [150].

Fig. 42: Algorithm for creating periodic MOF crystals: (a) Closed non-periodic MOF crystals can
be made periodic. The outermost nodal building blocks represent the corners of a parallelepiped
(green lines) that has the same shape but a smaller scale than the parallelepiped that represents
the periodic MOF crystal cell. (b) The cell faces and lattice vectors of the periodic MOF crystal are
determined based on the parallelepiped in (a), and (c) nodal building blocks are connected across
the periodic cell boundary.
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The resulting MOF fragment can be further developed by adding nodal and linking building
blocks, and thus created closed non-periodic crystal structures (see Fig. 42a) can in turn
be used to form periodic MOF crystals. (II) The algorithm to convert a non-periodic MOF
crystal to a periodic one is illustrated in Fig. 42 and consists in essence of three steps:

1) The cell faces of the periodic MOF crystal are determined. Geometrically, these cell
faces form a parallelepiped, i.e. a three-dimensional figure that is limited by three pairs
of parallel planes. These three pairs of planes are calculated in three steps:

a) The eight outermost nodal building blocks of the non-periodic crystal structure are
identified. These nodal building blocks represent the corners of a parallelepiped
that has the same shape but a smaller scale than the parallelepiped which is
formed by the cell faces of the periodic MOF crystal (see Fig. 42a).

b) The faces of the scaled parallelepiped are determined from the positions of the
eight outermost nodal building blocks (see Fig. 42a). These faces are represented
by three pairs of parallel planes.

c) The distance between the planes in each pair of planes is doubled. This enlarges
the scaled parallelepiped to obtain the cell faces of the periodic MOF crystal (see
Fig. 42b).

2) The lattice vectors of the periodic MOF crystal are determined (see Fig. 43). This is
achieved in four steps:

a) One of the three plane pairs is chosen.

b) The normal vector of any of the two planes in the selected pair of planes is
determined (see Fig. 43a).

c) The determined normal vector is first projected onto any plane of the first remain-
ing plane pair (see Fig. 43b) and then onto any plane of the second remaining
plane pair (see Fig. 43c). The twice projected plane normal represents one of the
three lattice vectors of the periodic MOF crystal.

d) Steps a) to c) are repeated until all three lattice vectors are obtained. Note that
no pair of planes is chosen twice in step a).

3) Unoccupied connection sites are filled with linking building blocks. Periodic boundary
conditions are used to determine the correct positions of the atoms in the linking
building blocks within the periodic MOF crystal cell (see Fig. 42c).

The final MOF is stored in an in-game cache and can be used in molecular dynamics simu-
lations later on.
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Fig. 43: Algorithm for determining the lattice vectors of the periodic MOF crystal. (a) One of the
planes of the first pair of planes (blue faces) is chosen and its normal vector is determined (blue
arrow). (b) The normal vector is projected onto one of the planes of the second pair of planes
(orange faces), and (c) the projected (orange) vector is projected onto one of the planes of the third
pair of planes (red faces). The resulting (red) vector corresponds to one of the three lattice vectors
of the periodic MOF crystal.

5.3.3 Subroutine 2: Molecular Dynamics Routine

The molecular dynamics routine implemented in MOF-VR is designed to be intuitive and
easily accessible for users with little to no knowledge of the theory of molecular dynamics
simulations. For instance, the creation of guest definition or input files is optional, interac-
tion parameters are automatically assigned to the interaction sites, and periodic boundary
conditions are used in conjunction with the minimum image convention to mimic an infinite
system. Guest molecules can be placed at any desired position or simply tossed into a MOF
to start a molecular dynamics run. This design philosophy makes MOF-VR accessible to
users who have little or no knowledge of the theory of molecular dynamics simulations. The
molecular dynamics routine numerically integrates Newton’s equations of motion using the
velocity-Verlet algorithm (for fully and partly flexible guest molecules) or the rotational-
velocity-Verlet algorithm [35] (for rigid guest molecules). The interatomic potential applied
in the molecular dynamics routine consists of non-bonded, Unb, and bonded interactions,
U intra,

U = Unb + U intra. (211)

Non-bonded interactions are represented by a sum of van-der-Waals, UvdW, and electrostatic
interactions, U elec,

Unb = UvdW + U elec, (212)

while bonded interactions are split into bond, Ubond, bend, Ubend, torsion, U tor, intramolec-
ular van-der-Waals, U intra,vdW, and intramolecular electrostatic interactions, U intra,elec,

U intra = Ubond + Ubend + U tor + U intra,vdW + U intra,elec. (213)

Van-der-Waals interactions are described by a Lennard-Jones potential. Lennard-Jones
parameters for interaction sites of the crystal framework are automatically assigned from
the Universal force field [48], while Lennard-Jones parameters for interaction sites in guest
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molecules are read from the guest definition file. Lennard-Jones parameters between unlike
atomic species i and j are computed by means of the Lorentz-Berthelot mixing rules [44, 45].
MOF-VR comes with a variety of guest molecule models, such as alkanes, alcohols, or small
molecules. In addition, users can write their own guest definition files (see manual on the
CD-ROM accompanying this work). Electrostatic interactions are described by a Coulomb
potential. Coulomb forces are calculated using the Ewald summation [55] to account for the
long-range nature of electrostatic interactions. Partial charges for the interaction sites of
crystal structures or guest molecules are assigned in one of three ways:

1) partial charges are read from guest definition or CIF files,

2) partial charges for crystals read from CIF files are computed by the EQeq method of
Wilmer et al. [53], or

3) partial charges for MOFs created via the construction routine are assigned using molec-
ular building block-based (MBBB) charges as described by Argueta et al. [151] (see
Appendix R for details).

Bond and bend interactions, Ubond or Ubend, are described by harmonic potentials [152, 153],
while torsion is described by the TraPPE dihedral potential [46]. Intramolecular van-der-
Waals and intramolecular electrostatic interactions are computed using a scaled Lennard-
Jones or Coulomb potential. Scaling factors are defined in the guest definition file (see manual
on the CD-ROM that accompanies this dissertation). MOF-VR allows to keep bond lengths,
bend angles, and/or dihedral angles fixed by using the RATTLE algorithm [36], or to simulate
rigid guest molecules using the rotational-velocity-Verlet integration method developed by
Rozmanov and Kusalik [35]. In addition to performing molecular dynamics simulations in
the microcanonical ensemble, MOF-VR allows constant-temperature simulations using the
CSVR thermostat [37, 38]. Moreover, MOF-VR prints the trajectories of guest molecules
during simulation, calculates thermodynamic properties of the system (i.e. simulation time,
kinetic energy, temperature, or mean-squared displacements (MSDs) of guest species), and
provides auxiliary functions to increase intuitiveness and immersion (see Appendix S).

5.3.4 Subroutine 3: Visualization Routine

MOF-VR also offers the possibility of immersively watching molecular dynamics trajectories
by reading PDB files (see Fig. 44). To ensure high graphics performance when visualizing
molecular dynamics trajectories with tens of thousands of atoms in each frame, MOF-VR
uses a technique called Mesh Combining. Meshes contain information about the vertices that
define the triangles used to represent the shape of a visualized GameObject ([136], pp. 60–
61). Each triangle must be rendered by the graphics engine, making visualization of parent
GameObjects with many child GameObjects (such as MOFs with many framework atoms)
CPU intensive. By combining mesh information from several child objects, MOF-VR reduces
rendering time, thus ensuring frictionless visualization of molecular dynamics trajectories

102



with tens of thousands of GameObjects. Details on how to use MOF-VR’s visualization
routine can be found in the manual on the CD-ROM accompanying this dissertation.

Fig. 44: Molecular dynamics trajectory of the adsorption of propane and propene in CAU-10 with
over 10,000 GameObjects visualized in MOF-VR. The menu bar allows to start/stop playback,
frame-by-frame visualization, or to hide certain GameObjects (e.g. MOF atoms).

5.4 Testing

Certain algorithms are at the heart of every molecular dynamics program, such as time
integration schemes, force evaluation techniques, and thermostats. MOF-VR implements two
time integration schemes (i.e. velocity-Verlet or rotational-velocity-Verlet algorithm [35]),
four force evaluation routines (i.e. Lennard-Jones routine, Ewald summation [55], binding
forces routine, or RATTLE algorithm [36]), and a thermostat (i.e. CSVR thermostat [37,
38]). The accurate implementation of these seven algorithms was tested.

5.4.1 Methods and Models

The accuracy of the molecular dynamics implementation was tested against the LAMMPS
software package [111] developed at Sandia National Laboratories using verification simula-
tions to individually confirm the functionality of the algorithms implemented in MOF-VR.
The following verification simulations were used:

1) Velocity-Verlet Routine:Velocity-Verlet Routine: Molecular dynamics simulation in the microcanonical ensem-
ble of three methane molecules in MOF-5. Intermolecular forces were calculated based
on Lennard-Jones interactions.
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2) Rigid Body Routine:Rigid Body Routine: Molecular dynamics simulation in the microcanonical ensemble of
a 2,3-dimethylbutane molecule in MOF-5. Intermolecular forces were calculated based
on Lennard-Jones interactions, while intramolecular interactions were rigidified using
the rotational-velocity-Verlet algorithm of Rozmanov and Kusalik [35] (MOF-VR) or
the symplectic quaternion scheme of Miller et al. [154] (LAMMPS).

3) Electrostatics Routine:Electrostatics Routine: Molecular dynamics simulation in the microcanonical ensemble
of a methanol molecule in MOF-5. Intermolecular forces were calculated based on
Lennard-Jones and Coulomb interactions. Coulomb forces were calculated using the
Ewald summation [55] with an Ewald splitting parameter of 0.25 Å−1, a maximum of
6 Fourier space vectors in each spatial direction, and a real space cutoff of 12 Å. These
Ewald parameters were calculated automatically by MOF-VR based on the desired
relative cutoff error in the energy of about 1.37 ·10−5. Intramolecular interactions were
rigidified using the rotational-velocity-Verlet algorithm of Rozmanov and Kusalik [35]
(MOF-VR) or the symplectic quaternion scheme of Miller et al. [154] (LAMMPS).

4) Constraints Routine:Constraints Routine: Molecular dynamics simulation in the microcanonical ensemble
of a propane molecule in MOF-5. Intermolecular forces were calculated based on
Lennard-Jones interactions, while intramolecular interactions were rigidified using the
RATTLE algorithm [36] with a relative tolerance of the bond length of 10−4 and a
maximum of 50 iterations.

5) Binding Forces Routine:Binding Forces Routine: Molecular dynamics simulation in the microcanonical ensem-
ble of an n-butane molecule in MOF-5. Intermolecular forces were calculated based on
Lennard-Jones interactions, while intramolecular interactions were described by har-
monic potentials (for bond stretching and angle bending) and the TraPPE dihedral po-
tential (for torsion). Bond constants were taken from the CHARMM22 force field [153]
and bend or torsion constants were taken from the TraPPE-UA force field [152].

6) Thermostatting Routine:Thermostatting Routine: Molecular dynamics simulation in the canonical ensemble of
a 2,3-dimethylbutane molecule in MOF-5 using the CSVR thermostat [37, 38] with
a damping time of 100 fs to maintain the temperature of the system at 298.15 K.
Intermolecular forces were calculated based on Lennard-Jones interactions, while in-
tramolecular interactions were rigidified using the rotational-velocity-Verlet algorithm
of Rozmanov and Kusalik [35] (MOF-VR) or the symplectic quaternion scheme of
Miller et al. [154] (LAMMPS).

Molecular dynamics simulations were conducted for 3,000,000 time steps à 1 fs in a single
MOF-5 unit cell, keeping the positions of the lattice atoms in MOF-5 fixed. Lennard-Jones
interactions were calculated for all guest-MOF atom pairs in the simulation box (MOF-VR)
or truncated by a spherical 12 Å cutoff (LAMMPS) using periodic boundary conditions in
conjunction with the minimum image convention. Different truncation scheme are used, be-
cause the combination of truncation errors and single point precision floating-point numbers
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used in Unity lead to strong error accumulation. Guest molecules were modeled according to
the TraPPE force fields developed by Siepmann and coworkers [46, 77, 152] (modifications are
stated above). The crystal structure of MOF-5 was taken from previous work [74]. Lennard-
Jones parameters for each atom of MOF-5 were taken from the Universal force field [48],
while partial charges were determined using the EQeq method of Wilmer et al. [53]. In each
verification simulation, the initial state of the system was created in the following way: the
game was paused, the orientation of MOF-5 and the guest molecules were set to their identity
rotation (corresponding to no rotation), and the guest molecules were placed in the center of
MOF-5. When the game continued, the positions of the interaction sites were written to a
file that formed the basis for the LAMMPS data file, and the velocities of the interaction sites
were set to zero. According to classical mechanics, the motion of particles is clearly defined
by their positions and momenta. For this reason, the functionality of the simulation routines
implemented in MOF-VR is tested by calculating kinetic energies (which contain information
on the interaction site momenta) and radial distribution functions (which contain informa-
tion on the interaction site positions) for each of the above verification simulations [155].
Average kinetic energies were calculated every 1,000 time steps based on the kinetic energies
of the previous 1,000 time steps, while radial distribution functions were calculated at the
end of each verification simulation and averaged over the previous 100,000 time steps.

5.4.2 Results and Discussion

Fig. 45 shows the average kinetic energies calculated for the verification simulations per-
formed with MOF-VR or LAMMPS. In addition, the mean and the statistical error (SE) of
the kinetic energies were computed using the block-averaging technique ([26], pp. 525–527).
For this, the average kinetic energies of the final 1,000,000 time steps were divided into 5
blocks à 200,000 time steps. The statistical error was calculated as the standard deviation
of the block averages. The results can be summarized as follows:

1) Velocity-Verlet Routine:Velocity-Verlet Routine: MOF-VR calculates an average kinetic energy of 11.29 kJ/mol
(SE: 0.48 kJ/mol) and LAMMPS of 11.73 kJ/mol (SE: 0.54 kJ/mol). The average
kinetic energy calculated with MOF-VR is within the statistical error of the results
obtained with LAMMPS (see Fig. 45a).

2) Rigid Body Routine:Rigid Body Routine: MOF-VR calculates an average kinetic energy of 13.42 kJ/mol
(SE: 0.20 kJ/mol) and LAMMPS of 13.38 kJ/mol (SE: 0.35 kJ/mol). The average
kinetic energy calculated with MOF-VR is within the statistical error of the results
obtained with LAMMPS (see Fig. 45b).

3) Electrostatics Routine:Electrostatics Routine: MOF-VR calculates an average kinetic energy of 9.21 kJ/mol
(SE: 0.31 kJ/mol) and LAMMPS of 9.72 kJ/mol (SE: 0.38 kJ/mol). The average
kinetic energy calculated with MOF-VR is not within the statistical error of the results
obtained with LAMMPS (see Fig. 45c). Further investigations show that this deviation
is due to a perturbation of the system caused by round-off errors in the position of the

105



guest molecule when exporting the system from MOF-VR to LAMMPS (see Method
section for details). To prove this, we have repeated the simulation in LAMMPS
starting from a perturbed starting configuration by shifting the geometric center of
methanol by −10−8 Å in every spatial direction. This shift corresponds to the round-
off error. For the repeated simulation, LAMMPS computes an average kinetic energy
of 10.09 kJ/mol (SE: 0.48 kJ/mol). Apparently, the kinetic energy of the system is
sensitive to small deviations in the initial configuration.

4) Constraints Routine:Constraints Routine: MOF-VR calculates an average kinetic energy of 9.24 kJ/mol
(SE: 0.28 kJ/mol) and LAMMPS of 9.69 kJ/mol (SE: 0.21 kJ/mol). The average ki-
netic energy calculated with MOF-VR is not within the statistical error of the results
obtained with LAMMPS (see Fig. 45d). Again, this deviation can be attributed to
a perturbation of the system caused by round-off errors in the position of the guest
molecule when exporting the system from MOF-VR to LAMMPS. To prove this, we
have repeated the simulation in LAMMPS starting from a perturbed starting con-
figuration by shifting the geometric center of propane by −10−8 Å in every spatial
direction. For the repeated simulation, LAMMPS computes an average kinetic energy
of 9.94 kJ/mol (SE: 0.15 kJ/mol). Apparently, the kinetic energy of the system is
sensitive to small deviations in the initial configuration.

5) Binding Forces Routine:Binding Forces Routine: MOF-VR calculates an average kinetic energy of 11.12 kJ/mol
(SE: 0.10 kJ/mol) and LAMMPS of 11.11 kJ/mol (SE: 0.15 kJ/mol). The average
kinetic energy calculated with MOF-VR is within the statistical error of the results
obtained with LAMMPS (see Fig. 45e). It should be recalled, that the compared
kinetic energies are averaged over the final 1 ns of the simulation. The deviation of the
kinetic energies calculated by MOF-VR and LAMMPS for the simulation time between
about 0.5 ns and 2 ns can be attributed to a perturbation of the system caused by
round-off errors in the position of the guest molecule when exporting the system from
MOF-VR to LAMMPS. To prove this, we have repeated the simulation in LAMMPS
starting from a perturbed starting configuration by by shifting the geometric center
of butane by −10−8 Å in every spatial direction. The results are shown in Fig. T1 of
Appendix T and indicate similar temporary fluctuations. Apparently, the system has
several preferred kinetic energy states between which it alternates.

6) Thermostatting Routine:Thermostatting Routine: In contrast to MOF-VR, LAMMPS only thermostats transla-
tional degrees of freedom (e.g. see: docs.lammps.org/fix_temp_csvr.html). That’s
why Fig. 45f compares the kinetic energy calculated by MOF-VR with the transla-
tional kinetic energy calculated by LAMMPS. MOF-VR calculates an average kinetic
energy of 3.71 kJ/mol (SE: 0.08 kJ/mol) corresponding to an average temperature of
297.98 K and LAMMPS of 3.74 kJ/mol (SE: 0.04 kJ/mol) corresponding to an average
temperature of 299.61 K. For LAMMPS, the average temperature is calculated from
the average translational kinetic energy. The average kinetic energy calculated with

106

docs.lammps.org/fix_temp_csvr.html


MOF-VR is within the statistical error of the results obtained with LAMMPS.

Fig. 45: Kinetic energies averaged over 1,000 time steps (dots) and their moving averages over 200
time steps (lines) calculated by MOF-VR (green) or LAMMPS (blue) for the verification simulations
to test (a) the velocity-Verlet routine, (b) the rigid body routine, (c) the electrostatics routine, (d)
the constraints routine, (e) the binding forces routine, and (f) the thermostatting routine.

Fig. 46 shows radial distribution functions (RDFs) calculated by MOF-VR or LAMMPS for
atom pairs consisting of the carbon atoms of MOF-5 and interaction sites in guest molecules
that are used in each verification simulation. RDFs for the remaining atom pairs can be
found in Appendix U. The calculated RDFs can be summarize as follows:

1) Velocity-Verlet Routine:Velocity-Verlet Routine: The RDFs shown in Fig. 46a and calculated for atom pairs
consisting of carbon atoms in MOF-5 and CH4 interaction sites in methane agree very
well. The maximum probability of finding a CH4 interaction site is at a distance of
4.5 Å or 11.5 Å to a carbon atom in MOF-5.

2) Rigid Body Routine:Rigid Body Routine: The RDFs shown in Fig. 46b and calculated for atom pairs con-
sisting of carbon atoms in MOF-5 and CH3 interaction sites in 2,3-dimethylbutane
agree very well. The maximum probability of finding a CH3 interaction site is at a
distance of 6 Å or 12 Å to a carbon atom in MOF-5.

3) Electrostatics Routine:Electrostatics Routine: The RDFs shown in Fig. 46c and calculated for atom pairs
consisting of carbon atoms in MOF-5 and CH3 interaction sites in methanol agree very
well. The maximum probability of finding a CH3 interaction site is at a distance of
4.7 Å or 11.8 Å to a carbon atom in MOF-5.
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4) Constraints Routine:Constraints Routine: The RDFs shown in Fig. 46d and calculated for atom pairs con-
sisting of carbon atoms in MOF-5 and CH3 interaction sites in propane agree very well.
The maximum probability of finding a CH3 interaction site is at a distance of 5.3 Å or
11.6 Å to a carbon atom in MOF-5.

5) Binding Forces Routine:Binding Forces Routine: The RDFs shown in Fig. 46e and calculated for atom pairs
consisting of carbon atoms in MOF-5 and CH3 interaction sites in n-butane agree very
well. The maximum probability of finding a CH3 interaction site is at a distance of
4.4 Å or 11.4 Å to a carbon atom in MOF-5.

6) Thermostatting Routine:Thermostatting Routine: The RDFs shown in Fig. 46f and calculated for atom pairs
consisting of carbon atoms in MOF-5 and CH3 interaction sites in rigid 2,3-dimethylbu-
tane differ significantly. According to the RDF calculated by MOF-VR, the maximum
probability of finding a CH3 interaction site is at a distance of 4.2 Å or 12 Å to a
carbon atom in MOF-5, while LAMMPS suggests that the maximum probability is at
a distance of 6 Å or 12 Å. These differences are caused by the fact that LAMMPS only
thermostats the translational degrees of freedom of rigid bodies. When using a fully
flexible model for 2,3-dimethylbutane in LAMMPS, the calculated RDFs agree well
with the one calculated for the rigid model by MOF-VR (see Fig. U7 of Appendix U).

Fig. 46: Comparison of radial distribution functions generated by MOF-VR (green) or LAMMPS
(blue) between carbon atoms in MOF-5 and (a) CH4 in methane for the verification of the velocity-
Verlet routine, (b) CH3 in 2,3-dimethylbutane for the verification of the rigid body routine, (c) CH3

in methanol for the verification of the electrostatics routine, (d) CH3 in propane for the verification
of the constraints routine, (e) CH3 in n-butane for the verification of the binding forces routine, and
(f) CH3 in 2,3-dimethylbutane for the verification of the thermostatting routine.
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5.5 Conclusions

MOF-VR was introduced: the first virtual reality program that allows hypothetical metal-
organic frameworks to be created and tested in molecular dynamics simulations of guest
molecules. We eliminated the need of a back-end simulation engine to perform molecular
dynamics simulations in virtual reality by directly implementing molecular dynamics rou-
tines into MOF-VR using the Unity game engine and SteamVR system. Tests against the
LAMMPS software package confirmed that MOF-VR is capable of performing molecular dy-
namics simulations with long-term energy stability. The computing resources of the average
user will only allow the simulation of a small number of guest molecules in metal-organic
frameworks in MOF-VR. But technological progress could give rise to virtual reality applica-
tions that efficiently implement molecular dynamics routines to allow users with little to no
knowledge of the theory of molecular dynamics simulations to perform large-scale molecular
dynamics simulations in virtual reality.
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6 Summary

The aim of this dissertation was to shed light on a few surface phenomena occurring in or on
metal-organic frameworks. In Section 3, we studied the separation of aqueous alcohol mix-
tures in CAU-10 – a metal-organic framework with internal hydrophobicity – using grand
canonical Monte Carlo simulations. Separating alcohols from aqueous mixtures, such as fer-
mentation broths, is an important cornerstone in the industrial transformation toward green
chemistry. However, separation is often driven by entropic effects that favor the adsorption
of the component with the higher saturation capacity (i.e. water), because adsorption from
the liquid phase commonly occurs under saturation conditions. The aim of our study was
to investigate whether entropic effects also favor the adsorption of water in metal-organic
frameworks with internal hydrophobicity. The most important conclusion to be drawn from
our study is that the adsorption selectivity is in favor of water for all investigated mixtures
and liquid phase compositions, suggesting that the internal hydrophobicity of CAU-10 is of
little importance. The preferential adsorption of water is due to energetic as well as entropic
effects. For high alcohol concentrations, the hydroxyl groups of adsorbed alcohol molecules
constitute strong hydrophilic adsorption sites for water adsorption (energetic effect), while
with decreasing liquid phase mole fractions of the alcohol, the adsorption of water is preferred
due to the higher packing efficiency of water in the channels of CAU-10 (entropic effect).
The results indicate that competitive water adsorption significantly reduces the efficiency
with which alcohols can be separated from the aqueous liquid phase. A viable solution may
be to design the external surface of metal-organic frameworks in a way that it prevents the
adsorption of water, for instance by providing an external ultrahydrophobicity.

The outlook obtained from the study in Section 3 emphasizes the importance of a clear
distinction between the internal and external surface of metal-organic frameworks. However,
this distinction is rarely made in the determination of the hydrophobicity of metal-organic
frameworks based on the unstated assumption that the two commonly used methods, water
adsorption experiments (internal surface) and contact angle measurement (external surface),
provide similar results. In Section 4, we conducted molecular dynamics simulations to study
how the design of the external surface influences the droplet spreading, and grand canon-
ical Monte Carlo simulations were performed to predict water adsorption on the internal
metal-organic framework surface. We can draw two conclusions from the simulation results.
First, the external surface nature of metal-organic frameworks has a major impact on the
droplet spreading – suggesting the necessity to clearly distinguish between the internal and
external surface or hydrophobicity of metal-organic frameworks. Second, comparison of the
vapor phase pressures above the curved droplet interface obtained in the simulation and
the vapor pressure of water above a flat interface indicates that droplets on the surfaces of
metal-organic frameworks are commonly trapped in a metastable state – a circumstance for
which experimental evidence exists (see discussion on p. 90).
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The studies conducted in Section 3 and 4 have demonstrated that molecular simulations are
helpful tools for studying surface phenomena. However, the interpretation of the generated
three-dimensional trajectories is often difficult, because most visualization tools only allow
two-dimensional projections. The emergence of immersive visualization techniques such as
virtual reality could greatly simplify the interpretation of atomic or molecular trajectories
in molecular dynamics simulations. In Section 5, we introduced MOF-VR, a virtual reality
tool developed to study guest molecules in metal-organic frameworks. MOF-VR consists of
three subroutines: a construction routine to create hypothetical metal-organic frameworks by
hand, a molecular dynamics suite, and a trajectory visualizer. Tests against the LAMMPS
software package have shown that MOF-VR is capable of performing state-of-the-art molec-
ular dynamics simulations of guest molecules in rigid metal-organic frameworks in virtual
reality and provides reliable simulation results.
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Appendices

A Section 2: Lagrangian Multipliers

In the following, the grand canonical partition function,

Z(µ, V, T ) =
∑
N

∑
S

exp(−βLEN,S) exp(−γLN), (A1)

is used to determine the Lagrangian multipliers βL and γL. First, the total differential of
Eq. (A1) is formed,

d lnZ =

(
∂ lnZ

∂γL

)
V,βL

dγL +

(
∂ lnZ

∂V

)
γL,βL

dV +

(
∂ lnZ

∂βL

)
γL,V

dβL, (A2)

where Z := Z(µ, V, T ). The derivatives in Eq. (A2) are ([22], p. 53):

(
∂ lnZ

∂γL

)
V,βL

= −

∑
N

∑
S

N exp(−βLEN,S) exp(−γLN)

Z
= −〈N〉, (A3)

(
∂ lnZ

∂V

)
γL,βL

= −

∑
N

∑
S

βL

(
∂EN,S
∂V

)
exp(−βLEN,S) exp(−γLN)

Z
= −βL〈p〉, (A4)

and (
∂ lnZ

∂βL

)
γL,V

= −

∑
N

∑
S

EN,S exp(−βLEN,S) exp(−γLN)

Z
= −〈E〉, (A5)

where we made use of the following expression ([22], p. 53):(
∂EN,S
∂V

)
= pN,S. (A6)

Substituting Eqs. (A3) to (A5) in Eq. (A2) yields:

d lnZ = −〈N〉dγL − βL〈p〉dV − 〈E〉dβL, (A7)

and becomes:

1

βL
d(lnZ + 〈N〉γL + 〈E〉βL) =

γL
βL

d〈N〉 − 〈p〉dV + d〈E〉 (A8)

by applying the Legendre transformation. Equating the coefficients of Eq. (A8) with those
of the purely thermodynamic expression,

TdS = −µdN − pdV + dU, (A9)
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where p = 〈p〉, N = 〈N〉, or U = 〈E〉, results in:

βL =
1

CT
, (A10)

and
γL = − µ

CT
, (A11)

where C ensures that Eq. (A8) is expressed in the unit of energy. We obtain C by comparing
the equations of state for an ideal gas in a closed system that are derived from statistical
thermodynamics or classical thermodynamics. For a closed system in thermodynamic equi-
librium, the free energy, Ã, is minimal, and the total differential of the free energy is:

dÃ =

(
∂Ã

∂N

)
V,T

dN +

(
∂Ã

∂V

)
N,T

dV +

(
∂Ã

∂T

)
N,V

dT. (A12)

By equating the coefficients in Eq. (A12) with those of the purely thermodynamic expression:

dÃ = µdN − pdV − SdT, (A13)

we obtain the derivative of free energy with respect to the volume,(
∂Ã

∂V

)
N,T

= −p = −NkBT

V
, (A14)

where the last identity on the right-hand side holds for an ideal gas. The expression of the
free energy in statistical thermodynamics is given by:

Ã = − 1

βL
lnZ(N, V, T ), (A15)

where Z(N, V, T ) is the canonical partition function. The derivative of the free energy with
respect to the volume is equal to:(

∂Ã

∂V

)
N,T

= − 1

βL

(
∂ lnZ(N, V, T )

∂V

)
N,T

. (A16)

For the identical and indistinguishable particles in an ideal gas, the canonical partition
function reduces to:

Z(N, V, T ) =
(z†)N

N !
, (A17)

where z† is the canonical particle partition function for identical particles. Using Eq. (A17)
in conjunction with Stirling’s approximation, we transform Eq. (A16) into the following
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expression ([18], pp. 87–88):

(
∂Ã

∂V

)
N,T

= −N
βL

∂ ln
[
z†

N

]
∂V


N,T

. (A18)

The particles in an ideal gas possess only translational degrees of freedom, and the canonical
partition function of a particle reduces to:

z† =
V

Λ3
, (A19)

where Λ is the de-Broglie wavelength (see Appendix B for a derivation). Substituting
Eq. (A19) in Eq. (A18) yields:(

∂Ã

∂V

)
N,T

= −N
βL

(
∂ ln

[
V

Λ3N

]
∂V

)
N,T

= − N

βLV
, (A20)

and by comparing the expressions in Eq. (A20) and Eq. (A14), the Lagrangian parameter,

βL =
1

kBT
, (A21)

stating that C in Eq. (A10) and Eq. (A11) is equal to the Boltzmann factor, kB.
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B Section 2: Transition to Classical Partition Functions

In the following, the proportionality constant for transitioning from quantum mechanical
partition functions to classical partition functions is evaluated. For this, the translational
partition function, ztrans, of a particle in a box of side lengths dsys× dsys× dsys is determined
based on a quantum mechanical and classical mechanical description of translational states.
According to quantum mechanics, the energy, εñ, of any translational quantum state of a
particle is given by:

εñ =
h̃2

8md2
sys

(ñ2
1 + ñ2

2 + ñ2
3), (B1)

where h̃ is Planck’s constant and ñ1, ñ2, or ñ3 are the independent quantum numbers for
describing the translational quantum state. The translational partition function for a particle
in the microcanonical ensemble is:

ztrans =
∞∑

ñ1=1

∞∑
ñ2=1

∞∑
ñ3=1

exp

(
− εñ
kBT

)
=

∞∑
ñ1=1

∞∑
ñ2=1

∞∑
ñ3=1

exp

(
−h

2(ñ2
1 + ñ2

2 + ñ2
3)

8md2
syskBT

)
. (B2)

Since ñ1, ñ2, or ñ3 are independent, Eq. (B2) can be factorized,

ztrans =

[
∞∑
ñ=1

exp

(
− h2ñ2

8md2
syskBT

)]3

. (B3)

Under normal conditions, the consecutive terms of the sum in Eq. (B3) are close. Thus, the
sum in Eq. (B3) can be approximated by an integral,

ztrans ≈

 ∞∫
ñ=0

exp

(
− h2ñ2

8md2
syskBT

)
dñ

3

. (B4)

Eq. (B4) is the standard integral of a Gaussian and can be solved analytically to yield the
quantum mechanical expression of the translational partition function of a particle ([18],
p. 81),

ztrans =

(
2πmkBT

h2

)3/2

d3
sys. (B5)

In classical mechanics, the energy of any translational state is described by the Hamiltonian:

H =
1

2m
‖~P‖2, (B6)

which leads to:

ztrans =
1

C3

dsys∫
0

dsys∫
0

dsys∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp

(
− ‖

~P‖2

2mkBT

)
d~rx d~ry d~rz d~Px d~Py d~Pz, (B7)
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where C is a proportionality constant of unit: momentum × length to ensure that ztrans is
unitless. Since the components of the momentum vector, ~Px, ~Py, and ~Pz, are independent
from one another as well as from the components of the position vector, ~rx, ~ry, and ~rz, the
sixfold integral in Eq. (B7) can be simplified into the following expression:

ztrans =
1

C3

 dsys∫
0

d~rx

dsys∫
0

d~ry

dsys∫
0

d~rz

 ∞∫
−∞

exp

(
− P 2

2mkBT

)
dP

3

, (B8)

where P is any of the three spatial components of ~P . Eq. (B8) can be solved analytically to
yield the classical mechanical expression of the translational partition function of a particle:

ztrans =

(
2πmkBT

C2

)3/2

dsys
3. (B9)

Comparing the expressions for the translational partition function in Eq. (B5) and Eq. (B9)
suggests that:

C = h̃. (B10)

Hence, Planck’s constant is the proportionality constant for the transition from quantum
mechanical partition functions to classical partition functions.
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C Section 2: Evaluation of the Chemical Potential

Monte Carlo simulations in the grand canonical ensemble allow a system to exchange particles
with a particle reservoir of constant chemical potential. The chemical potential can be
determined by:

µ =

(
∂Ã

∂N

)
V,T

≈ ÃN+1 − ÃN , (C1)

where ÃN and ÃN+1 are the Helmholtz free energies for a system with N or N + 1 particles.
Using Eq. (A15), Eq. (C1) can be transformed into:

µ = −kBT lnZN+1 + kBT lnZN = −kBT ln
ZN+1

ZN
, (C2)

where ZN and ZN+1 are the canonical partition functions for a system with N or N + 1

distinguishable particles. However, identical particles in an ideal gas are not distinguishable.
Thus, the partition function has to be divided by the permutation of the N or N+1 particles,

µ = −kBT ln
Z†N+1N !

Z†N(N + 1)!
= −kBT ln

Z†N+1

Z†N(N + 1)
, (C3)

where Z†N and Z†N+1 are the canonical partition functions for a system with N or N + 1

indistinguishable particles. Substituting the expression for the classical canonical partition
function in Eq. (C3) yields:

µ = −kBT ln

 1

(N + 1)Λ3

∫
· · ·
∫

exp

(
− U(~r1,··· ,~rN+1)

kBT

)
d~r1 · · · d~rN+1∫

· · ·
∫

exp

(
− U(~r1,··· ,~rN )

kBT

)
d~r1 · · · d~rN

 , (C4)

which reduces to ([26], pp. 173–174):

µ = −kBT ln


〈∫ ∫ ∫

exp

(
− U(~r1,··· ,~rN |~rN+1)

kBT

)
d~rN+1

〉
(N + 1)Λ3

 , (C5)

where
U(~r1, · · · , ~rN |~rN+1) = U(~r1, · · · , ~rN+1)− U(~r1, · · · , ~rN) (C6)

and the numerator in Eq. (C5) is given by:

〈· · · 〉 =

∫
· · ·
∫

P({~rN})
[∫ ∫ ∫

exp

(
− U(~r1, · · · , ~rN |~rN+1)

kBT

)
d~rN+1

]
, (C7)

where 〈· · · 〉 is a short-hand notation for the canonical ensemble average in Eq. (C5) and
P({~rN}) is the probability of any configuration {~rN} in the canonical ensemble. The ensem-
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ble average in Eq. (C7) can be evaluated by the Metropolis-Hastings algorithm, while the
three-dimensional integral in the ensemble average can be solved by a classical Monte Carlo
simulation. This is achieved by using the Widom insertion trial move [156]. In this trial
move, the Metropolis-Hastings algorithm is used to generate configurations of the system
from P({~rN}). At frequent intervals in the simulation, an additional particle, N + 1, is
generated at a random position, ~rN+1, in the system. The potential energy of the additional
particle is calculated, the Boltzmann factor in Eq. (C7) is determined, and the particle is
removed from the system. Averaging the thus determined Boltzmann factors over all gener-
ated positions ~rN+1 yields an approximation of the ensemble average in Eq. (C5).

Often, the particle reservoir is assumed to consist of an ideal gas or ideal chain molecules.
An ideal gas possesses no potential energy,

U = 0. (C8)

Thus, Eq. (C4) reduces to:

µid = −kBT ln

(∫ ∫ ∫
d~rN+1

(N + 1)Λ3

)
= −kBT ln

(
V

(N + 1)Λ3

)
= kBT ln

(
p

kBT
Λ3

)
, (C9)

where the last identity holds because of the ideal gas law,

pV = (N + 1)kBT. (C10)

On the other hand, an ideal chain possesses only internal degrees of freedom, i.e.:

U = Uintra. (C11)

The chemical potential, µic, can be computed in analogy to Eq. (C5), i.e.:

µic = −kBT ln


〈∫ ∫ ∫

exp

(
− Uintra(~r1,··· ,~rN |~rN+1)

kBT

)
d~rN+1

〉
(N + 1)Λ3

 . (C12)

Eq. (C12) can be transformed into ([26], p. 177):

µic = −kBT ln

(
V

(N + 1)Λ3

)
= −kBT ln

(
1

V

〈∫ ∫ ∫
exp

(
− Uintra(~r1, · · · , ~rN |~rN+1)

kBT

)
d~rN+1

〉)
, (C13)

which is tantamount to:
µic = µid + µex, (C14)
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where

µex = −kBT ln

(
1

V

〈∫ ∫ ∫
exp

(
− Uintra(~r1, · · · , ~rN |~rN+1)

kBT

)
d~rN+1

〉)
(C15)

is the excess chemical potential that accounts for the deviation of an ideal chain from an
ideal gas. Eq. (C15) only depends on the intramolecular interaction of particle N + 1 and
the temperature. It can be determined by a Monte Carlo simulation of an empty system in
the canonical ensemble using Widom insertion via CBMC [32].
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D Section 2: RATTLE Algorithm

In addition to simulating the motion of fully flexible guest molecules by evaluating bond
stretching, bond angle bending, and dihedral forces or rigid guest molecules by using the
rotational-velocity-Verlet algorithm, MOF-VR offers to constrain certain intramolecular de-
grees of freedom by maintaining the distance between specified interaction sites using the
RATTLE algorithm [36]. The RATTLE algorithm consists of four steps [36]:

1) Advance the positions of each mobile interaction site i in the system due to intermolec-
ular and unconstrained intramolecular forces by applying Eqs. (133) and (134) of the
velocity Verlet algorithm.

2) Correct the unconstrained positions, ~r ′i (t+ ∆t), and half-step velocities, ~v ′i (t+ 1
2
∆t),

for constraining intramolecular forces, ~gi(t), acting on i at ~ri(t),

~vi(t+ 1
2
∆t) = ~v ′i (t+ 1

2
∆t) +

1

2mi

~gi(t)∆t, (D1)

~ri(t+ ∆t) = ~r ′i (t+ ∆t) +
1

mi

~gi(t)∆t
2. (D2)

3) Compute the velocities, ~v ′i (t+∆t), due to intermolecular and unconstrained intramolec-
ular forces acting on i at ~ri(t + ∆t) by applying Eqs. (135) and (136) of the velocity
Verlet algorithm.

4) Correct the unconstrained velocities, ~v ′i (t+∆t), for constraining intramolecular forces,
~gi(t+ ∆t), acting on i at ~ri(t+ ∆t),

~vi(t+ ∆t) = ~v ′i (t+ ∆t) +
1

2mi

~gi(t+ ∆t)∆t. (D3)

Constraining intramolecular forces are determined by using Lagrange multipliers,

~gi(t) =
1

2

∑
L(i-j)

λL(t)

(
∂σ̄

∂~ri

)
, (D4)

~gi(t+ ∆t) =
1

2

∑
L(i-j)

λL(t+ ∆t)

(
∂σ̄

∂t

)
, (D5)

where λL(t) and λL(+∆t) are Lagrangian multipliers and σ̄(t) and σ̄(t+ ∆t) are holonomic
constrains, such as

σc(ij) = ‖~di-j‖2 − d2
i-j, (D6)

where di-j is the desired distance between i and j. Lagrangian multipliers are determined
iteratively by looping through the constraints [36]. We will refrain from a detailed description
of the iterative procedure at this point and instead refer to the Supporting Information of
earlier work [56].
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E Section 2: Maxwell-Boltzmann Distribution of Speed

The Maxwell-Boltzmann distribution of speed describes the probability of finding a particle
with a certain speed in an ideal gas. Starting point for the derivation is the Boltzmann
distribution. In its classical formulation, the Boltzmann distribution, P(~r,~v), can be split
into:

P(~r,~v) = P(~r)P(~v), (E1)

where

P(~r) =
exp

(
−U(~r)
kBT

)
d~rxd~ryd~rz

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

exp
(
−U(~r)
kBT

)
d~rxd~ryd~rz

(E2)

is the probability that a particle is at a certain position, ~r, and

P(~v) =
exp

(
−m‖~v‖2

2kBT

)
d~vxd~vyd~vz

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

exp
(
−m‖~v‖2

2kBT

)
d~vxd~vyd~vz

, (E3)

is the probability that a particle has a certain velocity, ~v. By solving the denominator of
Eq. (E3) analytically (see Sec. B), we obtain the Maxwell distribution of velocity,

P(~v) =

√(
m

2πkBT

)3

exp

(
−m‖~v‖

2

2kBT

)
d~vxd~vyd~vz. (E4)

The Maxwell-Boltzmann distribution of speed, P(‖~v‖), can be derived based on the real-
ization that there is an infinite number of vectors that possess the same speed, ‖~v‖ ([157],
pp. 354–357). These vectors form a sphere in velocity space, so that Eq. (E4) needs to be
integrated over the spherical coordinates, namely the azimuthal angle, ωazi, and the polar
angle, ωpol ([158], pp. 146–150). By transforming Eq. (E4) to spherical coordinates and
integration, we obtain:

P(‖~v‖) =

√(
m

2πkBT

)3

exp

(
−m‖~v‖

2

2kBT

)
‖~v‖2d‖~v‖

∫ ∞
0

sinωazidωazi

∫ 2π

0

dωpol, (E5)

which yields the Maxwell-Boltzmann distribution of speed ([157], p. 355):

P(‖~v‖) = 4π

√(
m

2πkBT

)3

exp

(
−m‖~v‖

2

2kBT

)
‖~v‖2d‖~v‖. (E6)
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F Section 2: Basics of Quantum Mechanics

For a better understanding of the methods for determining partial charges described in
Sec. 2.3.3, it seems beneficial to cover the basics of quantum mechanics. As most of this work
is concerned with the application of classical simulation methods, the following explanations
are intended to provide a rough idea about the concepts of quantum mechanics. Starting
point for our descriptions is the time-independent Schrödinger equation,

ĤΨ = EΨ, (F1)

where Ĥ is the Hamilton operator, Ψ is the wave function of the system, and E its energy.
The Hamilton operator is the sum of the kinetic energy operator, K̂, and the potential energy
operator Û,

Ĥ = K̂ + Û (F2)

where the kinetic energy operator contains the contributions due to the motion of electrons
and nuclei,

K̂ = −
Ne−∑
i=1

h̃2

2me−
∇2

e− −
Nn+∑
j=1

h̃2

2mn+

∇2
n+ , (F3)

where ne− and nn+ are the number of electrons or nuclei, h̃ is Planck’s constant, and me−

and mn+ are the mass of an electron or a nucleus. The potential energy operator contains
the contributions due to nucleus-electron interactions, electron-electron interactions, and
nucleus-nucleus interactions,

Û = − 1

4πε0

Ne−∑
i=1

Nn+∑
j=1

q̃+
j e

2

di-j
−

Ne−∑
i=1

Ne−∑
j=i+1

e2

di-j
−

Nn+∑
i=1

Nn+∑
j=i+1

q̃+
i q̃

+
j e

2

di-j

 , (F4)

where ε0 is the vacuum permittivity, q̃+ is the nucleus’ charge, e is the elementary charge,
and di-j is the distance between the species. The wave function is searched that solves the
Schrödinger equation in Eq. (F2) for a given system. Commonly this is done using the
following simplifications ([159], pp. 8–9):

1) the positions of the nuclei are fixed, because the much larger mass of a nucleus relative
to an electron results in the velocity of an nucleus being much smaller than the velocity
of an electron (Born-Oppenheimer approximation), and

2) the nucleus-nucleus interactions are ignored, because the fixed nucleus positions result
in these interactions being constant.

These simplifications lead to the electronic Hamilton operator ([160], p. 15),

Ĥel = −
Ne−∑
i=1

h2

2me−
∇2

e− −
1

4πε0

Ne−∑
i=1

Nn+∑
j=1

q̃+
j e

2

di-j
+

1

4πε0

Ne−∑
i=1

Ne−∑
j=i+1

e2

di-j
. (F5)
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The wave function of the system is commonly constructed by using two approximations:

1) The Hartree product ([29], p. 38) states that the many-electron wave function, Ψ, can
be approximated by:

Ψ(~r1, · · · , ~rNe−
) ≈ ψ1(~r)ψ2(~r) · · ·ψNe−

(~r), (F6)

where Ψ(~r1, · · · , ~rNe−
) is the many-body wave function in Eq. (F2), and ψi(~r) are one-

electron wave functions, commonly called molecular orbitals. The Hartree product is
a rather harsh approximation and suffers from two general disadvantages:

a) it wrongly assumes that electrons are independent, and

b) it does not satisfy the anti-symmetry principle for fermions, stating that a wave
function must change sign under mutual exchange of electrons (i.e. Ψ(~r1, ~r2) =

−Ψ(~r2, ~r1)).

2) The linear combination of atomic orbitals (LCAO) approach ([29], p. 41), assumes
that any molecular orbital, ψ(~r), can be approximated by a linear combination of basis
functions, ϕ,

ψ =
∑
i

wiϕi, (F7)

where wi are the weights for the atomic orbitals, ϕi.

To find the molecular orbitals that make up the wave function of the system, the electronic
Hamiltonian needs to be broken down into ne− single-electron Hamiltonians, hi, yielding
single-electron Schrödinger equations of the type ([160], p. 61):

hiψi = εiψi, (F8)

but this is not readily possible due to the electron-electron interactions involved in the
electronic Hamiltonian, which implies that any molecule orbital, ψi, can only be determined
with simultaneously considering all the other electrons in the system. Thus, hi can only
be approximated. For example, the Hartree approximation effectively reduces the many-
body electron-electron interactions by a sum of interactions of individual electrons with the
electrostatic potential built up by all the other electrons. The contribution of the electron-
electron interactions in Eq. (F5) is replaced by the Hartree potential ([160], p. 56),

UH =

Ne−∑
i=1

uH,i =

Ne−∑
i=1

e2

4πε0

∫
ρe−(~rj)− ρi(~rj)
‖~ri − ~rj‖

d~rj, (F9)

where uH,i are the effective one-electron potentials, ρ(~rj) is the total electron density of the
molecule, and ρi(~rj) is the electron density of electron i, which is subtracted from ρe−(~rj)

to avoid unphysical self-interactions. The Hartree potential introduces the electron density ;
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an observable property of the system that represents the probability density distribution of
finding an electron at any position, ~rj, and is defined by:

ρe−(~r) =

Ne−∑
i=1

ψiψ
∗
i , (F10)

where ψ∗i is the complex conjugate of ψi, because the wave function is complex. The Hartree
approximation is based on the assumption that electrons are statistically independent from
one another. This imposes some limitations to the method, namely the absence of correla-
tion and exchange interactions in the Hartree potential. Correlation interactions arise from
Coulomb repulsion: electrons avoid each other and will stay as far apart as possible – they
will never come as close as the statistically independent electrons assumed by Hartree –,
while exchange interactions are a consequence of Pauli’s exclusion principle, which states
that fermions (such as electrons) are not allowed to occupy the same quantum state. As a
results, spin-like electrons will never be too close to each other – a fact ignored in the Hartree
approximation, where electrons are uncorrelated.

Density functional theory (DFT) provides one way of determining the electron density and
constructing single-electron Hamiltonians. It is based on two mathematical theorems that
were proven by Walter Kohn and Pierre Hohenberg [161]:

1) The ground state energy, E0, of a system is a unique functional of the electron density,

E0 = E[ρe−(~r)]. (F11)

2) The electron density that minimizes the functional in Eq. (F11) is the electron density
that corresponds to the solution of the Schrödinger equation,

E0 < E[ρ̃(~r)], (F12)

for ρ̃(~r) 6= ρe−(~r).

The second theorem of Kohn and Hohenberg summarizes the goal of density functional
theory as finding the electron density that minimizes the density functional. The density
functional can be split into a term Eknown[ρe−(~r)], which contains all contributions that can
be written down in a simple and closed form, and the exchange and correlation functional
EXC[ρe−(~r)], i.e.:

E[ρe−(~r)] = Eknown[ρe−(~r)] + EXC[ρe−(~r)]. (F13)

The known term includes the contributions due to the motion of the electrons, the nuclei-
electron interactions, the electron-electron interactions, and the nucleus-nucleus interac-
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tions ([159], p. 12),

Eknown[ρe−(~r)] =−
Ne−∑
i=1

h̃2

2me−

∫
ψi(~r)∇2ψ∗i (~r)d~r −

1

4πε0

Nn+∑
j=1

∫
q̃+
j e

2

di-j
ρe−(~r)d~r

+
1

4πε0

∫ ∫
ρi(~r)ρj(~r)e

2

di-j
d~rd~r +

1

4πε0

Nn+∑
i=1

Nn+∑
j=i+1

q̃+
i q̃

+
j e

2

di-j
.

(F14)

Kohn and Sham suggested a set of single-electron functions that possess the form of the
single-electron Schrödinger equations in Eq. (F8) – the so-called Kohn-Sham equations [162],[

− h̃2

2me−
∇2 + u(~r) + uH(~r) + uXC(~r)

]
ψi = εiψi, (F15)

where u(~r) describes the energy contribution due to the interaction of the electron with the
nuclei, uH(~r) is the single-electron Hartree potential, and uXC(~r) is the energy contribution
due to exchange and correlation. In order to determine the electron distribution, Eq. (F10)
requires to evaluate the molecular orbitals, which can be obtained by solving the Kohn-
Sham equations in Eq. (F15), which in turn require knowledge about the electron density
to determine the Hartree potential in Eq. (F9). Thus, an iterative solution strategy is
required ([159], pp. 13–14):

1. Suggest an initial electron density, ρe−(~r).

2. Determine the molecular orbitals, ψi, by solving the Kohn-Sham equations in Eq. (F15).

3. Use the thus determined molecular orbitals to calculate the electron density, ρ̃(~r),
according to Eq. (F10).

4. Compare the new electron density, ρ̃(~r), with the previous one, ρe−(~r). If ρ̃(~r) ≈ ρe−(~r),
stop the iteration, otherwise continue from step 2 using (a modified version of) ρ̃(~r).

So far, we have neglected to mention how to determine the exchange-correlation interactions
in Eq. (F15). The idea behind DFT is that it treats large energy terms (such as the kinetic
energy) as accurately as possible, while approximating the smaller ones, such as the exchange-
correlation energy. There exist many ways to approximate the exchange-correlation energy.
The most prominent ones are the local density approximation (LDA), which approximates the
exchange-correlation energy of the system under study from a system for which the exact
value of the exchange-correlation energy is known – i.e. the uniform electron gas ([159],
p. 14),

uXC(~r) = ue-gas
XC [ρe−(~r)], (F16)

or the generalized gradient approximation (GGA), which uses additional information about
the local gradient of the electron density. But there are also so-called hybrid functionals that
incorporate portions of the exact exchange energy (often from Hartree-Fock calculations) and
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(sometimes more sophisticated) approximations of the correlation energy. The interested
reader is referred to the numerous literature on this subject, as a more detailed explanation
would go beyond the scope of this overview.

136



G Section 3: Adsorbed Solution Theories

Adsorbed solution theories aim at predicting the composition of the adsorbed phase, {xi}, in
multicomponent adsorption from single-component adsorption isotherms. The ideal adsorbed
solution theory (IAST) is the most popular approach. IAST was first described by Myers and
Prausnitz [66], who considered a multicomponent gas at constant p and T . In thermodynamic
equilibrium, the chemical potential of every component, i, in the gas and adsorbed phase
are equal,

µg
i (pi, T ) = µγi (π̃i, x

γ
i , T ), (G1)

where µg
i (pi, T ) is the chemical potential of i in the gas phase (superscript g), µγi (π̃, x

γ
i , T ) is

the chemical potential of i in the adsorbed phase (superscript γ), pi is the partial pressure of
i in the gas phase, xγi is the mole fraction of i in the adsorbed phase, and π̃i is the spreading
pressure of i. The spreading pressure of any pure species, i, is given by the Gibbs adsorption
isotherm in Eq. (9),

dπ̃i = [nγi ]
0 dµi = −dσ, (G2)

where [nγi ]
0 is the unary adsorption isotherm. The dependency of µg

i (pi, T ) on pi is determined
by the Lewis form of the chemical potential for an ideal gas mixture,

µg
i (pi, T ) = µ0

i (T ) + RT ln

(
pi
p0

)
, (G3)

where µ0
i (T ) is the standard chemical potential of the pure component i. Myers and Praus-

nitz [66] describe the dependency of µγi (π̃i, x
γ
i , T ) on π̃i and xγi in a similar way:

µγi (π̃i, x
γ
i , T ) = µ0

i (T ) + RT lnxγi +RT ln

(
p∗i (π̃i)

p0

)
, (G4)

where p∗i (π̃i) is the pressure for adsorption of the pure component, i, which yields the same
spreading pressure as that for the mixture,

π̃mix = π̃1(p∗1) = π̃2(p∗2) = · · · = π̃N(p∗N). (G5)

Substituting Eq. (G3) and Eq. (G4) in Eq. (G2) yields the basic equation of IAST,

pi = xγi p
∗
i , (G6)

which is analogous to Raoult’s law for the equilibrium of an ideal liquid mixture with its
vapor phase. Eq. (G5) and Eq. (G6) in conjunction with:

N∑
i=1

xγi = 1 (G7)
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yield 2N equations for 2N unknowns (i.e. {xγi } and {p∗i }). The set of equations is commonly
solved by iteration for a specified number of partial pressures. Solving these equations
requires determining the spreading pressure of every component, i, by integration of Eq. (G2)
from p = 0 to p = p∗i ,

π̃i = RT

p∗i∫
0

[nγi ]
0 d ln p = RT

p∗i∫
0

[nγi ]
0

p
dp, (G8)

where dµ = RTd ln p. In practice, the isotherm will be given by a set of discrete data points
(pj, [n

γ
i ]

0
j). These data points are used to solve Eq. (G8) either analytically – by assuming

that the data points follow a continuous function – or by numerical quadrature. We will
illustrate these approaches in the following examples. For the analytical solution, we will
assume that the data points follow Langmuir’s adsorption equation [163],

[nγi ]
0 = [nγi ]

m KLp

1 +KLp
, (G9)

where [nγi ]
m is the saturation capacity of i and KL is Langmuir’s constant. Substituting the

Langmuir adsorption equation is Eq. (G8) yields [63]:

π̃i = RT

p∗i∫
0

[nγi ]
m KL

1 +KLp
dp, (G10)

= RT [nγi ]
m ln(1 +KLp

∗
i ). (G11)

For numerical quadrature, we split the integral in Eq. (G8) into three terms [83],

π̃i = RT

p1∫
0

[nγi ]
0

p
dp+RT

k−1∑
j=1

pj+1∫
pj

[nγi ]
0

p
dp+RT

p∗i∫
pk

[nγi ]
0

p
dp, (G12)

where the first integral extrapolates the data points for pressures below p1, the second term
contains the integrals that go from data point j = 1 to j = k with pk ≤ p∗i ≤ pk+1, and the
third integral extrapolates from pk to p∗i . These integrals can be solved in various ways. For
example, the first integral can be solved by approximating the adsorption isotherm to follow
Henry’s law for p < p1,

[nγi ]
0 = KHp, (G13)

where KH is Henry’s adsorption constant. In doing so, the first integral on the right-hand
side of Eq. (G12) reduces to:

RT

p1∫
0

[nγi ]
0

p
dp = KHp1. (G14)

The second term can be solved by standard numerical quadrature, e.g. by the trapezoid
rule, and the third integral can be solved by linear interpolation of the adsorption isotherm
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between pk and pk+1.

A disadvantage of IAST is the assumption of an ideal adsorbed phase. This assumption
might be valid if the adsorbed phase is almost pure or consists of components with similar
chemistry, such as 2-methylpropane and 3-methylpropane, but is often inaccurate for mix-
tures of components with strong interactions, such as water and benzene. In these cases,
the real adsorbed solution theory (RAST) [66] is often applied. RAST introduces an activity
coefficient, ǎγi , in Eq. (G6) to account for the nonideality of the adsorbed phase,

f̌i = ǎγi x
γ
i p
∗
i , (G15)

where f̌i is the fugacity of i. In contrast to IAST, RAST is not capable of predicting the
composition of the adsorbed phase, because experimental or simulated adsorption data is
required to determine ǎγi [164].
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H Section 3: Compositions of the Liquid Mixtures

Tab. H1: Vapor-liquid equilibrium data according to the UNIFAC (Do) calculations for wa-
ter/ethanol. Presented are the liquid phase mole fraction of water (x′water), and the corresponding
partial fugacities of water (f̌water) or ethanol (f̌ethanol).

x′water f̌water f̌ethanol

[Pa] [Pa]

0.05 390.1 7554.9
0.1 733.2 7193.8
0.15 1035.0 6854.0
0.2 1298.7 6534.3
0.25 1528.3 6233.7
0.3 1727.0 5952.0
0.35 1899.0 5688.0
0.4 2047.1 5437.9
0.45 2174.2 5200.9
0.5 2284.4 4974.6
0.55 2379.9 4754.1
0.6 2464.4 4536.6
0.65 2540.4 4312.6
0.7 2611.0 4072.0
0.75 2680.4 3798.6
0.8 2752.1 3465.9
0.85 2830.9 3030.1
0.9 2922.0 2415.0
0.95 3032.7 1488.3
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Tab. H2: Vapor-liquid equilibrium data according to the UNIFAC (Do) calculations for water/n-
butanol. Presented are the liquid phase mole fraction of water (x′water), and the corresponding
partial fugacities of water (f̌water) or n-butanol (f̌butanol).

x′water f̌water f̌butanol

[Pa] [Pa]

0.05 1293.5 839.5
0.1 1806.6 801.4
0.15 2235.9 766.1
0.2 2587.5 734.5
0.25 2869.4 706.6
0.3 3083.6 682.4
0.35 3103.6 680.4
0.3555 3103.6 680.4
0.9708 3120.0 542.0
0.98 3145.1 322.9
0.99 3173.2 0.0

Tab. H3: Vapor-liquid equilibrium data according to the UNIFAC (Do) calculations for water/n-
hexanol. Presented are the liquid phase mole fraction of water (x′water), and the corresponding
partial fugacities of water (f̌water) or n-hexanol (f̌hexanol).

x′water f̌water f̌hexanol

[Pa] [Pa]

0.01 207.6 108.4
0.02 409.0 107.0
0.03 606.1 105.9
0.04 799.0 105.0
0.05 985.1 103.9
0.1 1846.0 99.0
0.15 2582.5 94.5
0.1971 3166.5 90.5
0.9978 3166.5 90.5
0.998 3166.8 81.2
0.999 3169.6 42.4
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Tab. H4: Vapor-liquid equilibrium data according to the UNIFAC (Do) calculations for ethanol/n-
butanol. Presented are the liquid phase mole fraction of ethanol (x′ethanol), and the corresponding
partial fugacities of ethanol (f̌ethanol) or n-butanol (f̌butanol).

x′ethanol f̌ethanol f̌butanol

[Pa] [Pa]

0.05 416.9 883.1
0.1 827.3 832.7
0.15 1240.7 789.3
0.2 1647.4 742.6
0.25 2053.2 696.9
0.3 2458.1 651.9
0.35 2854.8 605.2
0.4 3250.7 559.3
0.45 3646.2 513.8
0.5 4041.4 468.6
0.55 4436.7 423.3
0.6 4823.0 377.0
0.65 5208.7 331.3
0.7 5604.3 285.7
0.75 5990.8 239.2
0.8 6377.5 192.5
0.85 6764.2 145.8
0.9 7152.1 97.9
0.95 7550.6 49.4
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Tab. H5: Vapor-liquid equilibrium data according to the UNIFAC (Do) calculations for n-
butanol/n-hexanol. Presented are the liquid phase mole fraction of n-butanol (x′butanol), and the
corresponding partial fugacities of n-butanol (f̌butanol) or n-hexanol (f̌hexanol).

x′butanol f̌butanol f̌hexanol

[Pa] [Pa]

0.05 47.2 103.8
0.1 94.0 98.0
0.15 141.8 93.2
0.2 188.4 87.6
0.25 234.9 82.1
0.3 280.6 76.4
0.35 327.8 71.2
0.4 374.2 65.8
0.45 419.7 60.3
0.5 466.1 54.9
0.55 511.6 49.4
0.6 558.9 44.1
0.65 604.4 38.6
0.7 649.9 33.1
0.75 696.3 27.7
0.8 741.8 22.2
0.85 787.4 16.6
0.9 833.8 11.2
0.95 879.4 5.6
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Tab. H6: Vapor-liquid equilibrium data according to the UNIFAC (Do) calculations for
water/ethanol/n-butanol. Presented are the liquid phase mole fraction of water (x′water) and ethanol
(x′ethanol), and the corresponding partial fugacities of water (f̌water), ethanol (f̌ethanol), or n-butanol
(f̌butanol).

x′water x′ethanol f̌water f̌ethanol f̌butanol

[Pa] [Pa] [Pa]

0.1 0.1 1231.5 797.3 751.2
0.2 0.1 2116.3 773.6 680.4
0.1 0.2 1168.3 1587.7 662.1
0.3 0.1 2699.0 760.5 622.5
0.2 0.2 1996.6 1548.0 593.4
0.1 0.3 1105.9 2374.8 573.2
0.3 0.2 2531.5 1533.5 536.0
0.2 0.3 1877.9 2326.7 505.4
0.1 0.4 1042.9 3158.6 483.5
0.4 0.2 2824.4 1558.4 489.7
0.3 0.3 2365.6 2325.5 445.9
0.2 0.4 1759.1 3114.7 414.7
0.1 0.5 980.3 3942.9 392.9
0.4 0.3 2622.6 2397.4 393.0
0.3 0.4 2201.1 3146.4 350.4
0.2 0.5 1642.3 3918.6 321.2
0.1 0.6 918.1 4732.0 299.9
0.5 0.3 2707.2 2595.5 337.3
0.4 0.4 2425.0 3301.3 283.7
0.3 0.5 2039.6 4009.9 247.5
0.2 0.6 1525.7 4747.2 222.1
0.1 0.7 855.5 5530.5 205.0
0.7 0.2 2821.8 2319.3 350.9
0.6 0.3 2679.6 3040.9 251.4
0.5 0.4 2491.3 3680.9 192.9
0.4 0.5 2232.8 4299.7 156.5
0.3 0.6 1881.4 4935.9 132.7
0.2 0.7 1411.1 5612.8 116.4
0.1 0.8 794.3 6347.6 105.1
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I Section 3: Monte Carlo cycles

Tab. I1: Number of Monte Carlo cycles for equilibrium and production run for the different
simulation campaigns.

Campaign Equilibrium cycles Production cycles

water (1 Pa – 300 Pa) 54,641,00 3,000,000
water (500 Pa – 875 Pa) 99,854,400 5,000,000
water (900 Pa – 3500 Pa) 5,286,300 70,000
ethanol 2,500,000 400,000
n-butanol 68,010,000 600,000
n-hexanol 61,660,000 850,000
water/ethanol 1,282,800 40,000
water/n-butanol 569,200 25,000
water/n-hexanol 528,000 30,000
ethanol/n-butanol 15,664,000 140,000
n-butanol/n-hexanol 17,000,000 180,000
water/ethanol/n-butanol 724,800 15,000
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J Section 3: Method for Measuring Vapor Adsorption

Isotherms for CAU-10

CAU-10 was synthesized following the procedure described by Fröhlich et al. [104]. All
chemicals were obtained from Carl Roth and used without further purification. The X-ray
powder diffractogram of the CAU-10 sample used in the vapor adsorption experiments is
shown in Fig. J1 and compared with the diffractogram obtained with the RASPA software
package from the CAU-10 model used in the GCMC simulations. The X-ray diffractogram
in the experiment was measured with an XRD 3003 TT diffractometer in conjunction with
a Meteor0D energy dispersive detector (GE Inspection Technologies) using monochromatic
Cu-Kα radiation. The measurement was performed at ambient temperature in the range
6◦ ≤ 2 Theta ≤ 40◦ with a step size of 0.02◦.

Fig. J1: X-ray powder diffractogram of the CAU-10 sample used in the vapor adsorption exper-
iments (blue) or X-ray powder diffractogram calculated from CAU-10 model used in the GCMC
simulations (gray).

The characteristic Brunauer-Emmett-Teller (BET) surface area was determined by Dr.-Ing.
Mandy Klauck (HTWDresden) by measuring the nitrogen adsorption isotherms with a 3Flex
(Micromeretics) at 77.3 K. Nitrogen isotherms were measured according to the methodology
described in published work [165]. The calculation of the BET surface area was based on
isotherm points in the range of 0.0025 ≤ p/p0 ≤ 0.02. Three nitrogen isotherms were
measured, and a mean BET surface area of 680.1 ± 1.7 m2/g was obtained (Reinsch et al.
measured BET surface areas of 564 – 656 m2/g [5]). Vapor adsorption isotherms for water,
ethanol, and n-butanol were measured by Dr. Jens Möllmer of the INC Leipzig with a
Belsorp-max (MicrotracBEL) at 298.15 K. The methodology followed published work [165].
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K Section 3: Fitted Parameters

Tab. K1: Parameters fitted to the Dual-Site Langmuir-Sips adsorption model.

Ethanol n-Butanol n-Hexanol

Γm
i,1 [mmol/g] 4.83 1.18 1.21

Γm
i,2 [mmol/g] 0.0 1.26 1.20

bi,1 [1/Pa] 8300.34 6822.87 61.52

bi,2 [1/Pa] 0.0 45.52 195947.18

Tab. K2: Parameters fitted to the Bi-Langmuir adsorption model for increasing liquid phase mole
fraction of ethanol in the ternary mixture. Result in unit mmol/g.

x′EtOH = 0 % x′EtOH = 10 % x′EtOH = 30 % x′EtOH = 50 % x′ButOH = 0 %

ȟ1 4.29 · 10−3 487.05 956.81 243.22 202.58

ȟ2 44,836.69 0.75 0.26 1.26 1.81

K1 2.36 2.14 2.58 1.53 1.25

K2 1.00 1.94 2.31 1.42 1.19

Tab. K3: Parameters fitted to the Bi-Langmuir adsorption model for increasing liquid phase mole
fraction of n-butanol in the ternary mixture. Result in unit mmol/g.

x′ButOH = 0 % x′ButOH = 20 % x′ButOH = 40 % x′ButOH = 50 % x′EtOH = 0 %

ȟ1 202.58 234.81 199.80 295.28 4.29 · 10−3

ȟ2 1.81 0.75 0.26 1.26 44,836.69

K1 1.25 1.35 1.28 1.22 2.36

K2 1.19 1.28 1.22 1.18 1.00

Tab. K4: Parameters fitted to the Bi-Langmuir adsorption model for increasing liquid phase mole
fraction of water in the ternary mixture. Result in unit mmol/g.

x′H2O = 0 % x′H2O = 10 % x′H2O = 20 % x′H2O = 30 % x′ButOH = 0 %

ȟ1 537.78 0.47 470.24 282.94 215.89

ȟ2 0.17 4.94 0.12 0.62 1.74

K1 1.83 63.35 0.35 0.65 0.8

K2 1.68 0.07 0.42 0.70 0.84
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L Section 3: Radial Distribution Functions

Fig. L1: Interaction sites in (a) CAU-10, (b) alcohols, or (c) water for which RDFs were determined.
Coloring of atoms following the Jmol coloring scheme – i.e. aluminum - pink swan, carbon - gray,
hydrogen - white, oxygen - red.

L.1 Single-Component Adsorption

Fig. L2: RDFs of distances for (a) Ow or (b) Hw in water and Al (pink), OAl (purple), Hc (green),
Oc (red), Cc (gray), Cb (brown), Hb (orange), Ow (blue), or Hw (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 0.2 (800 Pa).
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Fig. L3: RDFs of distances for (a) Ow or (b) Hw in water and Al (pink), OAl (purple), Hc (green),
Oc (red), Cc (gray), Cb (brown), Hb (orange), Ow (blue), or Hw (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 0.28 (875 Pa).

Fig. L4: RDFs of distances for (a) Ow or (b) Hw in water and Al (pink), OAl (purple), Hc (green),
Oc (red), Cc (gray), Cb (brown), Hb (orange), Ow (blue), or Hw (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 0.95 (3000 Pa).
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Fig. L5: RDFs of distances for (a) CH3, (b) CH2, (c) Oa, or (d) Ha in ethanol and Al (pink), OAl
(purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (dark green), CH2 (light
green), Oa (blue), or Ha (cadet blue) in CAU-10 at 298.15 K and p/p0 = 6 · 10−3 (50 Pa).
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Fig. L6: RDFs of distances for (a) CH3, (b) CH2a, (c) Oa, or (d) Ha in ethanol and Al (pink),
OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (dark green), CH2a
(light green), Oa (blue), or Ha (cadet blue) in CAU-10 at 298.15 K and p/p0 = 0.88 (7000 Pa).
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Fig. L7: RDFs of distances for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, or (e) Ha in n-butanol and Al
(pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (dark green),
CH2 (dark sea green), CH2a (light green), Oa (blue), or Ha (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 1.1 · 10−3 (1 Pa).

152



Fig. L8: RDFs of distances for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, or (e) Ha in n-butanol and Al
(pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (dark green),
CH2 (dark sea green), CH2a (light green), Oa (blue), or Ha (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 0.54 (500 Pa).
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Fig. L9: RDFs of distances for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, or (e) Ha in n-hexanol and Al
(pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (dark green),
CH2 (dark sea green), CH2a (light green), Oa (blue), or Ha (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 9.2 · 10−5 (0.01 Pa).
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Fig. L10: RDFs of distances for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, or (e) Ha in n-hexanol and Al
(pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (dark green),
CH2 (dark sea green), CH2a (light green), Oa (blue), or Ha (cadet blue) in CAU-10 at 298.15 K
and p/p0 = 0.92 (500 Pa).
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L.2 Two-Component Adsorption

Fig. L11: RDFs of distances for interaction pairs observed for water/ethanol adsorption in CAU-10
at 298.15 K and x′water = 0.1. RDFs are shown for (a) CH3, (b) CH2a, (c) Oa, (d) Ha, (e) Ow, or
(f) Hw and Al (pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange),
CH3 (dark green), CH2a (light green), Oa (blue), Ha (cadet blue), Ow (navy), or Hw (violet).
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Fig. L12: RDFs of distances for interaction pairs observed for water/ethanol adsorption in CAU-10
at 298.15 K and x′water = 0.5. RDFs are shown for (a) CH3, (b) CH2a, (c) Oa, (d) Ha, (e) Ow, or
(f) Hw and Al (pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange),
CH3 (dark green), CH2a (light green), Oa (blue), Ha (cadet blue), Ow (navy), or Hw (violet).
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Fig. L13: RDFs of distances for interaction pairs observed for water/n-butanol adsorption in CAU-
10 at 298.15 K and x′water = 0.05. RDFs are shown for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, (e) Ha,
(f) Ow, or (g) Hw and Al (pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb
(orange), CH3 (dark green), CH2 (dark sea green), CH2a (light green), Oa (blue), Ha (cadet blue),
Ow (navy), or Hw (violet).
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Fig. L14: RDFs of distances for interaction pairs observed for water/n-butanol adsorption in CAU-
10 at 298.15 K and x′water = 0.1. RDFs are shown for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, (e) Ha,
(f) Ow, or (g) Hw and Al (pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb
(orange), CH3 (dark green), CH2 (dark sea green), CH2a (light green), Oa (blue), Ha (cadet blue),
Ow (navy), or Hw (violet).
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Fig. L15: RDFs of distances for interaction pairs observed for water/n-hexanol adsorption in CAU-
10 at 298.15 K and x′water = 0.01. RDFs are shown for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, (e) Ha,
(f) Ow, or (g) Hw and Al (pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb
(orange), CH3 (dark green), CH2 (dark sea green), CH2a (light green), Oa (blue), Ha (cadet blue),
Ow (navy), or Hw (violet).
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Fig. L16: RDFs of distances for interaction pairs observed for water/n-hexanol adsorption in CAU-
10 at 298.15 K and x′water = 0.05. RDFs are shown for (a) CH3, (b) CH2, (c) CH2a, (d) Oa, (e) Ha,
(f) Ow, or (g) Hw and Al (pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb
(orange), CH3 (dark green), CH2 (dark sea green), CH2a (light green), Oa (blue), Ha (cadet blue),
Ow (navy), or Hw (violet).
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Fig. L17: RDFs of distances for interaction pairs observed for ethanol/n-butanol adsorption in
CAU-10 at 298.15 K and x′ethanol = 0.05. RDFs are shown for (a) CH3, (b) CH2a, (c) Oa, or (d)
Ha in ethanol as well as (e) CH3, (f) CH2a, (g) CH2, (h) Oa, or (i) Ha in n-butanol and Al (pink),
OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (ethanol: dark green,
n-butanol: lime green), CH2 (dark sea green), CH2a (ethanol: light green, n-butanol: cyan), Oa
(ethanol: blue, n-butanol: steel blue), or Ha (ethanol: cadet blue, n-butanol: gray).
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Fig. L18: RDFs of distances for interaction pairs observed for ethanol/n-butanol adsorption in
CAU-10 at 298.15 K and x′ethanol = 0.5. RDFs are shown for (a) CH3, (b) CH2a, (c) Oa, or (d) Ha
in ethanol as well as (e) CH3, (f) CH2a, (g) CH2, (h) Oa, or (i) Ha in n-butanol and Al (pink),
OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (ethanol: dark green,
n-butanol: lime green), CH2 (dark sea green), CH2a (ethanol: light green, n-butanol: cyan), Oa
(ethanol: blue, n-butanol: steel blue), or Ha (ethanol: cadet blue, n-butanol: gray).
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Fig. L19: RDFs of distances for interaction pairs observed for n-butanol/n-hexanol adsorption in
CAU-10 at 298.15 K and x′hexanol = 0.1. RDFs are shown for (a) CH3, (b) CH2, (c) CH2a, (d) Oa,
or (e) Ha in n-butanol as well as (f) CH3, (g) CH2a, (h) CH2, (i) Oa, or (j) Ha in n-hexanol and Al
(pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (n-butanol:
dark green, n-hexanol: lime green), CH2 (n-butanol: dark sea green, n-hexanol: dark slate gray),
CH2a (n-butanol: light green, n-hexanol: cyan), Oa (n-butanol: blue, n-hexanol: steel blue), or Ha
(n-butanol: cadet blue, n-hexanol: gray).
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Fig. L20: RDFs of distances for interaction pairs observed for n-butanol/n-hexanol adsorption in
CAU-10 at 298.15 K and x′hexanol = 0.5. RDFs are shown for (a) CH3, (b) CH2, (c) CH2a, (d) Oa,
or (e) Ha in n-butanol as well as (f) CH3, (g) CH2a, (h) CH2, (i) Oa, or (j) Ha in n-hexanol and Al
(pink), OAl (purple), Hc (green), Oc (red), Cc (gray), Cb (brown), Hb (orange), CH3 (n-butanol:
dark green, n-hexanol: lime green), CH2 (n-butanol: dark sea green, n-hexanol: dark slate gray),
CH2a (n-butanol: light green, n-hexanol: cyan), Oa (n-butanol: blue, n-hexanol: steel blue), or Ha
(n-butanol: cadet blue, n-hexanol: gray).
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M Section 4: General Simulation Information

M.1 Surface Models

Tab. M1: Information on the surface models.

Surface Model Simulation Box Size (x y z) Atom No. Thickness Equi. Time

MOF-5-phenyl 310 Å × 300 Å × 310 Å 92 736 33.8 Å 4 ns

MOF-5-benzoic 310 Å × 300 Å × 310 Å 94 464 33.8 Å 5 ns

CAU-10-phenyl 215 Å × 300 Å × 206 Å 93 600 30.0 Å 5 ns

CAU-10-benzoic 215 Å × 300 Å × 206 Å 96 000 30.0 Å 5 ns

CAU-10-open 236 Å × 300 Å × 236 Å 91 960 25.4 Å 4 ns

M.2 Molecular Dynamics: Interatomic Potential Parameters

Fig. M1: Atom types used to describe (a) MOF-5-phenyl and (b) MOF-5-benzoic.

Tab. M2: Interaction parameters for the atom types in MOF-5-phenyl. See Fig. M1 for naming
of interaction site labels.

Atom Type L-J well depth L-J distance partial charge
[kcal/mol] [Å]

Cb 0.0951 3.473 -0.102

Cc 0.0951 3.473 0.373

C3 0.0951 3.473 0.051

Csf 0.0951 3.473 -0.09

Hb 0.0152 2.846 0.149

Hsf 0.0152 2.846 0.105

Oc 0.0957 3.033 -0.499

OZn 0.06 3.118 -0.87

Zn 0.124 2.462 0.942
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Tab. M3: Interaction parameters for the atom types in MOF-5-benzoic. See Fig. M1 for naming
of interaction site labels.

Atom Type L-J well depth L-J distance partial charge
[kcal/mol] [Å]

Cb 0.0951 3.473 -0.084

Cc 0.0951 3.473 0.407

C3 0.0951 3.473 0.044

Cbs 0.0951 3.473 -0.095

Ccs 0.0951 3.473 0.417

C3s 0.0951 3.473 0.048

Hb 0.0152 2.846 0.14

Hbs 0.0152 2.846 0.108

Hsf 0.0152 2.846 0.503

Oc 0.0957 3.033 -0.518

Os1 0.0957 3.033 -0.631

Os2 0.0957 3.033 -0.398

OZn 0.06 3.118 -0.877

Zn 0.124 2.462 0.929

Fig. M2: Atom types used to describe (a) CAU-10-phenyl and (b) CAU-10-benzoic.

Tab. M4: Interaction parameters for the atom types in CAU-10-phenyl. See Fig. M2 for naming
of interaction site labels.

Atom Type L-J well depth L-J distance partial charge
[kcal/mol] [Å]

Al 0.505 4.008 1.362

C1 0.0951 3.473 -0.08

C1s 0.0951 3.473 -0.078

C2 0.0951 3.473 -0.096
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C2s 0.0951 3.473 -0.089

C3 0.0951 3.473 -0.073

C3s 0.0951 3.473 -0.083

C4 0.0951 3.473 -0.061

C4s 0.0951 3.473 -0.122

C5s 0.0951 3.473 -0.085

Cc 0.0951 3.473 0.552

H1 0.0152 2.846 0.165

H2 0.0152 2.846 0.115

H2s 0.0152 2.846 0.109

H3 0.0152 2.846 0.133

H4s 0.0152 2.846 0.104

H5s 0.0152 2.846 0.097

HO 0.044 2.571 0.296

OAl 0.06 3.118 -0.713

Oc1 0.0957 3.033 -0.559

Oc2 0.0957 3.033 -0.516

Tab. M5: Interaction parameters for the atom types in CAU-10-benzoic. See Fig. M2 for naming
of interaction site labels.

Atom Type L-J well depth L-J distance partial charge
[kcal/mol] [Å]

Al 0.505 4.008 1.410

C1 0.0951 3.473 -0.068

C1s 0.0951 3.473 -0.051

C2 0.0951 3.473 -0.099

C2s 0.0951 3.473 -0.094

C3s 0.0951 3.473 -0.059

Cc 0.0951 3.473 0.575

Cc1 0.0951 3.473 0.459

Cc2 0.0951 3.473 0.472

H1 0.0152 2.846 0.188

H2 0.0152 2.846 0.115

H3 0.0152 2.846 0.142
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H3s 0.0152 2.846 0.163

HO 0.044 2.571 0.299

Hs1 0.0152 2.846 0.331

Hs2 0.0152 2.846 0.301

Oc 0.0957 3.033 -0.570

OAl 0.06 3.118 -0.723

Os1 0.0957 3.033 -0.425

Os2 0.0957 3.033 -0.466

Os3 0.0957 3.033 -0.45

Os4 0.0957 3.033 -0.427

Fig. M3: Atom types used to describe CAU-10-open (a) front view (b) side view.

Tab. M6: Interaction parameters for the atom types in CAU-10-open. See Fig. M3 for naming of
interaction site labels.

Atom Type L-J well depth L-J distance partial charge
[kcal/mol] [Å]

Al 0.505 4.008 1.362

C1 0.0951 3.473 -0.069

C2 0.0951 3.473 -0.095

Cc 0.0951 3.473 0.553

Ccs 0.0951 3.473 0.493

H1 0.0152 2.846 0.173

H1s 0.0152 2.846 0.154

H2 0.0152 2.846 0.103
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H3 0.0152 2.846 0.127

H4 0.0152 2.846 0.139

H5 0.0152 2.846 0.158

HO 0.044 2.571 0.296

HO2 0.044 2.571 0.387

HO3 0.044 2.571 0.312

OAl 0.06 3.118 -0.713

Oc 0.0957 3.033 -0.55

Ocs 0.0957 3.033 -0.445

OW2 0.06 3.118 -0.535

OW3 0.06 3.118 -0.27

M.3 Trial Move Probabilities for Monte Carlo Simulations

Grand canonical Ensemble Canonical Ensemble

Translation: 0.15 Translation: 0.3
Rotation: 0.15 Rotation: 0.3
Full regrowth: 0.05 Full regrowth: 0.1
Partial regrowth 0.05 Partial regrowth 0.1
Swap: 0.5 Swap: 0.0
Widom Insertion 0.1 Widom Insertion: 0.2

M.4 Monte Carlo: Interatomic Potential Parameters

Fig. M4: Atom types used to describe MOF-5.

170



Tab. M7: Interaction parameters for the atom types in MOF-5 and comparison of the used partial
charges with DDEC charges taken from Sladekova et al. [166]. See Fig. M4 for naming of interaction
site labels.

Atom Type L-J well depth L-J distance partial charge DDEC charge
[K] [Å] (Sladekova et al. [166])

Cb 47.856 3.473 -0.180 -0.1237

Cc 47.856 3.473 0.529 0.5786

C3 47.856 3.473 0.023 -0.0139

H 7.649 2.846 0.223 0.1490

Oc 48.158 3.033 -0.546 -0.5512

OZn 30.193 3.118 -0.946 -1.0220

Zn 62.139 2.462 0.918 0.9864

Fig. M5: Atom types used to describe CAU-10.

Tab. M8: Interaction parameters for the atom types in CAU-10 and comparison of the used partial
charges with values from Cadiau et al. [7] provided by Guillaume Maurin in a private correspondence.
See Fig. M5 for naming of interaction site labels.

Atom Type L-J well depth L-J distance partial charge Mulliken charge
[K] [Å] (Cadiau et al. [7])

C1 47.856 3.473 -0.073 -0.0721

C2 47.856 3.473 -0.096 -0.0721

C3 47.856 3.473 -0.080 -0.0721

C4 47.856 3.473 -0.061 -0.0721

Cc 47.856 3.473 0.551 0.5697

Oc 48.158 3.033 -0.538 -0.5554

OAl 30.213 3.118 -0.713 -0.7426

H1 7.648 2.846 0.133 0.1371

H2 7.648 2.846 0.115 0.1371

H3 7.648 2.846 0.165 0.1371

HO 22.142 2.571 0.297 0.3140

Al 254.127 4.008 1.362 1.3950
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M.5 Monte Carlo Cycles

Tab. M9: Monte Carlo cycles used for the water adsorption simulation in MOF-5

Pressure Range Equilibration Production
[Pa]

0.01-1000 1,700 000 100,000

1100 1,850 000 100,000

1300 4,850 000 100,000

1500-3500 1,600 000 100,000

Tab. M10: Monte Carlo cycles used for the water adsorption simulation in CAU-10

Pressure Range Equilibration Production
[Pa]

0.1-700 2,750,000 100,000

725-900 2,500,000 100,000

1000 1,850,000 100,000

1200-3000 1,650,000 100,000
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N Section 4: Density Plots

Fig. N1: Density plots for the slices (a) Axial 1, (b) Axial 2, (c) Dia1 and (d) Dia2 of MOF-5-
phenyl.

Fig. N2: Density plots for the slices (a) Axial 1, (b) Axial 2, (c) Dia1 and (d) Dia2 of MOF-5-
benzoic.
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Fig. N3: Density plots for the slices (a) Axial 1 and (b) Axial 2 of CAU-10-phenyl

Fig. N4: Density plots for the slices (a) Axial 1 and (b) Axial 2 of CAU-10-benzoic
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O Section 4: Calculation Data

Tab. O1: Center and radius of the fitted circle for MOF-5-phenyl and MOF-5-benzoic. See Fig. 37
for naming of slices.

MOF-5-phenyl Center Radius MOF-5-benzoic Center Radius

Axial 1 40.4 Å 34.9 Å Axial 1 34.3 Å 34.1 Å

Axial 2 46.3 Å 29.2 Å Axial 2 34.4 Å 34.3 Å

Dia 1 42.9 Å 32.4 Å Dia 1 30.2 Å 38.7 Å

Dia 2 42.3 Å 32.8 Å Dia 2 33.2 Å 35.0 Å

Tab. O2: Center and radius of the fitted circle for CAU-10-phenyl and CAU-10-benzoic. See
Fig. 37 for naming of slices.

CAU-10 (Phenyl) Center Radius CAU-10 (Benzoic) Center Radius

Axial 1 27.1 Å 38.8 Å Axial 1 -3.7 Å 66.5 Å

Axial 2 34.1 Å 32.9 Å Axial 2 35.9 Å 27.4 Å

175



P Section 4: Adsorption Properties

Fig. P1: (a) Comparison of the simulated adsorption isotherm of MOF-5 with the experimental
adsorption isotherm measured by Ming et al. [101]. (b) Comparison of the simulated adsorption
isotherm of CAU-10 with the simulated and experimental adsorption isotherm by Cadiau et al. [7].
The isotherm points were determined from the figures in the respective publications. The difference
in the adsorption isotherms of Cadiau et al. and this work is due to the different force fields used.
Full symbols indicate the adsorption branch, while empty symbols indicate the desorption branch
of the isotherm.

Fig. P2: Water adsorption surfaces of the surface modules of (a, c) MOF-5-benzoic and (b, d)
MOF-5-phenyl from different perspectives. Generated with iRASPA [69].
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Q Section 5: MOF Building Blocks

Fig. Q1: Linking building blocks implemented in MOF-VR. Atomic positions of linking building
blocks were taken from the Crystallographic Information Files (CIF) accompanying ToBaCCo 3.0
and slightly modified to ensure planarity [123, 146]. Coloring of atoms following the Corey-Pauling-
Koltun (CPK) coloring scheme [167, 168] – i.e. carbon - black, hydrogen - white, fluorine - green,
oxygen - red, nitrogen - blue, sulfur - yellow. Connection sites are unsaturated carbon atoms (L1 –
L18) or nitrogen atoms (L19 – L25).
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Fig. Q2: Nodal building blocks implemented in MOF-VR. Atomic positions of nodal building blocks
were taken from CIF files accompanying ToBaCCo 3.0 [123, 146] (N1-N5) or mofplus.org [147–149]
(N6 & N7). Coloring of atoms following the CPK coloring scheme [167, 168] – i.e. carbon - black,
oxygen - red, iron - (light) gray, nickel - (deep) gray –, except for: zirconium - light blue, zinc -
purple, copper - brown, cobalt - turquoise. Connection sites are unsaturated carbon atoms (N1 –
N7) and/or metal atoms (N3 – N7).
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R Section 5: Molecular Building Block Charges

Partial charges for the interaction sites of the MOF building blocks available in MOF-VR
were determined following the molecular building block-based (MBBB) charges approach
developed by Argueta et al. [151]:

1. Connection sites of MOF building blocks were capped “to emulate the typical bond-
ing environment of the [MOF] building blocks in MOFs” ([151], p. 367). Open metal
sites and carbon connection sites in nodal building blocks were capped by coordina-
tively bonded ammonia or methyl groups, while carbon connection sites and nitrogen
connection sites in linking building blocks were capped by carboxylic acid groups or
hydrogen atoms [151]. Capping groups were geometrically optimized using the Clean
tool in Materials Studio 7.0 (BIOVIA).

2. The total electron densities of the properly capped, isolated MOF building blocks were
determined by Γ-point density functional theory (DFT) calculations using the Becke-
3-Parameter-Lee-Yang-Parr (B3LYP) [169–171] hybrid generalized gradient approxi-
mation (GGA) [76] with parametrized dispersion interaction (DFT-D3) [172, 173] in
conjunction with the auxiliary density matrix method (ADMM) [174] as implemented
in the Quickstep module of CP2K [175–182]. For non-metals, triple-ζ polarization qual-
ity Gaussian basis sets (TZVP-MOLOPT) were used along with auxiliary basis sets
with polarization functions (pFIT3), while for metals, double-ζ polarization quality
Gaussian basis sets (DZVP-MOLOPT) were used along with uncontracted auxiliary
basis sets (FIT11) [183]. Plane wave basis sets were treated with a relative cutoff
of 80 Ry and truncated with a planewave cutoff in the range of 1200 – 1400 Ry (see
convergence procedure below). Goedecker-Teter-Hutter (GTH) pseudopotentials [184–
186] were used and the Coulomb potential was truncated with a cutoff of 8 Å.

3. Partial charges for each MOF building block were determined using the density-derived
electrostatic and chemical (DDEC6) charge method as implemented in the CHARGE-
MOL program based on the calculated total electron densities [54]. The calculated
partial charges for the MOF building blocks available in MOF-VR can be viewed in
the CIF files available under MOF-VR/Program/SourceCode/CoordFiles/ on the CD-
ROM accompanying this work.

Plane wave cutoff and relative cutoff for each properly capped MOF building block were
chosen to ensure the desired accuracy of the total energy of the system. For this, a series of
single point energy calculations were performed using the Becke-Lee-Yang-Parr (BLYP) [169,
170] generalized gradient approximation (GGA) [76] with parametrized dispersion interac-
tion (DFT-D3) [172, 173] as implemented in the Quickstep module of CP2K [175–178].
For non-metals, triple-ζ polarization quality and for metals, double-ζ polarization quality
Gaussian basis sets (DZVP-MOLOPT or TZVP-MOLOPT) [183] were used along with GTH
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pseudopotentials [184–186]. Planewave cutoff and relative cutoff were chosen in the following
way:

1. Γ-point calculations were performed using a relative cutoff of 60 Ry and planewave
cutoffs of 600 Ry, 800 Ry, 1000 Ry, 1200 Ry, 1300 Ry, 1400 Ry, and (for nodal building
blocks only) 1600 Ry. The total energies for the properly capped MOF building blocks
as a function of the planewave cutoff are shown in Tab. R1 to R7. Here, the properly
capped MOF building blocks are labeled according to Fig. Q1 and Fig. Q2, and the
capping is denoted by a prime ′ (e.g., the capped version of linker L1 is L1′). In
Tab. R1 to R7, planewave cutoffs used in subsequent calculations are underlined and
were chosen to ensure an absolute accuracy of the total energy of at least 10−2 Ry
(for nodal building blocks) or 10−3 Ry (for linking building blocks). However, this
convergence criterion is not satisfied by linker L2′ and L17′ as the total energy seems
to oscillate between two values. In general, the coarse convergence of all calculations is
probably due to an inadequate relative cutoff of 60 Ry as indicated by the convergence
of the relative cutoff described thereafter.

2. Γ-point calculations with relative cutoffs ranging from 70 Ry to 90 Ry in steps of 10 Ry
were performed using the underlined planewave cutoffs in Tab. R1 to R7. The results
of the performed single point energy calculations are shown in Tabs. R8 – R14 and
suggest that a relative cutoff of 80 Ry is sufficient to ensure an absolute accuracy of
the total energy of 10−6 Ry for all MOF building blocks.

Tab. R1: Total energy of properly capped MOF building blocks N1′, N2′, or N3′ (see Fig. Q2) as
function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] N1′ N2′ N3′

600 -956.067103 -528.683022 -450.983419
800 -956.059692 -528.680556 -450.983044
1000 -956.064422 -528.680419 -450.982941
1200 -956.066652 -528.680361 -450.982735
1300 -956.067089 -528.679661 -450.982986
1400 -956.066576 -528.680414 -450.983137
1600 -956.066280 -528.680468 -450.983082
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Tab. R2: Total energy of properly capped MOF building blocks N4′, N5′, N6′, or N7′ (see Fig. Q2)
as function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] N4′ N5′ N6′ N7′

600 -542.543754 -299.991844 -324.919604 -494.276095
800 -542.543105 -299.992387 -324.920330 -494.275314
1000 -542.543431 -299.992009 -324.920008 -494.274433
1200 -542.542349 -299.992629 -324.919405 -494.275130
1300 -542.542325 -299.991193 -324.919495 -494.274707
1400 -542.542556 -299.991803 -324.919568 -494.274940
1600 -542.543341 -299.991813 -324.919638 -494.275666

Tab. R3: Total energy of properly capped MOF building blocks L1′, L2′, L3′, L4′, or L5′ (see
Fig. Q1) as function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] L1′ L2′ L3′ L4′ L5′

600 -112.787135 -207.144439 -123.860008 -137.552332 -135.004327
800 -112.787119 -207.143944 -123.859631 -137.55254 -135.004550
1000 -112.786950 -207.323998 -123.859537 -137.552432 -135.004427
1200 -112.787062 -207.324662 -123.859922 -137.552338 -135.004597
1300 -112.787096 -207.143725 -123.859864 -137.552414 -135.004600
1400 -112.787034 -207.324147 -123.859784 -137.552422 -135.004525

Tab. R4: Total energy of properly capped MOF building blocks L6′, L7′, L8′, L9′, or L10′ (see
Fig. Q1) as function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] L6′ L7′ L8′ L9′ L10′

600 -136.517517 -160.146577 -160.044395 -171.32509 -171.291754
800 -136.517570 -160.146934 -160.043954 -171.325042 -171.291909
1000 -136.517738 -160.146982 -160.044035 -171.324822 -171.291595
1200 -136.517640 -160.146953 -160.044297 -171.325046 -171.291731
1300 -136.517745 -160.146999 -160.043915 -171.324957 -171.291876
1400 -136.517800 -160.146887 -160.044009 -171.324948 -171.291856
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Tab. R5: Total energy of properly capped MOF building blocks L11′, L12′, L13′, L14′, or L15′

(see Fig. Q1) as function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] L11′ L12′ L13′ L14′ L15′

600 -167.137422 -156.319052 -155.576857 -170.446629 -171.642380
800 -167.137295 -156.318844 -155.576578 -170.446645 -171.642218
1000 -167.137356 -156.318748 -155.576700 -170.446610 -171.642461
1200 -167.137687 -156.318951 -155.576792 -170.446867 -171.642320
1300 -167.137610 -156.318734 -155.576745 -170.446992 -171.642431
1400 -167.137586 -156.318886 -155.576686 -170.446887 -171.642421

Tab. R6: Total energy of properly capped MOF building blocks L16′, L17′, L18′, L19′, or L20′

(see Fig. Q1) as function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] L16′ L17′ L18′ L19′ L20′

600 -185.292796 -87.545831 -98.707553 -45.982321 -93.266521
800 -185.292936 -87.545493 -98.707248 -45.982272 -93.265986
1000 -185.292619 -87.422980 -98.707290 -45.982316 -93.266163
1200 -185.292784 -87.545551 -98.707475 -45.982299 -93.265897
1300 -185.292878 -87.423061 -98.707504 -45.982302 -93.266122
1400 -185.292878 -87.545544 -98.707438 -45.982280 -93.266163

Tab. R7: Total energy of properly capped MOF building blocks L21′, L22′, L23′, L24′, or L25′

(see Fig. Q1) as function of the planewave cutoff.

Total Energy in [Ry]
Cutoff in [Ry] L21′ L22′ L23′ L24′ L25′

600 -140.536148 -93.622249 -69.717917 -105.008927 -104.834707
800 -140.535299 -93.622155 -69.718094 -105.008862 -104.834724
1000 -140.535810 -93.622157 -69.718023 -105.008769 -104.834756
1200 -140.535204 -93.622144 -69.718089 -105.008837 -104.834730
1300 -140.535164 -93.622119 -69.718107 -105.008810 -104.834706
1400 -140.535620 -93.622135 -69.718044 -105.008800 -104.834743
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Tab. R8: Total energy of properly capped MOF building blocks N1′, N2′, or N3′ (see Fig. Q2) as
function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] N1′ N2′ N3′

70 -956.066575 -528.680408 -450.982984
80 -956.066574 -528.680408 -450.982984
90 -956.066574 -528.680408 -450.982984

Tab. R9: Total energy of properly capped MOF building blocks N4′, N5′, N6′, or N7′ (see Fig. Q2)
as function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] N4′ N5′ N6′ N7′

70 -542.542323 -299.991190 -324.919492 -494.274706
80 -542.542323 -299.991189 -324.919492 -494.274706
90 -542.542323 -299.991189 -324.919492 -494.274706

Tab. R10: Total energy of properly capped MOF building blocks L1′, L2′, L3′, L4′, or L5′ (see
Fig. Q1) as function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] L1′ L2′ L3′ L4′ L5′

70 -112.787095 -207.324146 -123.859864 -137.552413 -135.004599
80 -112.787095 -207.324146 -123.859863 -137.552413 -135.004599
90 -112.787095 -207.324146 -123.859863 -137.552413 -135.004599

Tab. R11: Total energy of properly capped MOF building blocks L6′, L7′, L8′, L9′, or L10′ (see
Fig. Q1) as function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] L6′ L7′ L8′ L9′ L10′

70 -136.517744 -160.146952 -160.044035 -171.324956 -171.291875
80 -136.517744 -160.146952 -160.044035 -171.324956 -171.291875
90 -136.517744 -160.146952 -160.044035 -171.324956 -171.291875
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Tab. R12: Total energy of properly capped MOF building blocks L11′, L12′, L13′, L14′, or L15′

(see Fig. Q1) as function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] L11′ L12′ L13′ L14′ L15′

70 -167.137612 -156.318733 -155.576744 -170.446887 -171.642430
80 -167.137609 -156.318733 -155.576744 -170.446887 -171.642430
90 -167.137609 -156.318733 -155.576744 -170.446887 -171.642430

Tab. R13: Total energy of properly capped MOF building blocks L16′, L17′, L18′, L19′, or L20′

(see Fig. Q1) as function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] L16′ L17′ L18′ L19′ L20′

70 -185.292877 -87.545551 -98.707438 -45.982302 -93.266121
80 -185.292877 -87.545551 -98.707438 -45.982302 -93.266121
90 -185.292877 -87.545551 -98.707438 -45.982302 -93.266121

Tab. R14: Total energy of properly capped MOF building blocks L21′, L22′, L23′, L24′, or L25′

(see Fig. Q1) as function of the relative cutoff.

Total Energy in [Ry]
Rel. Cut. in [Ry] L21′ L22′ L23′ L24′ L25′

70 -140.535162 -93.622118 -69.718107 -105.008810 -104.834706
80 -140.535162 -93.622118 -69.718107 -105.008810 -104.834706
90 -140.535162 -93.622118 -69.718107 -105.008810 -104.834706
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S Section 5: Auxiliaries

MOF-VR provides auxiliary functions to increase intuitiveness and immersion, such as rou-
tines for handling (I) a reorientation of the system or (II) computing the correct rotation of
dummy atoms of interaction sites during a molecular dynamics run.

(I) Reorientation of a system occurs whenever a system (consisting of a crystal and the
enclosed guest molecules) is picked up and displaced. If reorientation is not corrected for,
the changed positions of the crystal atoms will lead to a perturbation of the system. To
avoid perturbation, MOF-VR handles reorientation as follows:

1. At the beginning of each time step, MOF-VR determines whether a system is picked
up. In this case, the simulation is paused and all guest molecules in the system are
made children of the system’s crystal, causing the guest molecules to move and rotate
just like the crystal.

2. If the system is released from hand, the rotation necessary to reorient the system, qrot,
from the orientation before pick-up, qa, to the orientation after release, qe, is calculated
using quaternion multiplication,

qrot = qe · q−1
a . (S1)

3. Interaction site velocities, ~vi, and forces, ~Fi, of flexible or semi-flexible guest molecules
or torque, ~T , angular velocity, ~ω, angular momentum, ~L, and orientation, q, of rigid
guest molecules are rotated using qrot to correct for the changed orientation of the
system. In addition, k vectors for electrostatics are recomputed.

4. The molecular dynamics simulation is continued.

(II) MOF-VR uses dummy atoms for the visualization of atoms that are implicitly modeled in
interaction sites. These dummy atoms are children of the interactions sites they are bonded
to, so that they translate and rotate just like their parent interaction sites. But in molecular
dynamics simulations, interaction sites are treated as points in space that have no spatial
extent and thus do not rotate due to forces resulting from an interatomic potential. As a
result, the orientation of dummy atoms remains unchanged during a molecular dynamics
simulation. To avoid unphysical orientations of dummy atoms, the rotation of the parent
interaction side needs to be corrected. When using rigid-body time integration schemes,
the rotation required for correcting the orientation of the dummy atoms is equivalent to the
rotation the rigid guest molecule experiences. Quaternion multiplication is used to describe
the rotation, qrot, of a rigid guest molecule from q(t−∆t) to q(t), i.e.:

qrot = q(t) · q−1(t−∆t). (S2)
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Fig. S1: Illustration of the method for correcting the orientation of dummy atoms in propane.
(a) Each time step, the resulting bond vector (blue) is calculated as sum of all bond vectors (gray)
originating at neighboring interaction sites j and ending at interaction site i. (b) After new positions
of the interaction sites are set in the time integration scheme used, a rotation qc,i is determined
to rotate from the resulting bond vector of the previous time step (pale blue) to the resulting
bond vector of the current time step (solid blue). (c) Vectors are invariant to rotations about their
axes. For this reason, qc,i needs to be corrected by an additional rotation about the resulting bond
vector to yield the correct orientation of the dummy atoms. First, a plane (blue line) is defined
that passes through the position of the interaction point and has a normal that is parallel to the
resulting bond vector (blue arrow). (d) The vectors from one interaction site to a neighboring
interaction site or dummy atom (gray or white arrows) are projected onto the plane (pale blue).
The angle ω(t) between the projected vectors is calculated and compared to the (correct) angle
ω(t−∆t) of the previous time step. The interaction site is rotated about the resulting bond vector
by ∆ω = ω(t−∆t)− ω(t).

The thus calculated quaternion, qrot, can be used to correct the rotation of the interaction
site’s dummy atoms. When using non-rigid-body time integration schemes, the orientation
of guest molecules is not explicitly calculated. But information about the rotation of the
guest molecule can be determined from the changing orientation of the bond vectors between
neighbor atoms. Fig. S1 illustrates the procedure MOF-VR uses to correct the orientation
of dummy atoms in flexible or semi-flexible guest molecules described in the following:

1. Each interaction site i has an orientation vector, ~ri, that is calculated at the end of
each time step and results from adding up the vectors that originate at neighboring
interaction sites j and end at interaction site i (see Fig. S1a).

2. Each time step, parent interaction sites are rotated by a quaternion to correct the
orientation of its child dummy atoms. This rotation is equivalent to the rotation
required to rotate from ~ri(t−∆t) to ~ri(t) (see Fig. S1b).

3. However, vectors are invariant to rotations about their own axes. That’s why the
correction rotation of the previous step needs to be corrected by an additional rotation
about ~ri to yield the correct orientation of the dummy atom. The additional rotation
is determined in four steps:

i. Define a plane with a normal, ~ri(t), passing through the position of i (see Fig. S1c).

ii. Project the bond vector, ~di-j, between interaction sites i and j onto the plane. If
~di-j is parallel to ~ri(t), project ~rj(t) onto the plane instead. Interaction sites j are
chosen for each interaction site i at the beginning of the simulation (see Fig. S1d).
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iii. Project the dummy vector, ~ri-d, between interaction site i and one of its dummy
atoms, d, onto the plane. Dummy atoms d are chosen for each interaction site i
at the beginning of the simulation (see Fig. S1d).

iv. Calculate the angle between the projected vectors. Compare this angle with the
one for the previous time step and rotate the interaction site i about ~ri(t) by the
angular difference (see Fig. S1d).
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T Section 5: Kinetic Energy

Fig. T1: Average kinetic energies over 1000 time steps (dots) and their moving averages (lines) over
200 time steps calculated by MOF-VR (green) or LAMMPS (blue) for the verification simulations to
test the binding forces routine. The starting configuration in LAMMPS was perturbed by shifting
the geometric center of butane by −10−8 Å in every spatial direction.
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U Section 5: Radial Distribution Functions

Fig. U1: Radial distribution functions (RDFs) calculated by MOF-VR (green) or LAMMPS (blue)
for the verification simulation to test the velocity-Verlet routine. RDFs are shown for interaction
site pairs: CH4 in methane and (a) Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in
MOF-5.

Fig. U2: RDFs calculated by MOF-VR (green) or LAMMPS (blue) for the verification simu-
lation to test the rigid body routine. RDFs are shown for interaction site pairs: CH3 in 2,3-
dimethylbutane and (a) Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in MOF-5, or CH
in 2,3-dimethylbutane and (e) Zn in MOF-5, (f) O in MOF-5, (g) C in MOF-5, or (h) H in MOF-5.
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Fig. U3: RDFs calculated by MOF-VR (green) or LAMMPS (blue) for the verification simulation
to test the electrostatics routine. RDFs are shown for interaction site pairs: CH3 in methanol and
(a) Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in MOF-5, O in methanol and (e) Zn in
MOF-5, (f) O in MOF-5, (g) C in MOF-5, (h) H in MOF-5, or H in methanol and (i) Zn in MOF-5,
(j) O in MOF-5, (k) C in MOF-5, (l) H in MOF-5.
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Fig. U4: RDFs calculated by MOF-VR (green) or LAMMPS (blue) for the verification simulation
to test the constraints routine. RDFs are shown for interaction site pairs: CH3 in propane and (a)
Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in MOF-5, or CH2 in propane and (e) Zn
in MOF-5, (f) O in MOF-5, (g) C in MOF-5, (h) H in MOF-5.

Fig. U5: RDFs calculated by MOF-VR (green) or LAMMPS (blue) for the verification simulation
to test the binding forces routine. RDFs are shown for interaction site pairs: CH3 in n-butane and
(a) Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in MOF-5, or CH2 in n-butane and (e)
Zn in MOF-5, (f) O in MOF-5, (g) C in MOF-5, (h) H in MOF-5.
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Fig. U6: RDFs calculated by MOF-VR (green) or LAMMPS (blue) for the verification simula-
tion to test the thermostatting routine. RDFs are shown for interaction site pairs: CH3 in 2,3-
dimethylbutane and (a) Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in MOF-5, or CH2

in 2,3-dimethylbutane and (e) Zn in MOF-5, (f) O in MOF-5, (g) C in MOF-5, (h) H in MOF-5.

Fig. U7: RDFs calculated by MOF-VR (green) or LAMMPS (blue) for the repeated verification
simulation to test the thermostatting routine. In MOF-VR, internal degrees of freedom of 2,3-
dimethylbutane were rigidified, while in LAMMPS, a fully flexible 2,3-dimethylbutane molecule
was used. The flexible model of 2,3-dimethylbutane was created according to the TraPPE-UA
force field [187], except for bond interactions, for which the bond constants were taken from the
CHARMM22 [153] force field. RDFs are shown for interaction site pairs: CH3 in 2,3-dimethylbutane
and (a) Zn in MOF-5, (b) O in MOF-5, (c) C in MOF-5, (d) H in MOF-5, or CH2 in 2,3-
dimethylbutane and (e) Zn in MOF-5, (f) O in MOF-5, (g) C in MOF-5, (h) H in MOF-5.
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