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1 Introduction

In the 20th century, the digital capture of most human senses was achieved. Vision with cam-
eras, hearing with microphones, touch with pressure gauges. Machine Learning techniques
were successfully used to extract information from these sensors. In the field of electronic
noses (e-nose) researchers try to digitize the sense of smell, or olfaction.

More recently, progress in the field of ML improved the information extraction from these
sensors immensely. For example, Deep Neural Networks (DNNs) replaced and extended pre-
vious methods in the fields of computer vision[1], [2] and speech recognition[3], [4].

These advances have been mostly achieved with progressively more complex ML models
being trained on datasets of increasing sizes. Less focus has been given to the quality of the
data used for training[5]. However, gathering large datasets with electronic noses can be diffi-
cult and complex models do not necessarily offer the best performance. Furthermore, insight
into the data of a e-nose system is important for development of the system and give feedback
about the feasibility of different applications of said system. Therefore, a focus on data quality

can help solving challenges of e-nose systems.

In this thesis an automated process for analysis of data quality for a new e-nose sensor is
developed. Chapter 2 introduces into the field of electronics noses and presents the newly
developed e-nose sensor used in this thesis. In chapter 3 the measurement setup used to ac-
quire data, the feature extraction architecture and the resulting dataset are presented. Finally,
multiple data quality dimensions are defined in chapter 4. The dimensions of ”Inner consis-
tency” and ”Outer consistency” are further examined with the dataset at hand and a dashboard
tool for interactive exploration of data quality is presented.

1



2 Electronic noses

Figure 2.1: The human olfactory anatomy
[6].

In the human nose (see figure 2.1), odor sensa-
tions are induced by the interaction of odors with
specialized receptors in the olfactory epithelium
in the top of the nasal cavity. In the context of
the human nose, odors are defined as volatile,
hydrophobic compounds that have molecular
weights of less than 300 daltons. Volatiles are true
gases, liquids or solids in their vapor phase. The
signals induced by the interaction of odors with
the approximately 400 different types of olfactory
receptors in the olfactory epithelium are trans-
mitted to the olfactory bulb and ultimately to the
brain. The brain processes the signals received[7],
[8].

Researchers and sensor professionals have taken on the challenge to recreate human ol-
faction with sensors for decades, yet so far it is still not completely solved. The first step in the
direction of the digitization of odors was the introduction of gas chromatography (GC). After its
development in 1952, GC was quickly adopted to separate the individual compounds in com-
plex odor mixtures with each detected compound appearing as a single peak in the analysis.
However, GC analysis has been found to have limitations for characterizing odor quality since
the amplitude of the peaks is not consistent with sensory relevance[6].
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In the 1980s, one of the first systems described as an electronic nose (e-nose) was developed.
It was a multi-array gas sensor. Instead of detecting individual gases with specific sensors,
multiple partially specific sensors were used to detect and classify odors from the combined
reaction. [9]. Figure 2.2 shows the analogy of such a system and the human olfaction.

A widely used definition of e-noses was published in 1994[10]: ”An electronic nose is an in-
strument, which comprises an array of electronic chemical sensors with partial specificity and
an appropriate pattern-recognition system, capable of recognizing simple or complex odours.”

Figure 2.2: Analogy of the human
olfaction and electronic
noses[11]

Electronic noses are used in a large range of appli-
cations. Examples are the food and beverage industry,
agriculture and forestry, medicine and health-care, in-
door and outdoor monitoring, military and civilian se-
curity, packaging, cosmetics, environmental monitoring
and many more[11].

Various technologies have been developed for the
sensory part of such e-nose system. Here we try to give
a brief overview over the most common technologies. More complete information can be
found in [6], [11], [12]. See figure 2.3 for a direct comparison of the most common e-nose
sensor technologies.

The largest group of technologies are chemoresistive sensors. Odors adsorb on the surfaces
of the sensory elements and influence their resistances[12]. Most commonly used in industrial
applications are chemoresistive metal-oxide (MOX) material gas sensors. MOX sensors fulfill
many of the requirements for e-noses, but often have issues surrounding the range of odors
detected, the environment and drift. A major drawback is their high power consumption due
to high operating temperatures required[13].

Conducting polymer (CP) sensors operate in a similar way, but at room temperature, and
are therefore more energy-efficient. However, they lack in selectivity and sensitivity[14].

Quartz crystal microbalances (QCM) operate through a change in natural resonance when
odors adhere on a chemical sensitive layer on the device, therefore increasing its mass and
altering its frequency[15]. QCMs are very sensitive, but integration into sensor electronics
remains still a challenge.

More recently, sensors based on carbon nanomaterials and graphene have been devel-
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(a) (b)
Figure 2.3: Comparison of common e-nose sensor technologies[6].

oped. These types of sensors offer high diversity and sensitivity at a small size and low power
consumption. Challenges remain repeatability and reliability[16].

In some systems optical dyes are used as chemical sensors for odors. These devices produce
a color change when exposed to an odor, which can be measured.

For higher-end systems technologies that measure physical properties of odorants are of-
ten used. For example, Ion Mobility Spectrometers (IMS) operate by ionising odors and then
measuring the resultant ions in a high electric field[17].

Furthermore, existing technologies have been repurposed with new approaches. Instead of
using a sensor array, a single sensor can be used as a ”virtual” array by sweeping its character-
istic. For example, the operating temperature of a MOX sensor can be modulated producing
higher dimensional information[18]. Such a sensor is called a tuneable gas sensor. Another
approach is the combination of technologies. For example GC can be used as an odor filter in
front of another sensor technology (GC-Sensor)[17].

However, the fundamentals of electronic noses are also still controversial. Depending on
the technology used, the e-nose is blind to parts of the odor spectrum perceived by humans
while certain odorless substances can be detected. This can lead to masking of relevant sub-
stances by irrelevant substances[19]. For this reason the term odor is not as clearly defined
in the context of electronic noses as in the context of human olfaction. In this thesis it will
be used to refer to the volatiles to be detected by the sensor. In addition, the use of e-nose
systems results in information losses that must be taken into account. This poses increased
challenges for the choice of sensors and the pattern recognition system[20].
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2.1 The Smell Inspector

The e-nose sensor used in this thesis is the Smell Inspector - a multi-array gas sensor based on
carbon nanotubes (CNTs) developed by the company Smartnanotubes Technologies. Figure
2.5a shows the handheld device.

Figure 2.4: Illustration of a CNT used as a
chemiresistor. The functionaliza-
tion can act as an odor-selector
with partial specificity[21].

Carbon nanotubes are cylinders of one layer
(single-wall CNT) or multiple layers (multi-wall
CNT) of graphene. Due to their unique physical
properties they are used in composite materi-
als, microelectronics, batteries, biotechnology,
coatings and more[22].

CNTs are being researched in the field of
gas sensory since the beginning of the 2000s.
As shown in figure 2.4, they can be used as
chemiresistive sensors. When odor molecules
interact with the surface of the carbon nan-
otubes, the charge carrier density within the
carbon nanotubes changes dependent on the
molecules’s characteristics, mainly its electric dipole moment. This changes the measurable re-
sistance of the nanotubes[23]. Furthermore, the nanotubes can be functionalized. This means
that the nanotubes are either modified in their structure or coated with for example polymers
or metallic nanoparticles in order to create partial specificity to different molecules[24]. CNTs
have a high surface-area-to-volume ratio. At the same time high currents only produce negli-
gible heating losses. This enables high sensitivity to adsorbed molecules with very low power
consumption[25].

The founders of the company Smartnanotubes Technologies developed and patented a
scaleable production process of single-walled semi-conducting carbon nanotubes with a high
degree of purity[26]. The nanotubes produced where already used for detection of specific
gases[27].

The Smell Inspector mainly consists of a measurement circuit and a microcontroller. The
main purpose of the microcontroller is to control the measurement circuit and handle com-
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(a) (b)

(c)
Figure 2.5: (a) The handheld Smell Inspector device. (b) Illustration of an electrode pair con-

nected by a network of carbon nanotubes[27]. (c) Two detector foils in a hand for
size comparison.

munication with other devices via USB and Bluetooth.
The sensory elements of the Smell Inspector are 4 detector foils (see figure 2.5c). Each foil

has 16 printed electrode pairs which are connected by a network of carbon nanotubes. Each
electrode pair can be measured separately and therefore forms one measurement channel
(see figure 2.5b). With 4 detector foils with 16 channels each the whole sensor has 64 mea-
surement channels. The detector foils are exposed to the smell substances via an in-built air
channel. A fan sucks the environmental air through this air channel exposing it to the detector
foils.

A major advantage of the Smell Inspector is its modularity. The detector foils used in the
sensors are exchangeable and the channels on each detector foil can be functionalized based
on the set of substances to be distinguished. Each functionalization is developed to target a
specific range of substances. As there are a lot of different types of functionalizations, they are
internally numbered. In this thesis this internal numbering will be used to refer to the func-
tionalizations. For example, the functionalization with the internal number 33 will be called
functionalization 33 or in short F33.
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Previous work has shown, that the sensor can be used for classification of volatile organic
compounds (VOCs). For this a multi-class multi-label classification with multi-layer perceptrons
(MLPs) and support vector machines (SVMs) was conducted. Three substances could be dis-
tinguished with an accuracy of over 91%. However, it was also established that the functional-
izations used at the time were not able to distinguish the substances Isopropanol and Ethanol,
which are chemically very similar. From this it was concluded that the sensor functionalizations
should be systematically developed in order to improve the specificity of the e-nose system.
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3 Data Acquisition

3.1 Measurement setup

In order to generate a dataset, an measurement setup was developed. The goal was to en-
able automatic measurements in a controlled environment, which can still be applied to open
environments. Figure 3.1 shows an illustration of the measurement setup.

Figure 3.1: Illustration of the measurement setup. Depending on the state of the valves the
air is sucked in by the fan in the Smell Inspector directly into the Smell Inspector or
first through the sample container. When going through the sample container, the
air acts as the carrier gas for the odor substance.

It consists of the Smell Inspector sensor connected to a T-split pipe connector. On one side
of the T-split the pipe connects to the recovery valve and then opens to the environmental air.
On the other side the pipe connects to the exposure valve and then opens into the headspace
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of the sample container. The sample container has an inlet to the environmental air. The two
valves are controlled via relays by a Raspberry Pi mini computer. When the recovery valve
is closed and the exposure valve open, the fan in the Smell Inspector sucks environmental
air through the sample container and subsequently the sensor device. With an odor source
placed in the sample container the environmental air acts as the carrier gas for the odor. The
sensor is exposed to the odor substance. This setup can be categorized as dynamic headspace
sampling[28]. This means with a continuous air flow a constant odor concentration in the air
flow is achieved. The concentration level is determined by the evaporation rate of the odor
substance.
The evaporation rate of liquid odor substances is dependent on its surface area. The higher
the surface area, the higher the evaporation rate. By placing the odor substances into small
containers with different surface areas within the sample container the odor concentration
can be changed. This allows for qualitative control of odor concentration for liquid odor sub-
stances.

Figure 3.2: The measurement setup in the laboratory. The Smell Inspector device (right) sucks
in air through the T-split pipe (middle) - either from the sample container (left) or
directly from the environment. A Raspberry Pi (bottom) controls the valve states.

When the recovery valve is open and the exposure valve closed, clean environmental air is
sucked into through the sensor. The odor is flushed from the sensor and the measurement
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channels recover.

The measurements were conducted in a fume cupboard in order to avoid any interfering
substances in the environmental air. The pipes are made of stainless steel, which is inert and
therefore does retain any odor molecules. The sample container is made of heat resistant
glass. Therefore it can be baked out in order to remove any odor rests when changing the
odor substance. The sample container can be replaced while a recovery is running.

The setup is able to automatically perform measurements in a continuous cycle using a script
running on the Raspberry Pi.

3.2 The dataset

The measurement setup was used to generate a dataset of odor measurements. One mea-
surement is defined as follows:

Figure 3.3: Resistance of one channel over time in a measurement. The three measurement
phases are marked by the background color: Stabilization (orange), Exposure (blue)
and Recovery (red).

First, no smell is present. All changes in the channel resistances are due to measurement
noise and sensor drift. It is waited until the channel resistances stabilize. This is called the
Stabilization phase. Then the exposure of the sensor with the odor begins. The surfaces of
the sensor channels adsorb the odor molecules from the air flow and the channel resistances
change accordingly. This is called the Exposure phase. When the odor molecules are flushed
from the sensor, the odor molecules desorb from the sensor channels surfaces. The channel
resistances return to their original values subject to drift variations. This is the Recovery phase.
An example of the resistance of one channel and the three phases during a measurement can
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be seen in figure 3.3.

An open question in the sensor development is the repeatability of measurements across
detector foils - i.e. does a channel on one foil react similar to a channel on another foil if both
have the same functionalization? As described in 2.1 the Smell Inspector has four slots for
detector foils. In order to enable exploration of this question, detector foils with redundant
functionalization were used. Two of these slots were filled with two detector foils with a com-
bined eight functionalizations. The other two slots were filled with a different pair of detectors
with the same functionalizations as the first pair. These two pairs of detectors will be called
detector set A and B. Measurements taken with this setup were interpreted as taking two mea-
surements at the same time - each with one detector set. This allows for direct comparison of
the measurement results.

Odor substance Number of measurements Sample state
Ethanol 11 liquid
Eugenol 21 liquid
Guajacol 12 liquid

Isophoron 8 liquid
Toluol 16 liquid
Vanillin 15 solid
Coffee 13 solid

Table 3.1: Overview over the measurements taken with the detector sets A and B. The number
of measurements were taken with each detector set.

For each odor substance and concentration an exposure duration was chosen that facilitates
the availability of the static feature S in order to enable comparison of static and transient
features (see section 3.4). This resulted in exposure times between 30 minutes up to 4 hours
for some odors. For these substances with slow reactions fewer measurements were taken
due to time constraints. Table 3.1 gives an overview over the dataset. In total 96 measurements
of 7 odors were taken with each detector set.

For the liquid odor substances measurements at different concentration levels were taken
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using the qualitative control of the setup. All substances measured except coffee are simple
odors, which means the odor only consists of one molecule. The brand used for the coffee
measurements was ”NESCAFÉ Dolce Gusto Caffe Crema Grande”.

3.3 Feature Extraction Architecture

The measurement data described in the previous section was stored in the Application database.
This database is a MongoDB[29] database storing raw measurement values of the sensor
channels and various meta information like the detectors used, timestamps of the valve switches
or values of the environmental sensors (humidity and temperature). In order to analyze and
classify measurements, features have to be extracted from them. In ML, features are mea-
surable characteristics of a phenomenon. For analysis and comparison of measurements, it
makes sense to generate one set of features for each measurement. A simple feature for a
measurement could be for example the resistance of a channel at the end of the Exposure
phase.

The Smell Inspector is to be tested for a wide range of possible applications. In this process
different organizations will take measurements with the sensor. Therefore the goal was to
implement a feature extraction architecture that is able to process the measurements auto-
matically and generate features that can be used for feedback on these possible applications
as well as classification. Figure 3.4 shows the overall architecture of the feature extraction.

Figure 3.4: Overview of the feature extraction
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The feature extraction is decoupled from feature usage with the Feature Store pattern[30].
Features extracted are stored separately in the Feature Store. A Feature Store can house mul-
tiple feature sets derived from multiple sources and with different formats. A typical structure of
a Feature Store can be seen in 3.5. In this thesis, the only data source of the Feature Store is the
Application database and the only feature set contains one set of features for each measure-
ment. Therefore this is a simplified usage of the Feature Store pattern. It is still useful, because
features stored in the Feature store don’t have to be regenerated every time ML Training or
Data Analysis is performed. Furthermore, it is likely, that additional data sources will be added
in the future and additional feature sets will be created. For example, if time series models
were to be trained, this would require a feature set containing some form of time series for
each measurement.

Figure 3.5: A Feature Store provides a bridge between raw data sources and model training
and serving[30].

A feature extraction pipeline was implemented in Python. The pipeline is based on the scikit-
learn package[31]. Each step of the data transformation and feature extraction is implemented
derived class of the scikit-learn BaseEstimator and TransformerMixin classes. This enables using
the scikit-learn Pipline class for implementing the pipeline.

Figure 3.6 shows a flow chart of the feature extraction pipeline. The FieldImputer imputes
missing values in the meta data that are necessary in the rest of the pipeline. With the mea-
surement setup the measurements are taken in a continuous cycle. Therefore, the raw data
loaded from the Application Database is split into the separate measurements based on the
meta data using the MeasSplitter class. The PhaseLabeler class labels the time series data with
the three phases.

At this point in the pipeline, there is one time series of absolute resistance vectors ~R(ti) for
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Figure 3.6: Flow Chart of the feature extraction pipeline
each measurement. Each component of this vector represents one channel. As the data from
the two detector sets are interpreted as separate measurements, the resistance vectors of one
measurement have 32 dimensions. Due to possible communication delays and other factors,
~R(ti) is an unevenly spaced discrete time series.

~R(ti) ∈ R32 with ti ∈ Tn (3.1)
Tn = {(t1 < t2 < ... < tn) : ti ∈ R, 1 ≤ i ≤ n} (3.2)

The class EvenTrafo is used to generate the evenly spaced time series of absolute resistances
~R(k) ∈ R32 with k ∈ {0, 1, 2, ...,N} and tk = t0 + k ∗ Δt. (3.3)

This is achieved with linear interpolation. A time interval Δt of 1.5 seconds was used as this is
the measurement interval of the Smell Inspector device.

The evenly spaced time series of absolute resistances is then transformed into the time
series of relative resistances

~r(k) =
~R(k) – ~R0

~R0
(3.4)

using the RelTrafo class. The resistance vector at the start of the Exposure phase is used as
the base resistance vector ~R0.

Each measurement channel can malfunction at some point in time. Therefore the redun-
dancy of the functionalizations in the same detector set is used by calculating the time series
of relative functionalization vectors ~f (k). There are eight distinct functionalizations in each de-
tector set. Therefore the functionalization vectors have eight dimensions. ~r(k) is transformed
into ~f (k) with the class FuncTrafo by picking the median value of the relative resistances for
each functionalization.

~f (k) ∈ R8 (3.5)
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The last step of the pipeline is the feature extraction. The Feature DataFrame is extracted
by the FeatureExtractor class. For each feature type to be extracted a BaseTransformer class
can be implemented and passed as an argument to the FeatureExtractor class. Eight features
are extracted from one feature type - one feature for each functionalization. The Feature
DataFrame has one row for each measurement and one column for each feature. Its content
is stored in the Feature Store.

The advantages of this pipeline design is its flexibility and extensibility. The pipeline can be
reused for generation of a different feature set with only minor adjustments. For example, the
features generated for this thesis are based on the relative functionalization vector time series.
Another feature set could be based on the time series of the absolute resistance vectors.
This feature set could be generated by reusing the existing pipeline without the RelTrafo and
FuncTrafo classes. Furthermore, an existing feature set could be extended with new features
by implementing the classes for the generation of the new features and rerunning the existing
pipeline with these new feature generation classes.

3.4 Feature Engineering

In this section, the features extracted by the Feature Extraction pipeline are discussed. In order
to simplify the explanations, the features will be presented as feature types independent of
the functionalization. For each feature type presented, eight features are extracted - one for
each functionalization. The feature types are calculated based on the relative functionalization
value time series f (k), which represents one component of the relative functionalization vector
time series ~f (k).

3.4.1 Static features

The most common feature used in the recognition systems of e-nose systems based on chemire-
sitors is the steady state response ΔR. The fully recovered sensor is exposed to a substance
at t0. Due to the exposure the sensor resistance change in a transient. It is waited until the
resistances have stabilized. The steady-state response can now be calculated with ΔRMAX =

lim
t→∞

R(t) – R(t0)[9]. Because of the drift common in chemiresistors, in practice it is waited until
the slope of R(k) is reasonably small. In the literature it can also be found as the plateau height
S. Often S is calculated as the change of the relative resistance. Here, S is calculated based on
f (k) with kstart being the start of the Exposure phase and kend the end.
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S = f (kend) – f (kstart) (3.6)
Figure 3.7a shows an example of the derivation of the feature S from the time series f (t). Ac-

cording to different rankings this steady-state feature is one of the most informative features
[32]. However, in practice there are two problems with capturing this feature. On one hand,
it can take a long time until this feature is available as the transient can be very slow. With
the sensors used, transients of multiple hours have been measured. On the other hand, the
long-term drifts of chemoresistive sensors can distort the feature.

3.4.2 Transient features

Features based on the transient can be used in two ways. First, they can speed up the re-
quired measurement duration as they are available much earlier than steady-state features.
Alternatively, the transient has been shown to contain additional information to steady-state
features[33][34][35]. A combination of steady-state and transient features can be used to
improve recognition accuracy.

A transient feature that has been shown to be able to act as a substitute as well as an ad-
ditional information source for MOX e-nose systems is the feature Eα - the peak value of the
first derivative filtered with a exponential moving average emaα(k) [36] Formula 3.7 shows the
iterative calculation of Eα given the discrete time series of relative functionalization values f (k).
The resulting signal emaα(k) for one measurement example is shown in figure 3.7b. With the
assumption that the exposure process of the sensor channels with odor substances can be
modeled by a sum of exponential functions, emaα(k) has one single peak. This peak of this
signal is the feature Eα.

Eα = max( emaα(k) )
emaα(k) = (1 – α) ∗ emaα(k – 1) + α ∗ (emaα(k) – emaα(k – 1))

with 0 < α ≤ 1 and emaα(0) = 0
(3.7)

The exponential moving average is a low-pass filter with an exponential decay as the impulse
response. The parameter α determines the exponent of this decay and is therefore also called
the exponent of the filter. With an exponent α = 1 the signal emaα(t) is equal the unfiltered
first derivative. This creates a very noisy, but fast signal. With 0 < α < 1 the noise of the signal
can be filtered out, however the peak of the signal is available after a longer period. Figure 3.8
shows the signal emaα with three value of the filter exponent.
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(a)

(b)
Figure 3.7: Derivation of (a) feature S from relative functionalization time series f (t) and of (b)

feature Eα from time series emaα(t).

Figure 3.8: emaα(t) derived from f (t) in figure 3.7a with filter exponent values α = 0.1 (blue),
α = 0.01 (orange) and α = 0.001 (green). With a lower filter exponent value the
signal gets less noisy. However, the peak Eα is available later. As exemplified by the
blue function excessive noise can delay the feature availability.
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(a)

(b)

(c)
Figure 3.9: (a) and (b): Weighted average correlation between the feature types S and Eα for all

odor substances over a wide range of filter exponents α for detector set A and B.
(c): Correlation for the odor substance Eugenol with detector set A.

In the context of analysis of data quality both applications of the transient signal can useful.
On one hand the feature Eα allows the examination of measurements which did not reach the
steady-state peak S. On the other a combination the transient and steady-state features can
improve the assessment of different dimensions of data quality.

Figures 3.9a and 3.9b show the correlation between the feature types Eα and S over a range
of filter exponent values α. The correlation between the features is calculated for each odor
separately and then the mean weighted by the relative number of measurements for each
odor is calculated for each functionalization. The curves for the functionalization have a simi-
lar form: For α < 0.005 a low correlation is observed. With α in the range of (0.005; 0.1) a higher
correlation is reached. For α > 0.1 the correlation drops down again. This can be explained
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by the noise, which grows in relation to the signal strength.
It should be noted that the average correlation is lowered by odors which only cause small
reaction for some functionalizations. These functionalizations will have a high noise to signal
ratio in the signal emaα(t). The correlation for these functionalizations will be close to zero and
lower the average correlation of all odor substances. Figure 3.9c shows the correlation scores
for the odor substance Eugenol. For this substance all functionalization show a big reaction.
Therefore a high correlation for all functionalizations is observed.

Figure 3.10: Average classification score of the 5-fold cross-validation (blue) and test set score
(orange) using the feature type Eα over a range of filter exponents α for detector
set A (top) and B (bottom). The black dotted line marks the test set score using
the feature type S for the corresponding dataset.

In order to assess how suited the feature Eα is in a classification task a machine learning
experiment based on the dataset of detector sets A and B was carried out. For each α in the
range previously used 8 features Eα are available (one feature for each functionalization). A
stratified test set of 25% of the dataset of these features was created. The remaining 75% were
used to train the classification pipeline. The classification pipeline is based on the scikit-learn
library[31] and was established in a previous work. First, the features are normalized. Then a
linear support vector machine is used for automated feature selection. Finally a support vec-
tor machine with a radial basis function kernel is trained as the classifier. A grid search with
5-fold cross-validation is conducted to find the optimal hyperparameters for each α and the
resulting model evaluated on the test set. The following code shows the code of the pipeline
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implementation and the parameter grid used for the grid search.

from sk learn . f e a t u r e s e l e c t i o n import SelectFromModel
from sk learn . preprocessing import StandardScaler
from sk learn . model se lect ion import GridSearchCV
from sk learn . p i p e l i n e import P i p e l i n e
from sk learn . svm import LinearSVC , SVC

f e a t u r e s e l e c t o r = SelectFromModel ( est imator=LinearSVC ( C = 1 . ) )
c l a s s i f i e r s v m = SVC ( random state=random state , p r o b a b i l i t y =True )
p i p e l i n e = P i p e l i n e ( [ ( ’ s c a l e r ’ , StandardScaler ( ) ) ,

( ’ f e a t u r e s e l e c t o r ’ , f e a t u r e s e l e c t o r ) ,
( ’ c l ’ , c l a s s i f i e r s v m ) ] )

parameter gr id = [
{ ’ c l C ’ : [ 0 . 1 , 0 . 5 , 1 . , 1 0 . , 1 0 0 . ] ,

’ c l k e r n e l ’ : [ ’ rb f ’ ] ,
’ cl gamma ’ : [ ’ s ca le ’ , ’ auto ’ ] ,
’ c l d e c i s i o n f u n c t i o n s h a p e ’ : [ ’ ovr ’ ] ,
’ f e a t u r e s e l e c t o r m a x f e a t u r e s ’ : [ 2 , 3 , 4 , 5 , 6 , None ]
}

]
For the evaluation of the results the macro-averaged f1-score was used. The f1-score is a

well known metric in the field of machine learning. It is the harmonic mean of the precision and
the recall. When the f1-score is macro-averaged the score for each class is calculated sepa-
rately and then averaged. This improves the evaluation of unbalanced datasets as it penalizes
models that perform bad on underrepresented classes[37].

Figure 3.10 shows the validation and test f1-score for both detector sets. For both detector
sets a f1-score over 85% percent was reached on the test set. The development of the perfor-
mance over a changing α is similar to the development of the correlation of S and Eα.

Based on these results, the two filter exponents α0 = 0.005 and α1 = 0.02 were selected for
further investigations. Table 3.2 compares the results of the feature types S and Eα with the
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exponents selected as well as combinations of these feature types. The feature type Eα is able
to perform better than the feature S. A possible explanation for this is its the drift-resilience.
Combining S and Eα as well as combining Eα with multiple values of α is able to improve the
performance further.

Feature type set f1-score
detector set A detector set B

( S ) 0.919 0.802
( Eα0 ) 0.922 0.749
( Eα1 ) 0.911 0.894

( S, Eα1 ) 0.927 0.964
( Eα0 , Eα1 ) 0.959 0.838

( S, Eα0 , Eα1 ) 0.968 0.964

Table 3.2: Classification results on the test set using different sets of feature types.

Figure 3.11 provides information about the feature availability. It displays the average ratio
ΔtS
ΔtEα

. ΔtS is the time from the exposure start until the feature S is available and ΔtEα the time
until the feature Eα is available. In the range of high correlation ΔtEα is between 20% and 30%
of ΔtS for most functionalizations.

In conclusion, it can be confirmed that the feature Eα can be used to substitute as well as a
complement to the feature S not only for sensors based on MOX, but also for sensors based
on carbon nanotubes. It can help the acceleration of feature availability as well as supplement
information to the static feature S.
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Figure 3.11: Average ratio between ΔtEα and ΔtS over a wide range of filter exponents α for
detector set A (top) and B (bottom).
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4 Data analysis

4.1 Data quality

In order to test possible applications for the newly developed e-nose sensor, measurements
will be taken by various sources and with various sets of odor substances. The term source
in this context is used to describe the combination of the setup and environment a measure-
ment is taken in and the sensor a measurement is taken with. Analysis of the quality of mea-
surements originating from various sources and ultimately the feasibility of the applications
requires a mostly automated process.

The term data quality is used in reference to a set of characteristics that data should own,
such as accuracy - the extent to which the data are correct, reliable and certified for the task
at hand - or currency - the extent to which data are up-to-date for a task[38]. Data quality has
been used in computer science as a set of dimensions of ”fitness for use” since the 90’s of the
20th century. There have been different proposed sets of data quality dimensions. However,
there is no agreed upon general set of dimensions. This is mostly because the use of data
quality dimensions is highly depend on the usage of the data[39] [40].

The quality of data in the field of machine learning has been an oversight for a long time[41].
The solution to data with bad quality was gathering more data and using complex models that
could be trained on this data. However, data gathering can be an expensive task. Recently
Andrew Ng - a well-known researcher and educator in the field of machine learning - urged
the machine leaning community to focus more on the quality of the data used to train models.
He argues that it is in many cases more efficient to focus on the quality than the quantity of the
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data. Ng describes the improvement of data quality in a dataset as an iterative process that
requires appropriate tooling [5]. A major focus here is on the accuracy of labels. As the labels
of many datasets are crowd-sourced the quality of the labels can have an important impact
on the performance of models trained with such datasets[42], [43]. A recent field of research
investigates how data quality propagates through the real-world ML process[44].

In the case of e-nose systems data gathering is a time intensive task. Due to the required
duration of exposure and recovery, taking new measurements can take a lot of time. Fur-
thermore, the measurement setup and environmental conditions influence the measurement
results and therefore the data quality. Therefore, the assessment of the quality of the mea-
surement data is an important step in the exploration of applications of the sensor system.

In order to assess the data quality for the given e-nose system, four dimensions were de-
fined: Inner consistency, Outer consistency, label quality and measurement definiteness. The
following enumeration defines the four data quality dimensions and lists questions related to
these dimensions.

1. Inner consistency: The Inner consistency describes the consistency of measurements
from one source.

• Do measurements from the same source result in similar reactions?
• Is more data necessary?
• Which substances can be distinguished by which functionalizations?
• Did the sensor degrade?

2. Outer consistency: The Outer consistency describes the consistency and transferability
of measurements from multiple sources.

• Do measurements from multiple sources return similar reactions?
• Can models trained on data from one source be trained on data from other sources?
• Is more data necessary?

3. Label quality: The label quality describes the accuracy and consistency of labels.
• Are the labels accurate and consistent? Are there label aliases?
• How are hierarchical label relationships dealt with?
• How are complex odors labeled?

4. Measurement definiteness
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• Are environmental influences known?
• Is the measurement protocol known?
• Which assumptions can be made about a measurement?

In the following sections methods to assess the Inner and Outer consistency are explored.

4.2 Inner consistency

As defined previously, the Inner consistency describes the consistency of measurements from
one source. For this purpose, data from the detector set A is used to demonstrate the methods
used.

A consistent e-nose sensor reacts consistently when exposed to the same odor. Therefore,
an obvious choice is to examine this consistency is to examine it for each odor separately.
Furthermore, the sensor’s reaction can possibly differ in consistency between the different
functionalizations.

Figure 4.1: Scatter plot of the feature Eα0 with the functionalizations 89 and 33 for the odor
substance Eugenol. The two features have a correlation of r = 0.967 for this fea-
ture.

Figure 4.1 shows the feature Eα0 of the two functionalizations f89 and f33 extracted from
measurements of Eugenol. The trendline shows the linear relationship with Pearson’s Corre-
lation Coefficient r = 0.967.

In contrast, figure 4.2 displays an example of a functionalization pair with low correlation
(r = 0.146).This low correlation could possibly occur due to environmental influences or er-
ratic sensor channels. Which case applies cannot be determined from this analysis. However
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Figure 4.2: Scatter plot of the feature Eα0 for the functionalizations 41 and 33 for measure-
ments of the odor substance Eugenol. Due to outliers the two features have a low
correlation score of r = 0.146. Functionalization 41 of detector set A is unreliable.

it is a good starting point for further investigation.

Figure 4.3 visualizes this correlation analysis for all functionalization pairs. It is a heatmap of
the correlation coefficient for each functionalization pair for the odor Eugenol. All pairs includ-
ing functionalization 41 have a low correlation. All other pairs have high correlation scores.
Analysis with other odor substances and the features Eα1 and S reveal similar results.

But is there enough data to draw conclusions from these correlations? The dataset used to
verify potential application should ideally reflect the theoretical true population of measure-
ments in this application. Most importantly, it should be made sure, that the dataset reflects
the range of environmental conditions to be expected. If this is the case, statistical tests can
be used to judge whether the amount of measurements is sufficient.

Assuming bivariate normal distribution of the two features, the t-test can be used to show
significance of the relation[45]. However, this test only rejects the Nullhypothesis of a true
population correlation ρ = 0. Calculating the confidence interval of ρ based on the correlation
coefficient r and the number of measurements N gives more information about the ”com-
pleteness” of the dataset. This can be done using Fisher’s z-transform[45]. For the relation in
figure 4.1 with a correlation coefficient r = 0.967 based on N = 22 measurements ρ is with a
confidence of 95% in the range of 0.921 to 0.986. This small range of the confidence interval
suggests enough measurements were taken.

It can be deducted that the measurements were executed in a repeatable manner. The func-
tionalization 41 of detector set A can be flagged as unreliable. A linear relationship between
the working functionalizations can be established. This relationship seems to be connected
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to the substance concentration. However, only given qualitative control over the substance
concentration in the measurement setup, this cannot be further investigated.

Figure 4.3: Heatmap of the correlation scores of measurements taken of Eugenol for all func-
tionalization pairs (Feature type: Eα0 ).

4.2.1 Linear separability score

With the correlation analysis it can be examined how consistent the measurements are for
each odor separately. In the end, the e-nose system is supposed to be used for classification
tasks of multiple substances. Therefore, the part of the Inner consistency should be analysis
that takes the classification task into account.

Here a method is presented which will be called linear separability score. It is loosely based
on the linear separability - a well known characteristic of two set of points in the euclidean
space. These two set of points are called linearly separable if there exists a hyperplane which
separates all points of the first set from the second set.

It is important to note, that the following approach does not attempt to provide optimal clas-
sification results, but an intuitively understandable metric, which can be used in the analysis
of a set of measurements of the e-nose system.

Given a set of features X and a set of odor classesΨ a score is to be calculated, that expresses
how well linearly separable the classes are in the euclidean space of X . This metric should not
neglect how well the hyperplane decision surface generalizes to unknown measurements.
First, let us consider the case of |X | = 2 and |Ψ| = 2. In words: We try to separate two odor
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classes only given two features. We can fit a Linear Discrimant Analysis (LDA) classifier to find
a linear decision surface in the euclidean space spanned by X that separates the two classes
optimally. LDA is a robust method for finding a linear decision surface in Rn for two classes[46].
By using stratified 5-fold cross-validation the generalization of separability can be tested. The
macro f1-score is used as the validation metric. The linear separability score is calculated as
the average validation result of cross-validation. Figure 4.4 shows the decision surface cre-
ated by the LDA trained in one iteration of the cross-validation for the two substances coffee
and eugenol. This pair of functionalizations shows a linear separability score of 1 for the two
substances. Similar to the correlation score, a heatmap can be used to visualize the linear
separability scores of all functionalization pairs of one feature type at once. Figure 4.5a shows
this heatmap for the two odor substances Coffee and Eugenol.

Figure 4.4: Training set, validation set and resulting decision surface of one iteration of the 5-
fold cross-validation in the linear separability score calculation. Classes: Coffee and
Eugenol. Features Eα0 (F93) and Eα0 (F33).

The approach for a odor class set size |Ψ| = 2 could be adjusted to the case of |Ψ| >

2 by fitting one LDA classifier all classes. However, this approach generalizes bad to un-
known measurements. Instead, a one-vs-one multiclass strategy is used. For each class pair
(ψ1,ψ2) with ψ1 ∈ Ψ, ψ2 ∈ Ψ and ψ1 6= ψ2 a LDA classifier is fitted to distinguish ψ1 and ψ2. For
prediction the majority vote of this model ensemble is used. This approach generalizes good
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(a) (b)
Figure 4.5: Heatmap of the linear separability scores for the classes (a) Coffee and Eugenol and

(b) all 7 odor classes using feature sets of size 2 (Feature type: Eα0 )).

to unknown measurements, because the pairwise distinction of classes tends to create linear
hyperplanes that capture the linear relationship of the functionalizations (see figure 4.4).

Figure 4.6: Feature points and decision surfaces for all odor substances. (Feature type: Eα0 )
Figure 4.6 shows the decision surface for the feature Eα0 ( F33 ) and Eα0 ( F93 ) using all classes.

This feature pair has an overall linear separability score of 0.709. Overall, the scores for all func-
tionalization pairs of Eα0 (see figure 4.5b) are worse for the separation of the 7 odor classes
than the case of two classes, which is to be expected.

For further analysis of these multiclass cases, the approach presented can be used for the
case of a feature set size |X | > 2 without any changes. This allows for the selection of a func-
tionalization set, which is optimal for a specific set of odor substances. The tables 4.1 shows
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the top 5 functionalization sets for the feature type Eα0 for the detector sets A. Interestingly,
two of the top 5 still contain F41 even though it was deemed unreliable. However, the best
set consists of F33, F89 and F93. The ML pipeline used in section 3.4.2 was trained with only
features for these three functionalizations (feature types: S, Eα0 and Eα1 ). This resulted a test
score of 0.964 for detector set A and 0.968 for detector set B, which is almost the same as the
results based on the full set of functionalizations. This shows, that the linear separability score
was able to determine a very informative set of functionalizations.

functionalization set linear separability score
(33, 41, 57, 59, 93) 0.718
(33, 41, 42, 59, 93) 0.718

(33, 57, 89, 93) 0.731
(33, 57, 59, 89, 93) 0.731

(33, 89, 93) 0.751

Table 4.1: Top 5 linear separability scores for functionalization sets of size 5 or smaller for the
feature type Eα0 using detector set A

One drawback of this approach is the complexity: For each iteration of the cross-validation
|Ψ|∗(|Ψ|–1)2 classifiers have to be trained. This means a training complexity of O(|Ψ|2). However,
in practice this is no major concern. The linear separability score is meant to be a metric for
functionalization selection for a specific set of odor classes to be distinguished - not a classifi-
cation model for a wide range of odors.

Another problem of the linear separability score is the dependency on the substance con-
centration. A odor substance producing a high reaction in the sensor channel resistances can
be easily separated from a substance producing a low reaction. One cannot infer from this that
these two substances can be distinguished at any concentration. Figure 4.7 shows the feature
scatter plot of Eα0 for the substances Eugenol and Guajacol. These substances are chemically
very similar. Therefore a similar sensor response is to be expected. However, due to its lower
boiling point Eugenol creates a higher substance concentration in the air flow of the measure-
ment setup. The overall sensor channel response in the Eugenol measurements is higher and
therefore there is only little intersection between the point cloud of ”Eugenol” and ”Guajacol”.
This results in a high linear separability score, giving false feedback for the functionalization
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selection.
This problem can be addressed by using features that do not contain information about

the substance concentration. Assuming the linear relationship between concentration and
sensor channel reaction discussed in the previous chapter, the fraction of two features Eα( FA )

Eα( FB )
retain the information if the functionalization pair FA and FB while removing any concentra-
tion information. Figure 4.8 shows the resulting feature points for the same functionalization
combination as used in figure 4.7. As intented, the intersection of the two classes is high. As
the heatmap in figure 4.9 shows, there are still good candidates for separation of the the two
substances even though they were measured at different concentrations.

This result should be regarded with caution. Like in the previous section, further investiga-
tion requires data with more precise control of the substance concentration.

In this section it was attempted to answer the four questions posed for the Inner consistency.
In conclusion, the similarity of measurements with detector set A was shown using Pearson’s
Correlation Coefficient. A strong linear relation was found between all functionalization pairs
except F41. The confidence interval of the true correlation coefficient ρ was used to judge the
sufficiency of the amount of data. Furthermore, the linear separability score was proposed as
a metric for analysis of multiple odors at once. The feature set F33, F89 and F93 was shown
to contain sufficient information to distinguish the 7 odor classes with a 0.964 for detector set
A and 0.968 for detector set B. Whether the detector did degrade over time could be subject
for future research.
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Figure 4.7: Feature points and decision surface for the feature Eα0 and the functionalizations 33
and 59. Even though the two odor substances can be separated with high accuracy
the decision surface can be expected to generalize bad to other concentrations.

Figure 4.8: Ratio of Eα0 (F59) to Eα0 (F33) for the classes Eugenol and Guajacol. Due to the inter-
section of the two classes, they can be expected to not be separable at a similar
reaction level.
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Figure 4.9: Heatmap of the linear separability score for measurements taken of Eugenol and
Guajacol using features relative to F33 (Feature type: Eα0 ).

4.3 Outer Consistency

The Outer consistency describes the consistency of measurements from multiple sources. As
defined previously, a source is the combination of the sensor and the environment.

As a simple test for the transferability of models from one sensor to another, the models
trained on the reduced functionalization set of one detector set (see section 4.2) were tested
on the full dataset set of the other detector set. This transfer does not work. The model trained
on the measurements of detector set A has a f1-score of 0.172 on the data of detector set B.
The transfer in the other direction produces a f1-score of 0.233.

Comparing the data of the two detector sets, one problem is clear. While there are simi-
larities in the relations of the odors (see figure 4.10 for the comparison of one feature pair),
the scale of the reactions are different. This could be due to differences in the CNT networks.
A network with a higher surface area allows more odor molecules to be adsorbed, therefore
causing a bigger change in the resistance. Furthermore the concentrations of the functional-
ization molecules on the CNT surfaces could be different. A possible solution for this problem
could be calibration of the detector sets. Due to time constraints this was not explored further.
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(a)

(b)
Figure 4.10: Comparison of the feature pair Eα0 (F33) and Eα0 (F89) of (a) detector set A and (b) B.

Most odors are found in similar locations in relation to the other odors, although
some differences can be seen. Differences in the scales make models trained on
data from one detector set not directly transferable to the other set.
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4.4 Dashboard

The methods presented in the previous sections can be used to examine the Inner consistency
of measurement data. However, in order to iteratively improve the data quality, the appropri-
ate Tooling is necessary. For this reason an interactive dashboard was implemented using
Python with Plotly and Dash. Figure 4.11 shows the interface of the dashboard.

The data to be displayed can be adjusted by multiple loading and filtering settings. Like in the
previous sections, heatmaps are used to display information about the correlation and linear
separability scores for multiple functionalizations and feature types at once (top left and right).
By clicking on one of the tiles in the heatmaps, a scatter plot of the feature pair selected can be
displayed (bottom left). By selecting a data point in this scatter plot the specific measurement
behind this point is presented on the bottom right.

This layout allows for interactive data exploration from the high abstraction of feature and
functionalization wide effects to examination of specific measurements.

Figure 4.11: Screenshot of the dashboard
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5 Discussion

In this thesis the implementation of an automated process for analysis of data quality pre-
sented. It was successfully demonstrated, that the transient feature type Eα can be adapted
for use with the newly developed e-nose device Smell Inspector as a replacement and supple-
ment of the static feature type S. The combination of the feature types S, Eα0 and Eα1 instead
of only using the feature type S improved the f1-score on the test set from 0.919 to 0.968 for
detector set A and from 0.802 to 0.964 for detector set B.

Four data quality dimensions for measurement data of an e-nose system were defined: In-
ner consistency, Outer consistency, Label quality and Measurement definiteness. For the Inner
consistency - the consistency of measurements originating from one source - the repeatability
of measurements of one odor was shown. A linear relation between most functionalizations
was established. The linear separability score was introduced for analysis of the distinguisha-
bility of measurements of multiple odors. Based on this metric, the size of the functionalization
set was reduced from eight to three while retaining a high classification score (0.964 for de-
tector set A and 0.968 for detector set B).

These methods provide feedback for further development of the functionalizations. Addi-
tional research of the Inner consistency under changing environmental conditions and with
quantitatively controlled odor concentrations could provide additional insights.

Further research is necessary in the Outer consistency. Models trained on one detector set
can not be transferred directly for usage on another detector set. A possible solution could
be calibration of the detector sets.

A dashboard was created for interactive data exploration. It allows for analysis of measure-
ment data using the methods examined in this thesis - thus enabling a feedback loop for im-
provement of data quality.
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