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Abstract

Gas sensors are extensively utilized in monitoring air quality, ensuring public safety,
and detecting released trace gases in countless industrial fields. Accordingly, the
development of highly efficient, sensitive, selective, reliable, low power consump-
tion and low-cost gas sensors is in considerable demand. A myriad of gas sensors
using traditional metal oxide semiconductor materials have been developed, nev-
ertheless, the selectivity and power-consumption of these sensors are still far from
satisfactory. Inspired by human olfaction, advanced nanomaterials as well as artifi-
cial intelligence technology may provide the solution to these issues. In this work,
the pristine graphene-based highly sensitive gas sensors working at room temper-
ature for NH3 detection were developed. In combination with machine learning
techniques, the selectivity of pristine graphene-based gas sensors is significantly
enhanced, which present excellent performance towards odor discrimination.

As a first step, the stabilization mechanism of functionalized graphene in an
aqueous dispersion of surfactant is elucidated via all-atom molecular dynamic sim-
ulations. The stabilizing role of flavinmononucleotide sodium salt (FMNS) is demon-
strated by the potential of mean force calculations for pairs of graphene flakes cov-
ered by FMNS molecules. At a high surface coverage, graphene flakes repel each
other which leads to the stabilization of graphene dispersions. To achieve approxi-
mately the same potential of mean force (PMF) energy barrier of 10 kJ/(mol · nm2),
the surface coverage of graphene flakes by FMNS molecules is 44% lower than by
sodium cholate (SC) molecules, and 71% lower than by sodium dodecylbenzene-
sulfonate (SDBS) molecules, respectively. With this in mind, FMNS functionalized
graphene-based gas sensors are then developed, demonstrating excellent sensing
performance to NH3 gas. The optimized NH3 sensors demonstrate outstanding per-
formance: ultralow limit-of-detection (1.6 ppm), excellent sensitivity (2.8%, 10 ppm;
18.5%, 1000 ppm), reproducibility, reversibility, low power consumption, room tem-
perature function, as well as low cost. The roles of FMNS from graphene prepa-
ration to NH3 sensing are elucidated via all-atom molecular dynamics simulations
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(MDS): (1) stabilizer for the graphene dispersion, (2) p-type dopant for graphene-
based sensing element, and (3) active adsorption sites for NH3 gas sensing.

Moreover, in combination with machine learning techniques, biomimetic elec-
tronic olfaction based on graphene single channel nanosensors is proposed. The de-
veloped prototype exhibits excellent odors (Eucalyptol – Euca, 2-nonanone – 2Nona,
Eugenol – Euge, 2-phenylethanol – 2Phe, N2) discrimination and identification perfor-
mance at room temperature,maximizing the obtained results froma single nanosen-
sor. Upon exposure to binary odor mixture, the response features behave similarly
to existing individual odor component, mimicking the overshadowing effect in hu-
man olfactory perception. Computational simulations support the experimental re-
sults and reveal competing adsorption of odormolecules occur. With this approach,
the industrial pollutants (NH3, PH3) were succefully identified at ultra-low concentra-
tion (100 ppb – 1000 ppb) with satisfying performance.

Thepresentwork represents a novel and reliable strategy to develophighly sensi-
tivity, highly selective, and low-cost graphene-based gas sensors towards inorganic
gases detection (NH3, PH3) and volatile organic compounds (VOCs) sensing at room
temperature. The developed strategy may allow for gas detection, odor recognition
of a wide spectrum of odor molecules, as well as detection of volatile organic com-
pounds (VOC) in an extensive variety of domains, e.g., environmental monitoring,
public security, smart farming, or disease diagnosis (e.g., lung cancer, COVID-19).

Keywords: graphene, liquid phase exfoliation, gas sensor, electronic nose, sensitivity,
selectivity, machine learning, molecular dynamic simulation, NH3/PH3, volatile organic
compounds
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Kurzfassung

Gassensoren werden in großem Umfang zur Überwachung der Luftqualität, zur
Gewährleistung der öffentlichen Sicherheit und zumNachweis freigesetzter Spuren-
gase in zahlreichen Industriebereichen eingesetzt. Dementsprechend groß ist der
Bedarf an der Entwicklung hocheffizienter, empfindlicher, selektiver, zuverlässiger,
stromsparender und kostengünstiger Gassensoren. Eine Vielzahl von Gassensoren,
die herkömmlicheMetalloxid-Halbleitermaterialien verwenden, wurden bereits ent-
wickelt, doch die Selektivität und der Stromverbrauch dieser Sensoren sind noch lan-
ge nicht zufriedenstellend. In Anlehnung an den menschlichen Geruchssinn könn-
ten fortschrittliche Nanomaterialien und Technologien der künstlichen Intelligenz
eine Lösung für diese Probleme bieten. In dieser Arbeit entwickeln wir hochemp-
findliche Gassensoren auf Graphenbasis, die bei Raumtemperatur arbeiten und u.a.
NH3 nachweisen. In Kombination mit Techniken des maschinellen Lernens wird die
Selektivität von Gassensoren auf Basis von reinem Graphen deutlich verbessert, so
dass sie eine hervorragende Leistung bei der Geruchsunterscheidung aufweisen.

In einem ersten Schritt wird der Stabilisierungsmechanismus von funktionalisier-
tem Graphen in einer wässrigen Dispersion eines Tensids mittels molekulardynami-
scher All-Atom-Simulationen aufgeklärt. Die stabilisierende Rolle des Flavinmononu-
kleotid-Natriumsalzes (FMNS) wird durch das Potenzial von mittleren Kraftberech-
nungen für Paare vonGraphenflocken, die von FMNS-Molekülen bedeckt sind, nach-
gewiesen. Bei einer hohen Oberflächenbedeckung stoßen sich die Graphenflocken
gegenseitig ab, was zu einer Stabilisierung der Graphen-Dispersionen führt. Um
annähernd die gleiche Energiebarriere von 10 kJ/(mol · nm2) zu erreichen, ist die
Oberflächenbedeckung der Graphenflocken durch FMNS-Moleküle um 44% niedri-
ger als durch Natriumcholat (SC)-Moleküle bzw. um 71 % niedriger als durch Natri-
umdodecylbenzolsulfonat (SDBS)-Moleküle. Vor diesemHintergrundwurden FMNS-
funktionalisierte Gassensoren auf Graphenbasis entwickelt, die eine hervorragende
Sensorfunktion für NH3-Gas: ultraniedrige Nachweisgrenze (1,6 ppm), ausgezeich-
nete Empfindlichkeit (2,8%, 10 ppm; 18,5%, 1000 ppm), Reproduzierbarkeit, Reversi-
bilität, geringer Stromverbrauch, Funktion bei Raumtemperatur sowie geringe Kos-
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ten. Die Rolle von FMNS vonderGraphenherstellungbis zumNH3-Sensorwird durch
Molekulardynamiksimulationen aufgeklärt: (1) Stabilisator für die Graphen Disper-
sion, (2) p-Typ-Dotierstoff für die Graphen-basierte Sensorik und (3) aktive Adsorp-
tionsstellen für die NH3-Gassensorik.

Darüber hinaus wird in Kombination mit Techniken des maschinellen Lernens
ein biomimetischer elektronischer Geruchssensor auf der Grundlage von Einkanal-
Nanosensoren aus Graphen vorgeschlagen. Der entwickelte Prototyp zeigt eine her-
vorragende Unterscheidungs- und Identifizierungsleistung von Gerüchen (Eucalyp-
tol - Euca, 2-Nonanon - 2Nona, Eugenol - Euge, 2-Phenylethanol - 2Phe, N2) bei Raum-
temperatur undmaximiert diemit einem einzigen Nanosensor erzielten Ergebnisse.
Bei der Exposition gegenüber einem binären Geruchsgemisch verhalten sich die Re-
aktionsmerkmale ähnlich wie die einzelnen Geruchskomponenten und ahmen den
Überschattungseffekt in der menschlichen Geruchswahrnehmung nach. Computer-
simulationen unterstützen die experimentellen Ergebnisse und zeigen, dass es zu ei-
ner konkurrierenden Adsorption von Geruchsmolekülen kommt. Mit diesemAnsatz
ist es uns gelungen, die industriellen Schadstoffe (NH3, PH3) bei extrem niedrigen
Konzentrationen (100 ppb - 1000 ppb) mit zufriedenstellender Leistung zu identifi-
zieren.

Die vorliegende Arbeit stellt eine neuartige und zuverlässige Strategie zur Ent-
wicklung hochempfindlicher, hochselektiver und kostengünstiger Gassensoren auf
Graphenbasis dar, mit denen anorganische Gase (NH3, PH3) und flüchtige organi-
sche Verbindungen (VOCs) bei Raumtemperatur nachgewiesenwerden können. Die
entwickelte Strategie kann die Gasdetektion, die Geruchserkennung eines breiten
Spektrums von Geruchsmolekülen sowie die Detektion flüchtiger organischer Ver-
bindungen (VOC) in einer Vielzahl von Bereichen ermöglichen, z. B. Umweltüberwa-
chung, öffentliche Sicherheit, intelligente Landwirtschaft oder Krankheitsdiagnose
(z. B. Lungenkrebs, COVID-19).
Schlüsselwörter: Graphen, Flüssigphasen-Exfoliation, Gassensor, elektronischeNase, Emp-
findlichkeit, Selektivität,maschinelles Lernen,molekulardynamische Simulation, NH3/PH3,
flüchtige organische Verbindungen.
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Chapter 1

Introduction

1.1 Air quality and human health

Air pollution is the presence of substances in the atmosphere that are detrimental
to the health of humans and other living beings, which is at present one of themajor
global social and environmental issues accompanying with terrible consequences.
According to the world health organization (WHO), there are estimated seven mil-
lion people killed by the air pollution around the world each year [1]. The European
Union (EU) has identified sevenmain air pollutants (excluding greenhouse gases): ni-
trogen oxides (NOx), carbon monoxide (CO), particulate matter (PM), sulfur dioxide
(SO2), ozone(O3), ammonia (NH3), and volatile organic compounds (VOCs) [2].

Among these pollutants, NH3 is an inorganic compound widely utilized in many
industrial processes, including manufacturing, food processing, refrigeration sys-
tems, fertilizer production, etc [3]. However, even exposure to low concentrations
of NH3 adversely affects human health [4]. It irritates the eyes, the skin, and the res-
piratory tract if its concentration is exceeding the threshold value of 25 ppm in the
environment [5]. Analogous to NH3, phosphine (PH3) is a colorless and, flammable,
toxic gas, which is extensively utilized as a chemical dopant for silicon semiconduc-
tors and photovoltaic process applications in the semiconductor industry [6], as well
as for the fumigation of durable agricultural commodities in the farming industry,
such as cereal grain, pulses, tobacco and dried fruits, etc [7]. Nevertheless, PH3 is
extremely toxic and exhibits an acute lethal effect on humans and animals by in-
hibiting aerobic respiration at even extremely low concentration. To protect people
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Figure 1.1Major impacts of environmental pollution on human health [9].

from excessive NH3 and PH3 exposure at their work place, the American Occupa-
tional Safety and Health Administration (OSHA) has set the permissible exposure
value for NH3 as 50 ppm and for PH3 as 300 ppb over an 8h work-shift per day, or
40h per week, respectively [8].

Another category of air pollutant, volatile organic compounds (VOCs), are organic
chemicals with high vapor pressure at room temperature, among which some are
prominent and representative indoor pollutants, such as benzene, toluene, ethyl-
benzene, xylene (BTEX), formaldehyde, acetaldehyde, etc [10]. The Unites States
Environmental Protection Agency (U.S. EPA) estimates that the VOCs level in indoor
air is typically 2-5 times higher than those of outdoor air [11]. Commonplace items in
our dwellings such as building materials, paints, and furniture, cleaning agents and
cosmetics etc., are potential sources of VOCs. Nevertheless, considerable evidence
suggests that a substantial number of these VOCs could cause adverse health ef-
fects, including sensory irritation, respiratory symptoms (asthma, allergy, etc.), and
even cancer [9], as shown in Fig. 1.1. Indoor air quality of residential units and work-
places has been a serious concern since we human beings spendmore than 80% of
lifetime indoors, including domestic residences and working places [12].
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Figure 1.2 Overview of gas sensor applications.

Gas sensors play vital roles in monitoring and detecting hazardous gases, and
ensuring public safety, air quality, or analyzing environments throughout many dif-
ferent fields [13], as summarized in Fig. 1.2. They are helpful not only in monitoring
toxic gases in the atmosphere emitted from industry, but also in the control of in-
door air quality (such as working places, indoor household) [14], and safety in the
car. Their application is virtually countless in the industry and span across a lot
of industrial branches, including automotive, underground mining, gas and oil in-
dustry, petrochemical industry, etc [15]. In agriculture, they are widely utilized as
well, including plant/animal diagnostics, CO2 gas monitoring, soil and water testing,
meat/poultry inspection, etc [16]. Moreover, in aerospace aircraft, gas sensors are
helpful to monitor the concentration of oxygen, carbon dioxide, and toxic gases in
the environment atmosphere [17]. In military field, gas sensors facilitate the detec-
tion of chemical, biological, and toxin warfare agents, etc [18]. In the food process-
ing industry, they are dedicated to ensure the food quality by detecting particular
odors, which are released from rotten or spoiled food [19]. Another important ap-
plication is to detect dangerous substances (e.g., explosive, flammable, combustible
gases, etc.) [20], and maintain security and safety of the general public (e.g., public
transportation, airline transportation, etc.). As an emerging application field, dis-
ease diagnosis via detection of disease-related VOCs using gas sensors (e.g., breath
analysis) is attracting extensive attention currently. Various demonstrations have re-
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cently been published, such as lung cancer [21], SARS-COVID-19 [22], diabetes [23],
Alzheimer’s [24], and Parkinson’s disease [25].

During most of the aforementioned applications, gas sensors are capable to be
interfaced with a control system so that emergency measures could be taken au-
tomatically [26]. Moreover, they could sound an alarm to operators in the working
area where the leak is occurring, alarming them to evacuate from the dangerous
district [27]. In this manner, the application of gas sensors could prevent accidents
caused by gas leakages, thereby saving lives. Therefore, the development of highly
efficient, sensitive, reliable, low-cost gas sensors has been of great significance for
improving the work safety and life quality.

1.2 Gas sensors

Typically, gas sensors consist of a receptor component as well as a transducer
component [28], as schemed in Fig. 1.3. The receptor represents sensing materials,
which upon exposure to the analyte gas could give rise to some change of its own
physical properties, such as conductivity, permittivity, work function, mass, etc. or
emit heat or light [29]. The transducer component, on the other hand, is responsible
for converting such a variation into an electrical signal (e.g., sensing response) like,
current or voltage [30]. The sensor architecture is determined by the transducer
utilized, while the receptor is generally integrated into the transducer [31].

According to the operating principle of the transducer, there are six general cate-
gories of gas sensors, including electrochemical (EC), optical, mass-sensitive, calori-
metric, magnetic, and electrical type sensors [32], as illustrated in Fig. 1.4. Electro-
chemical gas sensors are those sensors, in which the gas molecules interact with
the sensing electrodes associating an electrochemical reaction event (e.g., oxida-
tion/reduction reaction) and this event could be further converted into an electri-
cal signal [33]. Based on the signal output, electrochemical gas sensors could be
classified as potentiometric, amperometric and conductometric type gas sensors.
Electrochemical gas sensors are extensively utilized to detect oxygen in automotive
application [34]. Optical gas sensors rely on the detection of changes of optical phe-
nomena, such as light intensity, color or emission spectra, upon the analyte gas
interacting with sensor receptor [35]. In accordance with applied optical properties,
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Figure 1.3 Schematic diagram of electrical gas sensor working principle. Gas molecules in-teract with the receptor (sensing materials), altering its physical properties, such as conduc-tivity (σ), permittivity (ε) and work function (ϕ). The transducer component is responsible toconvert the alternated physical properties into the variation of electric parameters, such asresistance (R), capacitance (C) and inductance (L). Finally, the circuit connected to the sensorgives rise to the sensing signal, which is in either current (I) or voltage (V) [30].

optical gas sensors could be further subdivided into several categories, such as ab-
sorbance type (e.g., non-dispersive infrared gas sensor, NDIR), reflectance type, lu-
minescence type, fluorescence type, refractive index type, optothermal effect type
and light scattering type gas sensors [36]. For instance, the infrared gas sensors
detect trace gases by measuring the absorption of an emitted infrared light source
through an air sample [37]. Optical gas sensors are widely utilized to detect carbon
dioxide as well as a broad range of combustible gases [38]. Mass-sensitive gas sen-
sors convert the change of mass at a specifically modified surface due to the gas
adsorption on the receptor, into the change of a property of the substrate material
[39]. Mass-sensitives gas sensors generally involve piezoelectric (e.g., quartz crystal
microbalance, QCM) and surface acoustic wave (SAW) techniques [40, 41].

Calorimetric gas sensors interpret the temperature changes of receptors, which
are generated by chemical reactions or adsorption of analyte gas, into an electri-
cal signal [42]. They involve catalytic (catalytic bead, pellistors) [43], thermoelectric
and pyroelectric types, which are extensively used to detect combustible gases [44].
Magnetic gas sensors rely upon the change of paramagnetic properties of an an-
alyte gas, which are represented by some types of oxygen detectors [45]. Finally,
electrical gas sensors are the most popular types, in which there are no electro-
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Figure 1.4 Classification of gas sensors based on the transductionworking principles, includ-ing electrochemical (EC), optical, mass-sensitive, electrical, calorimetric and magnetic typesensors.

chemical reaction events occurring, instead, the signal arises from the change of
electrical properties of receptor (sensing materials) owing to the surface interaction
with analyte gas (e.g., charge transfer, reversible redox process, etc.) [46]. A large
group of gas sensors are contained in the family of electrical gas sensors, such as
chemiresistive type (e.g., metal oxide, metal, polymer, one-dimensional material,
twO dimensional material, or semiconductor conductometric sensors, etc.), capac-
itive type, and semiconductor type (e.g., work-function, Schottky barrier, FET, etc.),
as shown in Fig. 1.5.

So far, numerous gas sensors have been developed based on the aforemen-
tioned principles, nevertheless, the majority of gas sensors exhibit some common
drawbacks, such as relatively high cost, poor sensitivity and selectivity, sophisticated
design, a need for additional equipment, or lack of portability [47]. Among them,
chemiresistive sensors, working on the mechanism of variation in resistance upon
exposure to analyte gases [42], have attracted significant attention and become
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Figure 1.5 Classification of electrical gas sensors based on the output signal of the transduc-ers, containing chemiresistive, capacitive and semiconductor type sensors.

a hot research topic due to their multiple advantageous characteristics, such as
simple fabrication/circuitry, easy operation, high sensitivity, fast response/recovery,
good stability, low cost, ability to detect a wide spectra of gases, and compatibility
with miniaturization as well as integration for portable applications, etc [48]. The
typical structure of a chemiresistive type gas sensor is depicted in Fig. 1.6, which
comprises four essential components: sensing materials, interdigitated electrodes
(IDE), insulating substrate (e.g., SiO2, ceramic, etc.), and a heater element.

In order to evaluate the performance of different gas sensors, some critical qual-
ity indicators have to be taken into consideration, such as sensitivity, selectivity, re-
sponse and recovery time, limit of detection (LOD) and resolution, stability, and
working temperature [49]. In a chemiresistive gas sensor, sensitivity (S) refers to
the relative change of resistance upon exposure to analyte gas [50], which could be
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Figure 1.6 Typical structure of chemiresistive type gas sensor, containing four components,interdigital electrodes (IDE), sensing materials, silicon substrate and heating element.

descripted as the ratio between the absolute resistance change upon exposure to
analyte gas and the resistance under the reference medium (e.g., ambient air):

S(%) = (Rg −Ra) / Ra × 100 (1.1)

Where Ra is the resistance of gas sensor under the reference medium, or termed
baseline resistance, and Rg is the resistance of gas sensor upon exposure to the
analyte gas.

Selectivity indicates the ability of gas sensors to differentiate the group of target
gases or single gas in the gas mixture [51]. Response time characterizes the pe-
riod during which the resistance value increases/decreases by a certain percentage
(e.g.,63.2% or 90%) of its baseline value at the certain gas concentration [52]. Like-
wise, recovery time determines the period required for the gas sensor to recover
to its baseline value fully or partially (e.g., 90%) after switching off the analyte gas
supply. The limit of detection represents the lowest gas concentration that could be
distinguished from thenoise [53]. The lowest concentrationdifference, corresponds
to the resolution of the gas sensors. The stability denotes the ability to provide re-
producibility of measurement results in a prolonged usage.
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Figure 1.7 Evolution of sensing material for chemiresistive type gas sensors since the firstcommercial gas sensor (SnO2) in 1971.

1.3 Overview of chemiresistive type gas sensors

So far, chemiresistive gas sensors have been used for over 50 years, as summa-
rized in Fig. 1.7. In 1962, Seiyama demonstrated the sensing characteristics of ZnO
thin film relying on simple electrical devices [54]. When the sensor operated at 485
oC, the sensing response to propane was 100 times higher than the thermal con-
ductivity detector utilized at that time. In 1967, Shaver reported the sensitivity of a
number of semiconductormetal oxides (e.g., WO3, MoOx, Cr2O3, TiO2, Fe2O3, Nb2O5,
NiO, etc.) could be increased significantly by introducing the noble metals as for-
eigner additives, such as Pt, Pd, Ir, Rh, etc [55]. In 1971, Taguchi fabricated and
patented the first SnO2 based chemiresistive gas sensors for practical application,
and meanwhile, he founded Figaro Inc. to commercialize these devices, which were
widely used for domestic gas alarms of fire protection [56]. In his work, he found
that SnO2 exhibited a lot of merits for gas sensing application compared with the
other metal oxides, such as higher sensitivity, low working temperature, and ther-
mal stability. The semiconductor metal oxides for the gas sensing application are
categorized into n-type and p-type, among which the n-types metal oxides gas sen-
sor accounts for the majority [57]. The sensing characteristics for both types of gas
sensors are reviewed in Table. 1.1.

The resistances of n-type semiconductormetal oxide-based gas sensors, inwhich
the electrons are the majority carriers, decrease when they are heated, because
electrons on the valence band are excited to the conduction band, the number of
electron charge carriers increase [65]. When the metal oxides materials are heated
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Table 1.1 Sensing characteristics of both types (n-type, p-type) semiconductor metal oxidegas sensors. Eg: band gap; T : work temperature [58–64].
Metal oxide Eg(eV) T (oC) Pros Cons
SnO2 3.6 200-500

High sensitivity
Low selectivityLow LOD

Chemically stable

ZnO 3.37 300-500
Mechanical stable

Low selectivity
Chemically stable
High electron mobility
Suitability to doping
Non-toxicity

TiO2 3.1(rutile) 400–1000 Lower cross-sensitivity
Low selectivity
Unstable repeatability
Unstable stability

WO3 2.75 200 Fast response/recovery Low selectivityHigh sensitivity
CuO 1.2 200

Catalytic activity
Low selectivityHigh stability

Tolerance to humidity

NiO 3.6–4.2 200–600
Catalytic activity

Low selectivityWork at high temperature
Chemical stability
Good conductivity

Cr2O3 3.4 200
Catalytic activity

Low selectivityMechanical stable
Chemically stable

to different temperature T in the ambient air, various forms of oxygen ions are gen-
erated on the surface of metal oxides [66], such as O2

− (T=100-200 oC), O− (T=200-
300 oC), O2− (T >300 oC), as the adsorbed oxygen molecules withdraw electrons
from the conduction band of metal oxides [67]. This further results in a decrease
of the concentration of electron carriers, thus an increase of the resistance of gas
sensors. Upon exposure to the reducing gas, such as CH4, C2H4, CO, etc., the chemi-
cal reaction occurs between these oxygen ions (O2

−, O−, O2−, etc.) adsorbed on the
surface of n-type semiconductor metal oxides and the reducing gas [68], in which
electrons are released and retracted to the conduction band of the n-type semicon-
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ductor metal oxides, giving rise to a decrease of the sensor resistance, as illustrated
in Fig. 1.8 and Fig. 1.9.

Likewise, the sensor resistance of p-type metal oxide gas sensors decreases
when the temperature arises. In the ambient environment, p-type metal oxide gas
sensors, in which the holes are themajority carriers, generate more holes since oxy-
genmolecules are adsorbed on the surface ofmetal oxides and formoxygen ions by
withdrawing the electrons excited from the valence band [69]. In this step, the pop-
ulation of hole carries increase, resulting in the decrease of the sensor resistance.
Upon exposure to reducing gas, chemical reactions occur between oxygen ions and
reducing gas, and electrons are generated, which are poured into the valence band
of metal oxide and recombine with hole charge carriers [70]. The recombination
step causes a decrease of the population of hole charge carriers, and thus leading
to the increase of the resistance of p-type metal oxide gas sensors. As for the case
of exposure to oxidizing gases, the resistance change is inverse to the previous dis-
cussion.

Till now, metal oxides are one of the most popular, diverse, and most likely, the
largest group of sensing materials owing to their various merits, such as low cost,
facile fabrication, easy use, a wide spectrum of gas detection including combustible
gases and toxic gases [71]. The limitations for these sensing materials, however,
contain low selectivity, high working temperature, high power consumption, base-
line resistance drift, etc [72].

In the past 50 years, a myriad of novel sensing materials have been developed.
In 1983, Nylabder reported the application of polypyrrole (PPy) for the detection
of ammonia [73], which marked the first work of chemiresistive gas sensors using
conducting polymer materials. Besides, some other conducting polymers were also
widely investigated as sensing materials, such as polyaniline (PANI) [74], poly (3,4-
ethyleneedioxythiopene) (PEDOT) [75], etc. Navale reported the development of
highly sensitive PPy based gas sensors for NO2 detection at 10 ppm [76]. Xie de-
veloped PANI film-based gas sensor for NO2 detection and found the pure PANI
film prepared by Langmuir-Blodgett technique exhibit better sensitivity to NO2 than
PANI film prepared by self-assembly technique [77]. Seekaew presented the PEDOT
based gas sensor using ink-jet printingmethod, which demonstrated high response
and high selectivity to NH3 at low concentration (25-1000 ppm) at room tempera-
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Figure 1.8 Schematic diagram of sensing mechanism of n-type semiconductor metal oxidegas sensor in ambient air and reducing gas X (e.g., CO, CH4, C2H4, etc.) [13].

ture [78]. Conducting polymers-based gas sensingmaterials havemany advantages,
such as good sensitivity to redox-active gases, such as NH3, NO2, SO2, H2, H2S, and
VOCs, low work temperature (e.g., room temperature), goodmechanical properties,
easy modification, and simple synthesis [79]. The main drawbacks are instability,
irreversibility, and poor selectivity for long-term use [13]. Besides, the environment
humidity and temperature exert a great influence on their physical and chemical
properties since conducting polymers are usually thermally instable [80]. The con-
ductivity of pure polymer film is very low, in order to achieve a good conductivity
suitable for sensing applications, doping treatment is indispensable [81].

In the last decades, with the successful discoveries of a myriad of low dimen-
sional nanomaterials, such as nanoparticles/nanodots, nanowires/nanotubes, 2D
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Figure 1.9 The resistance evolution of n-type semiconductor metal oxide gas sensors withrespect to different conditions, such as operation temperature and exposure to reducinggas X (e.g., CO, CH4, C2H4, etc.)

materials, etc., considerable effort has been made to investigate these nanomate-
rials as sensing materials in chemiresistive type gas sensors. In 2000, Kong firstly
presented the development of single-walled carbon nanotubes (SWCNT) based gas
sensor for the gas detection (NO2 andNH3) and their work laid foundation of SWCNT
in the gas sensing application [82]. The resistance of the SWCNT based gas sensors
were observed increased or decreased dramatically upon exposure to gases such as
NO2 or NH3, respectively. Carbon nanotubes are very promising gas sensing mate-
rials due to their ultra-high surface-to-volume ratio, excellent conductivity and me-
chanical stability [83]. For example, they are compatible with B- and/or N- groups
doping, rending them widely utilized for the detection of a large range of gases [84].
In a similar manner, with the functionalization of polar groups, such as –COOH , car-
bon nanotube-based gas sensors exhibit a stronger response towards the VOCs
since the adsorption efficiency of the VOCs could be enhanced owing to the in-
termolecular interaction (dipole-dipole interactions, hydrogen-bonding interactions,
etc.) between the functional groups and the VOCmolecules [85, 86]. However, tech-
nological carriers make costly the fabrication of high quality and purity nanotubes,
resulting in commercialization impediments [87]. More recently, graphene emerged
as a new 2Dmaterial with exceptional properties that could also be exploited for gas
sensing applications, as it will be described next.
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In addition to employing single type sensing component as sensing materials, a

lot of hetero structure materials (more than one type of sensing components) have
been widely reported as gas sensing materials by modulating the factors affecting
the receptor function and/or transducer function of the host sensing materials. In
this case, it’s possible to complement the limitations of each sensing component
and maximize the merits of each sensing component. In this context, the receptor
function refers to the ability of the sensing materials to interact with the analyte gas
[88], while the transducer function concerns the ability to convert the signal caused
by the chemical interaction of sensing materials into electrical signal [89]. The phys-
ical contact surface between two different materials is defined as heterojunction.
Once the electrical contact is established at the heterojunction, the Fermi levels line
up to the same energy owing to the mismatch in chemical-potential, which results
in the charge transfer between these two different materials, further leading to the
formation of charge depletion layers [48]. For example, it has been widely reported
that an introduction of foreign particles such as noble metal nanoparticles (e.g., Pd,
Au, Pt, Ag, etc.), metal oxides (e.g., SnO2, CuO, TiO2, etc.) on the host sensing mate-
rials (e.g., conducting polymers, carbon nanotubes, graphene, etc.) can modify the
receptor function and enhance the sensitivity as well as the selectivity.

1.4 Graphene

Since its discovery by Geim and Novoselov in 2004, graphene, a two dimensional
(2D) single-atom-thick layer of sp2 hybridized carbon atoms arranged in a honey-
comb lattice, has been acclaimed as a miracle material owning to its extraordinary
properties [90]. It has ultrahigh Young’s modulus, excellent thermal conductivity
and electrical conductivity, superb optical transmittance, complete impermeability
to any gases [91]. In particular, graphene possesses remarkable ultrahigh charge-
carrier mobility at room temperature [92] and ultrahigh specific surface area [93],
whichmakes graphene a promising candidatematerial in highly sensitivity detection
applications.

To date, two distinct strategies have been developed for graphene synthesis:
exfoliating graphite towards graphene (termed ‘top-down’) and build-up graphene
frommolecular building blocks (termed ‘bottom-up’) [94], as shown in Fig. 1.10. The
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Figure 1.10Major synthesismethods of graphenebasedon top-downandbottom-up strate-gies [94].

top-down strategy generally includes mechanical exfoliation of highly oriented py-
rolytic graphite (HOPG) [95], liquid phase exfoliation of graphite [96], chemical ox-
idation/exfoliation of graphite followed by reduction of graphene oxide (GO) [97],
etc. The bottom-up approaches for graphene synthesis involves epitaxial growth
on metallic substrates by means of chemical vapor deposition (CVD) [98], thermal
decomposition of SiC [99], organic synthesis based on precursor molecules [100],
etc. These synthesis methods could be categorized by the quality of the resulting
graphene and its potential applications [91]:

• Graphene or chemically reduced/modified graphene oxide flakes for compos-
ite materials, conductive paints, sensors, etc.

• Planar graphene for lower-performance active and non-active devices.
• Planar graphene for high-performance electronic devices.

Theproperties of a particular gradeof graphenedependon the synthesis approaches,
the quality of material, defects, etc., as illustrated in Fig. 1.11.
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Figure 1.11 Comparison of various methods of mass-production of graphene in terms ofquality and price [91] [94].

1.5 Graphene-based gas sensors

The first graphene-based ammonia gas sensor was reported by Andre Geim’s group
employing the micromechanical cleavage of graphite on an oxidized silicon sub-
strate in 2007 [101]. The initial response of 4%upon exposure to 1 ppmNH3 at room
temperature was followed by saturation, and the sensor could recover to the initial
state by annealing at 150 oC in vacuum. In 2009, the follow-up work was carried
out by Johnson’s group, confirming that the intrinsic response of graphene towards
ammonia gas, however, was surprisingly small (1%) even upon exposure to 1000
ppm NH3 [102]. First principles calculations showed that the residue contamina-
tion introduced from conventional nanolithography process could play a significant
role in enhancing the response of graphene. The calculation results indicated that
there exists weak bonding (around20 meV) and charge transfer (around 0.027 e−)
between NH3 and graphene [103]. The aforementioned work inspired a pathway to
facilitate the application of graphene towards gas sensing via intentional functional-
ization.
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Thereupon, chemicallymodified graphene-based ammonia sensors gainedpromi-
nence, such as reduced grapheneoxide (rGO) based ammonia sensors [104], rGO/metal
particles hybrid based ammonia sensors [3], rGO/metal oxide hybrid ammonia sen-
sors [105], rGO/polymers hybrid material based ammonia gas sensors [106], etc. It
is well established that the original perfect atomic lattices of graphene are poten-
tially sacrificed during the chemical modification process owing to the formation of
covalent bonds introducing functional groups, which severely damages the intrinsic
electrical properties of graphene [107]. Additionally, chemical modifications usu-
ally require harsh reaction conditions as well as complex processing [108]. Some
works on pristine graphene-based ammonia sensors were reported as well, involv-
ing vertically aligned graphene-based ammonia sensors [109] and chemical vapor
deposited (CVD) graphene-based ammonia sensors [110]. CVD strategy can yield
high quality graphene whilst it comes along with several disadvantages, for exam-
ple, expensive and sophisticated equipment, toxic gaseous by-products and com-
plicated transfer steps, etc [102]. These aforementioned limitations of rGO or CVD
graphene seriously restrict the efficient commercial application of graphene-based
ammonia sensors. Thus, graphene-based gas sensors with the following character-
istics, e.g., facile fabrication, environmentally friendly process, biocompatible syn-
thesis, low cost, and scale-up capability, are highly in demand at this moment.

1.6 Scope of this thesis

In this work, a facile, environmentally friendly, biocompatible, and compatible to
mass production, low-cost approach to synthesize graphenedispersions, which could
be utilized as gas sensing materials in chemiresistive format. The developed gas
sensors utilizing specifically functionalized graphene exhibit excellent performance
towards NH3 detection at room temperature in terms of sensitivity. In combination
with machine learning techniques, the selectivity could be significantly enhanced,
which demonstrated excellent discriminability towards volatile organic compounds,
NH3/PH3, etc. Thedeveloped sensing platformmay facilitateminiaturization of smart
gas sensors, digitization of odors, and distinction of various gases in numerous
emerging applications. The structure of this thesis is as follows:
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• The chapter 2 introduces thematerials andmethods involved in this work. The
instruments servicing for material preparation, and the methods of graphene
preparation, sensor fabrication, and material characterization are detailed in
this section. Two important techniques employed in this work, molecular dy-
namic simulation tool and machine learning approach are briefly introduced
as well.

• The chapter 3 presents the simulation work on the investigation of the sta-
bilization mechanism of functionalized graphene in dispersant aqueous so-
lution. In terms of FMNS morphology on graphene surface, the potential of
mean force of functionalized graphene flakes and the surface coverage of
graphene flakes, the underlying stabilization mechanism are elucidated.

• The chapter 4 demonstrates the experimental work on the development of
FMNS functionalized graphene-based gas sensor and the sensing performance
towards NH3 detection. In addition, the role of FMNS on NH3 gas sensing and
the sensing working mechanism are discussed, respectively.

• The chapter 5 presents the discrimination and identification performance of
the developed graphene-based e-olfaction platform towards 4 different odors
assisted with machine learning techniques. In addition to the sensing mea-
surement towards individual odor, the sensing response towards binary odor
mixture is discussed as well and compared with the human olfactory percep-
tion exposed to odor mixtures.

• The chapter 6 is a practical application example for graphene-based e-olfaction
towards industrial gases (PH3, NH3). The performance of the e-olfaction is eval-
uated in term of sensing sensitivity, precision, selectivity, etc. Meanwhile, the
potential mechanism of the enhance selectivity is discussed viamolecular dy-
namic simulation.

• The chapter 7 finalizes this thesis with conclusions and outlook, containing
several open issues that have to be addressed before the real practical appli-
cation of the e-olfaction sensing platform.
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Materials and methods

2.1 Materials

The materials utilized in this work for graphene dispersion preparation are summa-
rized in the Table. 2.1.

2.2 Instruments

The instruments used for graphene dispersion preparation are summarized in the
Table. 2.2.

2.3 Graphene dispersion preparation

In this work, the liquid phase exfoliation (LPE) method is employed to synthesize
graphene dispersion as sensing materials, which is low-cost and suitable for mas-
sive production [96]. The dispersants not only could assist the exfoliation process,
but also act as stabilizer to keep graphene well dispersed in aqueous media. In
comparison to ”modified Hummers’ method”, graphene flakes are functionalized
non-covalently by the LPE method, which largely preserves the excellent electri-
cal properties of graphene [107]. Depending on the specific work, different dis-
persants were used to achieve well stabilized graphene dispersions with different
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Table 2.1Materials in this work.

Materials Specifications Supplier company
Graphite crystalline, -20+84 mesh, 99.9% Alfa Aesar
FMNS Riboflavin 5’-phosphate sodium salt,73-79%, fluorimetric, C17H20N4O9PNa

Sigma-Aldrich
Eucalyptol 99.0%, C10H18O Sigma-Aldrich
2-nonanone 99.0%, C9H18O Sigma-Aldrich
Eugenol 98.0%, C10H12O2 Sigma-Aldrich
2-phenylethanol 99.0%, C8H10O Sigma-Aldrich
CuPc Copper phthalocyanine-3,4 ’, 4 ”, 4 ”’- tetrasulfonic acid tetrasodium salt,C32H12CuN8O12S4Na4

Sigma-Aldrich

APTS 8-Aminopyrene-1,3,6-trisulphonicacid trisodium salt, C16H8NO9S3Na3
VWR

NH3 50 ppm, 10000 ppm Air Products
PH3 50 ppm Air Products
NO 1000 ppm Air Products

functional groups, such as flavin mononucleotide sodium (FMNS), 8-aminopyrene-
1,3,6-trisulphonic acid trisodium salt (APTS), or copper phthalocyanine-3,4’, 4”, 4”’-
tetrasulfonic acid tetrasodium salt (CuPc). With different dispersants, the prepara-
tion protocols are almost the same. The dispersant selection is determined by the
specific application in this thesis work, for instance, FMNS was utilized to develop
graphene-based ammonia gas sensors since it could bind ammoniamolecules, APTS
was applied to develop graphene-based odor sensors since it intended to form inter-
molecular interaction with odor molecules, CuPc was suitable to develop graphene-
based phosphine gas sensor since phthalocyanine derivatives is sensitive to detect
analyte gases at ultra-low concentration.

To be specific, the protocol to prepare graphene dispersion with FMNS is demon-
strated as an example, which is partially frommy published article [111]. The typical
procedure for graphene exfoliation was as follows: 5 mL FMNS aqueous solution at
a concentration of 1mg/mLwas added into 5mL graphite powder aqueous solution
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Table 2.2 Instruments in this work.
Instruments Model and company
Horn-type sonicator Branson Digital Sonifier, Model 250-D, US
Centrifuge Eppendorf, MiniSpin plus, Germany
Bath sonicator VWR ultrasonic cleaner, type: USC 300 TH, HF 45 kHz, 80 W,US
Tip probe station Karl Suss MicroTech, Garching, Germany
Source Meter Keithley, 2604B, US
Function Generator Sony Tektronix, AFG320, US
Digital Oscilloscope Tektronix, TDS3014B, US
MFC Mass Flow Controllers, GF040C, Brooks Instrument, US

at a concentration of 30 mg/mL, then the mixture was sonicated for 2 h incubated
in an ice bath utilizing a horn-type sonicator at a 50% amplitude. Afterwards, the ob-
tained solution was left to stand overnight. To remove the excess FMNS, the suspen-
sions were centrifuged at 14,500 rpm for 2 min, and the top 80% supernatant was
removed. The sediment was then re-dispersed in deionized (DI) water to the original
volume followed by sonication for 10min in an ice bath. The re-dispersion was then
executed following the former step once time. Subsequently, the obtained suspen-
sions were centrifuged at 4,000 rpm for 2 min, and the top 50% supernatant was
used as FMNS functionalized graphene (G-FMNS) dispersion for further treatments,
such as dilution treatment and freeze-drying treatment. The sediment containing
the large platelets and un-exfoliated graphite particles was discarded.
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2.4 Sensor device fabrication

The development of gas sensor device contains two main steps: fabrication of in-
terdigital electrodes (IDEs) and fabrication of sensing elements. IDEs are fabricated
employing a standard photolitography process as reported in our previous publica-
tion [112]. Firstly, the IDEs pattern were fabricated on Si substrate (p-type, 300 nm

SiO2) using photolithography techniques. 15 nm chromium and 100 nm gold were
then deposited on the substrate via thermal evaporation and lift-off process. Af-
ter that, the bare devices were cleaned with acetone and isopropanol, respectively.
Lastly, the devices were heated to 100oC for 5 min in order to remove residual sol-
vents and naturally cooled down to room temperature. The fingerwidth and the gap
size of the IDEs were 4 µm and 3 µm, respectively. The area of the whole chip was
2 cm2, which contained two pads (18 mm2) and IDEs. IDEs themselves were used
active area for sensing materials deposition in next step. The fabrication of IDEs in
the whole thesis work were carried out by my colleague Luis Antonio Panes-Ruiz.

While many authors employ non-deterministic methods to deposit graphene
and other sensing materials on IDEs, such as drop casting, dip coating, etc., the al-
ternating current (AC) induced dielectrophoresis (DEP) approach was employed to
transfer graphene flakes on the IDEs in a deterministic way to improve the yield and
the quality of the contact. The deposited graphene flakes could bridge the adjacent
Au electrodes forming a homogeneous flake network [113]. The DEP parameters,
including the peak-to-peak voltage (Vpp), frequency of applied signal (f), and pro-
cessing time (t), exert a great influence on the morphology of deposited materials.
The optimal DEP parameters were as: Vpp = 10 V, f = 200 kHz, and t = 30 s. A typical
DEP process was as follows: 10 µL dispersion was pipetted onto the IDE chip in the
probe station (Karl Suss, Garching, Germany) for 30 s followed by rinsing with DI
water and drying with a N2 gun. The fresh sensor chip then could be ready for use.

2.5 Graphene characterization techniques

In this work, functionalized graphene flakes were characterized by the below tech-
niques, including Raman spectrum, Scanning Electron Microscope (SEM), Atomic
ForceMicroscopy (AFM), UV-VIS absorption spectra, andAttenuated Total Reflectance-
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Table 2.3 Characterization instruments.
Instrument Model and company
Raman spectrum Renishaw inVia BASIS spectrometer system, laser excitationwavelength 532 nm, UK
SEM ZEISS, GeminiSEM 500, Germany
AFM AFM Multimode 8, Bruker, Germany tapping mode
UV-VIS absorption spectra Agilent Cary 60 Spectrophotometer
ATR-FTIR spectrum IRAffinity-1S, Shimadzu, Japan, transition mode

Fourier Transform Infrared (ATR-FTIR) spectrum, etc. Raman spectrum was em-
ployed to characterize the quality of achieved graphene, as well as the layer informa-
tion. SEMwas utilized to visualize themorphology of functionalized graphene via liq-
uid phase exfoliation and thedeposited grapheneonelectrodes. AFMwasutilized to
characterize the layer information of the flakes. UV-VIS absorption spectra and ATR-
FTIR spectrum were employed to verify the successful functionalization. The AFM
characterization was done by Dr. Huanhuan Shi. The UV-VIS absorption spectra, Ra-
man spectra characterizationwas done bywas done byDr. Vyacheslav Khavrus. The
SEM characterization were done by me with the supervision of Dr.Markus Löffler. I
am very thankful for their support. The detailed specification of these characteriza-
tion techniques is presented in Table. 2.3.

2.6 Gas sensing measurement

The gas sensing measurements were implemented on a custom-made gas sensing
setup, as schemed in Fig. 2.1, or after slight modification of the gas sample-delivery
system. The setup contains three parts: sample-delivery system, gas sensing re-
action chamber and signal acquisition system. Both analyte and carrier gases were
introduced through the sample-delivery system and their flow rates were controlled
with mass flow controllers (MFC). The flow rates ratio of both were determined by
the target concentration of the analyte gas set under the frame of pre-defined ex-
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perimental tasks. A complete sensing test contained both exposure phase as well as
recovery phase. In the exposure phase, the carrier gas acts in dual roles, delivering
analyte gas molecules to the gas chamber as well as diluting it to a certain desired
concentration. The diluted analyte gas is delivered into the gas chamber and then
interacts with the sensingmaterials on the sensor device due to the adsorption reac-
tion, which further induces the resistance change of the sensor device. Meanwhile,
the current signal of the sensor is monitored and displayed on the server PC. All
these current information with respect to the operation time is recorded and saved
for further use.

For instance, in the NH3 sensing experimental task [111], the gas sensing pro-
cedure was as below. The exposures to analyte gas were followed by a recovery
time under pure N2 flow (2000 sccm/min). In this thesis work, in order to shorten
the recovery time of graphene-based gas sensors, a larger flow rate (e.g.,2000 sc-
cm/min) of pure N2 was applied. A constant direct voltage of 0.1 V was applied to
the sensors and the current was recorded in a real time with a source meter. The
normalized sensing response was employed to evaluate the sensing characteristics
of all gas sensors [114], which is defined as the relative change of sensor resistance
and calculated using the below formula:

S(%) = (R(t) −R(0)) / R(0) × 100 = (I(0) − I(t)) / I(t) × 100 (2.1)

Where∆R(t) is the resistance difference before analyte gas exposure and during
analyte gas exposure, t is the time,R(0) and I(0) are the resistance and current before
analyte gas exposure (t=0), respectively. I(t) is the current monitored during the
exposure period. The achieved sensing response S was used as a critical parameter
to evaluate the performance of the sensor device.

2.7 Molecular dynamic simulation method

In this work, in order to elucidate the underlying mechanism behind the exper-
imental observation, molecular dynamic simulations (MDS) were conducted. All
the molecular dynamic simulations were performed on GROMACS 5.1.2 platform
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Figure 2.1 Gas sensing measurement set-up [112].

[115]. MDS solves Newton’s equations ofmotion for a systemof N interacting atoms
[116, 117]:

mi
∂2ri
∂t

= Fi, i = 1, 2, 3, . . . . . . .N (2.2)
The forces are thenegative derivatives of the potential functionV (r1, r2, r3, . . . .rN ):

Fi = −∂V

∂ri
, i = 1, 2, 3, . . . . . . .N (2.3)

Where mi is the mass of atom i, ri is the position vector of atom i , Fi is the force
of atom i, and V is the potential energy of the system, which could be described by
forcefield, such as OPLS-AA force field [118], GROMOS 54a7 force field [119], etc.

The equations are solved simultaneously in small time step, such as 2 fs. The
system runs for some time with the temperature and pressure remaining at the
required values [120, 121], and the coordinate’s information are written to an out-
put file at regular intervals. The coordinates are function of time representing the
trajectory of the system. After initial changes, the system usually reaches an equi-
librium state after some time. By analyzing over an equilibrium trajectory, many
macroscopic properties can be extracted from the output file [122].
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In this thesis, there were some specific simulation tasks distributed in each chap-

ter. In chapter 3, simulation work was performed to investigate the stabilization
mechanism of exfoliated graphene in aqueous solution. In chapter 4, simulation
work was done to demonstrate the interaction between NH3 molecules and the
functionalized graphene in order to elucidate the sensing mechanism of the NH3

gas sensor. In chapter 5, the interaction between odormolecules and the functional-
ized graphene was modeled to demonstrate the competing adsorption mechanism
between different odor molecules and functionalized graphene. In chapter 6, the
interaction between NH3(PH3) gas molecules and functionalized graphene was sim-
ulated to explain the analyte gases adsorption behavior on functionalized graphene
surface.

2.8 Machine learning technique

In this work, machine learning techniqueswere employed to preprocess the sensing
signal data as well as to perform odor/gas classification tasks to enhance the selec-
tivity of gas sensors. Prior to conduct odor/gas classification with machine learning
tools, preprocessing of the original data was carried out in order to extract specific
features for each analyte gas as below procedures:

• Firstly, the time-dependent current information, consisting of 24 repetitions,
was transformed into time-dependent resistance according to Ohm’s Law.

• Then, the whole sensing profile was split up to 24 individual measurement
profiles. Each profile was composed of the analyte gas exposure profile and
analyte gas flushing profile.

• Thirdly, the fraction change of sensor resistance was derived and the sensing
response profile was obtained.

• Afterwards, data normalization was carried out using L2 norm algorithm.
• Finally, multiple features were extracted from each response profile and rep-
resented for each analyte gas.
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Table 2.4 Confusion matrix table.
Actual Values
Positive Negative

Predicted Values
Positive True Positive False Positive

(TP) (FP)

Negative False Negative True Negative
(FN) (TN)

Following that, the machine learning techniques were applied to classify these
data, such as supervised machine learning and unsupervised machine learning.The
main distinction between them is the use of labeled dataset. Supervised learning
uses labeled input and output data while unsupervised learning not. PCA and LDA
are twomost popular algorithms of unsupervised learning and supervised learning,
respectively. Both algorithms aim to look for linear combinations of the features
which best explain the data. PCA is to find the directions that maximize the variance
in a dataset. LDA is to find the directions that maximize the separability between
groups. In this thesis work, on one hand, clustering analysis was performed for the
feature data of all the odors/gases by unsupervised machine learning. On the other
hand, part of the feature data (e.g., 75% data) was employed to train the classifier
algorithm and the rest (e.g., 25% data) was used to verify the identification perfor-
mance of gas sensor towards a variety of gases using supervised machine learning
techniques.

In order to evaluate the clustering performance or classification performance
of the sensors towards different gases coupled with machine learning techniques
in this work, several performance indicators were considered, such as, accuracy,
precision, sensitivity, specificity, F1-score, purity, etc. These performance metrics
were calculated based on the confusion matrix, as shown in Table. 2.4. In our work,
the above machine learning analyses were conducted by a self-developed script
on Python platform. Here are some definitions of the performance indicators for
machine learning techniques evaluation [123, 124].
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• Accuracy denotes the ratio of the number of correct predictions to the total
number of input samples achieved by classifier algorithms.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.4)

• Sensitivity denotes the ratio of the number of correct positive results to the
number of all relevant samples that should have been identified as positive.

Sensitivity =
TP

TP + FN
(2.5)

• Specificity denotes the ratio of negatives that are correctly identified.

Specificity =
TN

TN + FP
(2.6)

• Precision denotes the ratio of the number of correct positive results to the
number of all predicted positive results.

Precision =
TP

TP + FP
(2.7)

• F1-score indicates the harmonic mean of the sensitivity and the precision.

F1− score = 2× TP

2TP + FP + FN
(2.8)



Chapter 3

Stabilization mechanism of aqueous
graphene dispersions

In this chapter, the stabilization mechanism of amphiphilic dispersants functional-
ized graphene in aqueous solution are investigated via classical molecular dynamic
simulation. Particularly, flavinmononucleotide sodium (FMNS), will be demonstrated
as an example of amphiphilic dispersants. This simulation work provides a basis for
themechanismunderstanding of functionalized graphene by FMNS-like dispersants
strategy and paves a path to design highly efficient and biocompatible dispersants
for liquid phase exfoliation of defect-free, few layers graphene. The content of this
chapter is largely based on my published article [125].

3.1 Motivation

Graphene shows great promise for biomedical and sensing applications, especially
for drug delivery, bio-sensing and tissue engineering [126]. However, one of the
big challenges remains producing high-quality pristine graphene. So far, numer-
ous bottom-up and top-down approaches have been developed, such as microme-
chanical cleavage [90], chemical vapor deposition [127], epitaxial growth on SiC
substrates [128], electrochemical approaches [129], and the chemical reduction of
grapheneoxide [130]. Among those strategies, the liquid-phase exfoliation of graphene
from graphite, assisted by dispersants, has gained prominence recently [131]. This
method could provide stabilized graphene in aqueous solution with high yield and
goodquality, whichmay advance thebio-medical and sensing applications of graphene
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Figure 3.1 Schematic of FMNS molecules. (a) Chemical structure of FMNS. (b) Ball-and-stickmodel representation of FMNS. The isoalloxazine ring group is defined as the FMNS tail,while both the ribitol group and phosphate group are defined as the FMNS head. Colorcode: nitrogen (blue), oxygen (red), carbon (cyan), hydrogen (white) and phosphorous (tan).

[132, 133]. In this context, various dispersants have been investigated. Neverthe-
less, most of dispersants are not biodegradable or biocompatible [134, 135].

Very recently, S. Villar-Rodil et al. reported an innocuous and readily available
derivative of vitamin B2, flavin mononucleotide sodium (FMNS, C17H20N4O9PNa),
schemed in Fig. 3.1, as a highly efficient biocompatible dispersant for the exfoliation
and production of stable aqueous dispersions of defect-free, few-layer graphene
flakes [136]. The attained graphene concentration in aqueous solution was up to
50 mg/mL using a relatively low amount of FMNS compared with abovementioned
dispersants, and the processed graphene films presented excellent electrical con-
ductivity [136]. This benign and readily available biocompatible dispersant outper-
formed the other biomolecules in the preparation of stabilized graphene in aque-
ous solution, and showed great potential for bio-medical and sensing applications
[137, 138]. However, the stabilization mechanism of the FMNS dispersant for the
functionalized graphene has not yet been fully addressed. In this work, classical
molecular dynamics simulations will be performed to gain deep information on the
influence of the dispersants on the stabilization of functionalized graphene in aque-
ous dispersion.
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3.2 Modelling

The simulationworkwas divided into twoparts: the simulation of FMNSmorphology
on monolayer graphene flakes, and the calculation of the PMF of pairs of graphene
flakes coated with FMNS. All calculations were performed on platform GROMACS
5.1.2 [115]. Water molecules and FMNS molecules were modelled adopting the
SPC/E model [120], and the OPLS-AA force field [118], respectively. The molecular
topology of FMNS was obtained from the LigParGen server by submitting the PDB
file of the FMNS (Na+ excluded) [139]. Force field calculations were performed using
1.14 ∗ CM1A method for charged molecules [140]. Bond lengths in the FMNS were
constrained applying the parallel version of the LINCS algorithm while the bond
lengths and angles in water molecule were constrained applying the SETTLE algo-
rithm [141]. A monolayer graphene flake (size 4 nm × 4 nm, containing 680 carbon
atoms) was selected as a representative monolayer graphene system. The position
and orientation of the flakes were constrained during the simulation, wherein all
carbon atomswere treated as uncharged Lennard-Jones (LJ) spheres using LJ param-
eters from the literature [142]. Van der Waals attraction and hard-core steric repul-
sion were treated with a cut-off distance of 1.0 nm [143]. Long-range electrostatic
interactions were treated utilizing the particle mesh Ewald (PME) approach [144].
The simulationwas conducted under theNPT ensemble (the number of atoms, pres-
sure of 1 bar, temperature of 300 K , are constant) to mimic the experimental con-
ditions. The velocity-rescaled Berendsen thermostat was applied to maintain a con-
stant temperature [121] and the Berendsen barostat was applied to maintain a con-
stant pressure in the system [120], respectively. Periodic boundary conditions were
applied in all three directions. The time step during the whole simulation was 2 fs
and the trajectory was saved every 2 000 steps.

For the FMNS morphology on the single layer graphene flake, three cases with
different amount of the FMNS molecules were studied, wherein the graphene flake
size was the same. The simulation box size of the cases containing 8 FMNS and
18 FMNS was 9 nm × 9 nm × 9 nm while the box size of the case containing 36
FMNS was 12 nm × 12 nm × 12 nm. The FMNS molecules were aligned parallel
to the graphene flake in each box to obtain the initial configuration for each case
[145]. For the calculation of the PMF of pairs of graphene flakes coated by FMNS,
the final configurations of the morphology simulations which had the largest FMNS
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Table 3.1 General details of simulations in this work. NG: the number of graphene flakes.
NFMNS : the number of FMNS molecules. NSOL: the number of water molecules. Nall: thetotal number of atoms. V : simulation box size. t: simulation time. CG: the concentration ofgraphene. CFMNS : the concentration of FMNS. Case A: high surface coverage. Case B: lowsurface coverage. Note: the graphene flake size in all simulations is 4 nm× 4 nm, containing680 carbon atoms.

Morphology simulation PMF simulation
Case 8 FMNS 18 FMNS 36 FMNS A B
NG 1 1 1 2 2
NFMNS 8 18 36 22 12
NSOL 23486 23284 53964 54978 54988
Nall 71554 71468 164444 167438 166948
V (nm3) 9×9×9 9×9×9 12×12×12 12×12×12 12×12×12
t(ns) 100 100 100 5 5
CG/CFMNS 2.13:1 0.95:1 0.47:1 / /

surface coverage were employed as the starting configuration. A larger simulation
box of size 12 nm × 12 nm × 12 nm was created, and the same configuration of
the graphene flake with adsorbed molecules at the distance of 3 nm away from the
original onewas replicated. Subsequently, thewatermolecules and sodium counter
ions were introduced into this box. The details on the model configural information
refer to Table. 3.1.

In order to obtain a series of configurations with different distances d between
the centers of mass (COM) of the graphene flakes, steered MD was used [146]. In
detail, one graphene flake was fixed, in x/y/z direction and the other graphene
flake, only in y/z direction. A harmonic potential with a force constant k = 600 000
kJ/(mol · nm2) was applied to the COM of the second flake, which pulled it close to
the first flake by setting a velocity of 0.005 nm/ps. The pulling time was based on
the distance d between the graphene flakes at the beginning. Due to the very slow
pulling rate, the FMNS molecules adsorbed on the surface of the graphene flakes
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Figure 3.2 SASA of FMNS as a function of simulation time, both in three different cases andthe representative result for graphene.

could freely reorganize on the graphene flake surface [147]. In this case, a series
of configurations with different COM distances in an “evolutionary manner” was ob-
tained [145]. The constraint pulling was employed to calculate the interaction force
between graphene flakes along x axis. The PMF was then calculated by numerically
integrating the constraint pulling force using the trapezoidal rule at different dis-
tances, as descripted in a previous publication [148].

3.3 FMNS morphology on graphene surface

To investigate themorphology of FMNS on the surface of the graphene flakes, three
different cases are studied with 8, 18 and 36 FMNS molecules, respectively. The sol-
vent accessible surface areas (SASAs) of the flavinmononucleotide ions and graphene
as a function of time was calculated to verify that all the simulations have reached
equilibrium [149]. As the SASA results shown in Fig. 3.2, it can be seen that the sys-
tems have reached equilibrium after about 80 ns simulation time. Correspondingly,
the result analysis is extracted from the last 20 ns of each trajectory.
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Figure 3.3 Post-equilibrated representative morphology snapshots of FMNSmolecules andthe graphene flake (yellow) in three different cases: Side views of cases containing (a) 8, (b)18 and (c) 36 FMNSmolecules. Sodium counterions are shown in green andwatermoleculesare not shown for clarity.

The representative morphology results are shown in Fig. 3.3. For the case with 8
FMNS molecules, as shown in Fig. 3.3 (a), it is found that all FMNS molecules aggre-
gate on the surface of the graphene flake. The tail groups of FMNS are adsorbed to
the graphene surface parallelly while the head groups extend toward thewater. This
feature is similar to the behavior of FMNS on a single wall carbon nanotube (SWCNT)
surface [147]. For the case with 18 FMNSmolecules, as shown in Fig. 3.3 (b), most of
the FMNS molecules aggregate on the graphene surface. The orientation behavior
of the tail and the head groups are the same as in the case with 8 FMNS. However,
the formation of several clusters of FMNS molecules was observed. For the case
with 36 FMNS molecules, as shown in Fig. 3.3 (c), only a small portion of the FMNS
molecules is observed to stick to the surface of the graphene flake parallelly while
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Figure 3.4 FMNS cluster formation in different cases: (a) representative FMNS cluster in caseof 18 FMNS, (b) representative FMNS clusters in case of 36 FMNS in the simulation box.

most of the FMNSmolecules favor to stay in the solvent in the form of clusters. This
finding provides further evidence that FMNSmolecules possess a tendency to form
dimer structures at high concentrations, which agrees well with the experimental
results [150].

As shown in Fig. 3.4, the unabsorbed FMNSmolecules tend to form sandwich-like
clusters which is favored by π−π interactions. This behavior is different from other
dispersants which tend to form a mono-dispersant layer at low concentrations and
hemicylindrical micelles or micelles at high concentrations [151]. Meanwhile, it is
noted that the negatively charged FMNS head groups favor to keep away from each
other due to the electrostatic repulsion.

In order to characterize the space distribution of the head and tail groups around
the flakes, their radial distribution functions relative to the COM of the graphene
flake are shown in Fig. 3.5. From the peak positions shown in Fig. 3.5 (a)-(c), it can be
seen that the tail groups prefer to approach to the graphene surface while the head
groups prefer to keep away from graphene, corroborating the morphology obser-
vation in Fig. 3.3. Among these cases, the tail group in case of 8 FMNS molecules
shows the strongest peak at around 0.41 nmwhile the tail group in case of 36 FMNS
molecules shows the weakest peak at around 0.44 nm. The first peak position for
the tail group has a shift away from graphene with increasing amount of FMNS
molecules. Besides, the second peaks for the tail group appear due to the FMNS
cluster formation except in the case of 8 FMNS. In case of 18 FMNS, the first peak
and the second peak for the tail group are found at 0.42 nm and 0.72 nm, respec-
tively. In case of 36 FMNS, the second peak is found at around 5.80 nm. The head
groups in these cases show similar behavior as the tail groups. The sodium counte-
rions were mostly close to the head groups because of the electrostatic attraction.
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Figure 3.5 RDF results of FMNS tail and head groups as function of the relative distanceto the COM of the graphene flake in different cases (a) 8 FMNS molecules (b) 18 FMNSmolecules and (c) 36 FMNS molecules.

Further, the density distributions of different groups in the three cases are inves-
tigated to characterize the different distributions along x axis, as shown in Fig. 3.6
(a)-(c). For the case of 8 FMNS molecules, shown in Fig. 3.6 (a), there are two strong
peaks in the density distribution profile of both the tail groups and the head groups,
which are very close to the COMposition of the graphene flake (x=0). The right peaks
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Figure 3.6 Density distribution of the different groups along x coordinate in different cases:(a) 8 FMNS molecules, (b) 18 FMNS molecules and (c) 36 FMNS molecules. The Grapheneflake is fixed at position x=4.5 nm in case of 8 and 18 FMNS molecules, and at x=6.0 nmin case of 36 FMNS molecules. (d) Tail group orientation distribution in the three differentcases, the inset shows that the orientation angle θ.

of both groups are higher than the left peaks, which is consistent with the morphol-
ogy observation in Fig. 3.3 (a): three molecules on the left side and five molecules
on the right side. Furthermore, the peak position of the tail groups is closer than the
peak position of the head groups to the graphene flake, which can be explained by
the hydrophilic behavior of the phosphate group in the head of FMNS which prefer
to stay in the solvent while the hydrophobic nature of the isoalloxazine group in the
tail of FMNS which tends to stick to the graphene surface. For the density distribu-
tion profile of the sodium counterions, there are two main peaks observed close to
the positions of the head groups due to the electrostatic interaction.

In the case of 18 FMNS, shown in Fig. 3.6 (b), additionally to the two main peaks
close to the COM of the graphene flake (x =0 nm), one more peak is found near x =
3.2 nm, which is the result of the small FMNS cluster formation. This corroborates
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the morphology shown in Fig. 3.3 (b). From Fig. 3.6 (c), in addition to the peaks
located near the COM of the graphene flake (x = 0) in the profiles of both groups,
several peaks can be identified away from the COM of the graphene flake (x=-2 nm

and x=4 nm). These originate from the FMNS-cluster formation as seen in Fig. 3.3
(c). To quantify the precise orientation of the tail groups relative to the graphene
flake, the angle θ was used as illustrated in Fig. 3.6 (d). The tail vector is defined as
connecting two nitrogen atoms in the tail group and the angle θ is the angle between
the tail vector and the positive direction of the x axis, as schemed in the inset in
Fig. 3.6 (d). For the cases of 8 FMNS and 18 FMNS molecules, the orientation angle
θ is mainly concentrated around 90o, which means that the tail groups of the FMNS
molecules aggregated on the graphene flake favor to stay parallel to the surface.
However, for the case of 36 FMNS molecules, most of them form small clusters
and are distributed uniformly in the box. Only for the molecules aggregated on the
surface of graphene flake, the orientation angle is θ = 90o.

3.4 The PMF of functionalized graphene flakes

The potential of mean force (PMF) is used to characterize the interaction between
two graphene flakes in the presence of an aqueous medium and FMNS molecules.
A positive PMF implies an effective repulsion while a negative PMF indicates an ef-
fective attraction of the flakes [147]. The PMF results for the cases considered in
this study are presented in Fig. 3.7. The three profiles in Fig. 3.7 are obtained for
high FMNS surface coverage, low surface coverage, and no surface coverage, re-
spectively. Here, the final configuration of the case of 18 FMNS is used as the start-
ing configuration for high surface coverage, for which there are 11 FMNSmolecules
adsorbed on the surface of each flake. All the FMNS molecules whose tail groups
are locatedwithin 7 nm from the graphene flake are defined as adsorbedmolecules.
For low surface coverage the number of adsorbed FMNS molecules is decreased to
6molecules on each flake as the starting configuration. This corresponds to surface
coverages of 0.34molecules/nm2 and 0.19molecules/nm2, respectively. The PMF of
the pairs of bare graphene flakes without FMNS was done for comparison. The PMF
has been set to zero at the large COM distance between pairs of graphene flakes (d
= 3.0 nm).
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Figure 3.7 The PMF results of graphene flakes with/without functionalization. (a) The pro-files of PMFs of pairs of graphene flakes coated by or without FMNSmolecules. Inset showsthe distance d between a pair of parallel graphene flakes. (b) The zoom of the dashed boxin the left panel, seven critical positions are labelled on the profile.

As one can see from Fig. 3.7 (a), the PMF of bare graphene flakes displays a pro-
nounced minimum at the distance of d = 0.35 nm which corresponds to the typical
interlayer distance in graphite. From 0.35 nm to 3.0 nm, the PMF is negative, which
indicates an attractive interaction between two bare graphene flakes in solution.
The well depth of the PMF at the minimum is -2268 kJ/mol. Considering the area
of graphene flake, the PMF per unit area is -142 kJ/(mol · nm2), which is in good
agreement with the previously reported PMF per unit area of -153 kJ/(mol · nm2)

[152].
For the case of low surface coverage, the PMF shows attractive behavior from d

= 0.45 nm to d = 1.10 nm, and it shows repulsive behavior from d = 1.10 nm to d = 3.0
nm. It reaches its highest energy barrier of +33 kJ/mol at d = 1.25 nm. For high sur-
face coverage, one sees that the adsorbed FMNS molecules cause relatively strong
repulsion already at d = 0.7 nm, which can hinder the aggregation of graphene flakes
efficiently. The highest repulsive energy of +705 kJ/mol appears at d =0.68 nm (the
shortest distance with reliably calculated PMF) [153]. The first local maximum en-
ergy barrier appears at d=1.18 nm and the PMF energy barrier reaches up to 164
kJ/mol. The PMF energy barrier per area is 10.25 kJ/(mol · nm2).

To evaluate the influence of FMNS on the dispersion and stabilization of the exfo-
liated graphene flakes, the calculated surface coverage of graphene flakes by differ-
ent conventional dispersants at roughly the same PMF energy barrier is compared,
as shown in Table. 3.2. To achieve the PMF energy barrier of around 10 kJ/(mol ·
nm2), the surface coverage of graphene flake by FMNS is 0.34 molecules/nm2 as
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Table 3.2 Comparison results of different surfactants for the stabilization of aqueousgraphene dispersions from both simulation and experimental works.
N : relative amount of surfactant, calculated as follows, number of surfactants/numbersof carbon atoms in graphene flake. S: surface coverage of graphene by surfactant, calcu-lated as follows, number of surfactants adsorbed on each graphene flake/both sides areaof each graphene flake, unit: molecules/nm2. E: PMF barrier is the barrier of the first localmaximum energy barrier on the PMF profile, unit: kJ/(mol · nm2). C: Obtained grapheneconcentration reported experimentally in other’s work (µg/mL).

Surfactants Simulation results Experimental results
N S E C

SDS 0.048 1.00 15.00 [154] 12.00 [155]
SDBS 0.029 0.58 11.40 [156] 20.00 [155]
SC 0.026 0.49 10.00 [153] 27.00 [155]

FMNS 0.026 0.34 10.25 200.00 [157]
this work this work this work

shown above, while the surface coverage of graphene flake by SDBS is around 0.58
molecules/nm2 [156], and the surface coverage of graphene flake by SC is around
0.49 molecules/nm2 [153], respectively. Those theoretical results provide evidence
that FMNS is performing better than the other commonly used dispersants with re-
spect to the dispersion and stabilization of exfoliated graphene flakes. This result is
consistent with the reported experimental work which showed that FMNS is an ex-
tremely efficient dispersant for the preparation of dispersions of few-layer aqueous
graphene flakes [136].

Fig. 3.7 (b) is a zoom into the dashed frame in Fig. 3.7 (a) with seven critical points
marked on the profile. On the PMF profile of graphene flakes with high surface cov-
erage (red line), positions II, IV, VI denote local energy wells while positions III and
V correspond to local energy barriers. On the PMF profile of graphene flakes with
low surface coverage, positions III and V indicate energy barrier positions while po-
sition VI is a local energy well. The density distribution of the FMNSmolecules in the
case of high surface coverage corresponding to the 6 critical positions are plotted in
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Figure 3.8 Density distribution results of FMNS in high surface coverage case. (Left panel)Density distribution of FMNS molecules along x coordinate in case of 11 FMNS moleculeson each graphene flake. The red lines marked the position of the graphene flakes. Theinset images show corresponding morphologies. The color code is the same as in Fig. 3.1,water molecules are not shown for clarity. (Right panel) The 2D density map of the FMNSmolecules existed in the confined volume between a pair of parallel graphene flakes with11 FMNS molecules on each flake for the critical positions I to VI. The maximum value ofdensity for each image can be found in Table. 3.3

Fig. 3.8, and the inset images are the representative snapshots. With decreasing dis-
tance d between flakes from position VI to position I, the density distribution peak
of the FMNS molecules between the two graphene flakes decrease from two broad
peaks to one sharp peak. For the distance with a local high energy barrier, including
positions III and V, it is found that the head groups of the FMNS between the two
flakes try to aggregate tightly and form one strong density peak, just like a fastened
zipper with two head group chains. However, for the distances of local energy wells,
including positions II, IV and VI, it is observed that the head groups of the FMNS
between the two flakes kept well and so two separate peaks show on the density
profile, just like an unfastened zipper with two head groups’ chains. This agrees well
with previously reported results [154]. This can also be seen on the corresponding
morphology image. In order to further verify this behavior, the density map for the
FMNS molecules between the two graphene flakes to see the overlap of molecules
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Figure 3.9 Density distribution results of FMNS in low surface coverage case. (Left panel)Density distribution of FMNS molecules along x coordinate in case of 6 FMNS molecules oneach graphene flake. (Right panel) The density map of the FMNS molecules located in theconfined volume between a pair of parallel graphene flakes with 6 FMNSmolecules on eachflake for the critical positions I, III, IV and VI. The maximum value of density for each imagecan be found in Table. 3.3.
Table 3.3 The maximum density value of FMNS molecules at both high surface coveragecase and low surface coverage case at different critical positions. Case A: high surface cov-erage, 11 FMNS/flake. Case B: low surface coverage, 6 FMNS/flake.

Position
Case I II III
A 15.7 12.9 17.7
B 7.07 / 7.76

is plotted, as shown in Fig. 3.8. It is found that the maximum density values for the
positions of the energy barriers are higher than those at the positions with the next
energy wells. The maximum values of the density are given in Table. 3.3 [147].
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Figure 3.10 Surface coverage of graphene flakes by FMNSmolecules in three different caseswith N=8, 18 and 36 molecules in the simulation box.

At the same time, the density distribution of the FMNS in the cases of low surface
coverage as well as the density map of the FMNS is plotted, as shown in Fig. 3.9.
Although position I shows a low negative PMF, there is one density peak found in
Fig. 3.9, because FMNS molecules between two graphene flakes are much more
mobile and some can even can escape the volume between two graphene flakes.

3.5 Surface coverage of grapheneby FMNSmolecules

From the morphology results shown in Fig. 3.4, it is already concluded that upon
increasing the amount of FMNS molecules, some of them aggregate to form clus-
ters. Thus, not all molecules in the solution will be adsorbed on the flake. The final
surface coverage of a single flake with FMNS molecules is shown in Fig. 3.10. Here,
the surface coverage is defined as the total number of adsorbed FMNSmolecule per
area of the graphene flake. In the three cases considered before, the total available
surface area for FMNS adsorption is the area of both sides of the graphene flake, i.e.,
32 nm2. Adsorbedmolecules on the graphene flake are supposed to keep graphene
flakes away from each other in an aqueous medium via electrostatic repulsion and
stabilize graphene dispersions. From the results shown in Fig. 3.10, it can be found
that an unusual trend different from the expected results: with the number of FMNS
molecules in the solution increasing, the surface coverage of graphene increases
first and then decrease again, this can be attributed to the cluster formation in case
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of a sufficiently high concentration of FMNS molecules, as already shown in Fig. 3.3
(c). Experimentally, D. Frackowiak and collaborators have previously reported that
the FMNSmolecules tend to form dimers in an aqueous media, and a large fraction
of FMNSmolecules participate in forming dimeric structures as the FMNS concentra-
tions increase [150]. Our simulation results are consistent with this experimentally
observed behavior.

The formation of FMNS dimers and larger clusters prohibits adsorption of FMNS
molecules on the graphene flake surface [136]. Consequently, a lower surface cov-
erage of FMNS molecules on the graphene flake is obtained. As shown in Fig. 3.7
, a higher surface coverage implies a stronger repulsion of flakes to avoid aggrega-
tion. In case of lower surface coverage, the repulsion is lower and the graphene
flakes tend to aggregate more easily. This observation might explain the origin of
the observed relationship between the concentration of FMNS and the stabilization
of graphene dispersions in a recent experimental work [136]. Our simulation re-
sults indicate that the optimal mass ratio between FMNS and monolayer graphene
is 1.06 shown in the case of NFMNS = 18 and achieve the highest surface coverage
of graphene flake by FMNS (0.34molecules/nm2).

3.6 Summary

In this chapter, the stabilization mechanism of functionalized graphene in disper-
sant aqueous dispersion are investigated using all-atom MD simulations. The mor-
phology of FMNS on a monolayer graphene flake is presented. The radial distribu-
tion function (RDF) and the density distribution of FMNS molecules, as well as their
orientations are discussed. Then, the PMF of pairs of parallel graphene flakes is
calculated. Finally, based on the PMF results, the relationship between FMNS sur-
face coverage on monolayer graphene flake and FMNS concentration is discussed.
These results indicate that the optimal mass ratio between FMNS and monolayer
graphene is about 1.06 leading to a surface coverage of 0.34 FMNS molecules/nm2

on the graphene flakes. The simulations support the high efficiency of FMNS as a
dispersant.



Chapter 4

Highly sensitive pristine
graphene-based gas sensors

With the stabilizationmechanism of functionalized graphene in aqueous dispersion
in mind, in this chapter, non-covalently functionalized graphene by FMNS will be
prepared experimentally for the potential application as gas sensing materials in a
chemiresistive type NH3 gas sensor at room temperature. Meanwhile, the roles of
FMNS from graphene preparation to NH3 exposure sensing are elucidated via all-
atom molecular dynamics simulations. The content of this chapter is mostly based
on my published article [111].

4.1 Motivation

Ammonia (NH3) detection plays a critical role in environmental monitoring and in-
spection in order to secure public safety [158]. At present, sensingmaterials ofmost
commercial ammonia sensors consist of either polymer materials [159], or metal
oxide semiconductors [160]. The limitations of these sensors include: high cost, lim-
ited life time, high working temperature, high power consumption, low sensitivity,
poor selectivity, and insufficient repeatability [161]. As an alternative, graphene, ,
a one-atom-thick two-dimensional carbon nanomaterial possessing excellent phys-
ical properties [162], has been extensively investigated as a material for ammonia
gas sensors in recent decades [163]. It was shown to yield excellent performance
in terms of sensitivity, reversibility and work temperature, as presented in the chap-
ter 1.
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Figure 4.1 Role of FMNS for graphene-based ammonia gas sensors: stabilizer for graphenedispersions and carrier dopants for graphene flakes as well as specific active anchor sites forNH3 molecules. Color code: carbon (cyan), oxygen (red), nitrogen (blue), hydrogen (white),phosphorous (tan), graphene flake (yellow).

In this work, graphene is efficiently exfoliated from graphite utilizing FMNS and
the sensing characteristics of Graphene/FMNS flakes (G-FMNS) towards ammonia
gas are systematically investigated. The FMNS molecules function in multiple roles,
as a dispersant and a stabilizer for the graphene dispersion, as carrier dopant for
graphene flakes and as active anchor sites for ammonia molecules with a specific
interaction, which is illustrated in Fig. 4.1.

4.2 Graphene dispersion preparation and characteri-
zations

The fabrication workflow of graphene-based gas sensors is shown in Fig. 4.2, in
which the graphene exfoliation, sensor fabrication has been descripted in Chapter
2. The chemical structure of flavin mononucleotide sodium salt (FMNS, C17H20N4Na-
O9P) is displayed in Fig. 4.3 (a). To simplify the discussion of this structure, the large
isoalloxazine ring group is defined as FMNS tail, and the rest is defined as FMNS
head. In order to measure thickness of Graphene-FMNS flakes following dispersion
preparation, 10 µL Graphene-FMNS dispersion was drop-casted on the SiO2/Si sub-
strate. The droplet was from the supernatant of Graphene-FMNS dispersion after
removal of excess FMNS molecules centrifuged at14500 rpm and centrifugation at
4000 rpm. The apparent thickness ranges from several nm to tens nm, as shown
in Fig. 4.3 (b). Nevertheless, for graphene flakes exfoliated by surfactants, analyz-
ing the actual layer number of the flake from AFM results is not forthright [136].
Similar to the reported works, the AFM-derived step height of within individual ex-
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Figure 4.2 Schematic of the workflow to prepare graphene-based gas sensors. (A) Ultra-sonication in DI water and centrifugation. (B) 10 µL droplet deposition. (C) Flushing with DIwater and drying with dry N2 flow. (D) Exposure to NH3 analyte gas. (E) Data analysis.

foliated flakes is proportional to 1.0 nm, indicating that each layer contributes with
that amount to the apparent thickness. Further, FMNS molecule was about 1 nm

high, so it is rational to assume that the measured thickness of the flake contains
around 1 nm from the FMNS molecules adsorbed between the graphene flake and
the substrate [164]. Consequently, a measured apparent flake thickness of around
2 nm suggests single-layer graphene, and each layer that stacks on the flake would
increase this value by around 1 nm. Hence, the AFM results reveal that mainly multi-
layer graphene flakes were obtained in the exfoliation using FMNS [165].

The lateral size of Graphene-FMNS flakes was characterized by SEM, as shown
in Fig. 4.3 (c). To remove the excess FMNS molecules, the dispersion after ultra-
sonication step was centrifuged at 14500 rpm twice. Then the sediment was re-
dispersed with DI water and separated employing different centrifugation rate of
4000 rpm. The supernatant was drop-casted onto SiO2/Si substrate for SEM charac-
terization while the sediments containing large un-exfoliated flakes were discarded
[157].It is found that the flakes range from 100 nm to 1000 nm after centrifugation
at 4000 rpm. Larger flakes (up to 3000 nm) can be obtained centrifuged with a lower
centrifugation speed (at 1000 rpm), as shown in Fig. 4.3 (d).



48 Highly sensitive pristine graphene-based gas sensors

Figure 4.3Morphology characterization for FMNS functionalized graphene flakes on siliconsubstrate. (a) Chemical structure of FMNS (left panel) and ball-and-stick model representa-tion of FMNS (right panel). Color code: nitrogen (blue), oxygen (red), carbon (cyan), hydro-gen (white) and phosphorous (tan). (b) AFM characterization of Graphene-FMNS flakes. (c)(d) SEM characterization of Graphene-FMNS flakes.

Fig. 4.4 (a) displays the Raman spectrumof the graphene flakes, which shows the
evidence that the graphene flakes are of high structural quality. Four main signals
are observed from the Raman spectra: the disorder related D band at around 1352
cm−1 and D’ band at around 1623 cm−1, G band at around 1583 cm−1, 2D band at
around 2703 cm−1. Additionally, a few combinations of them are also observed: D
+ D” at around 2453 cm−1, D + D’ at around 2952 cm−1. The G band is attributed to
the sp2-hybridized carbon bonds in the graphene lattice [166]. The existence of D
band indicates the presence of edge defects in the graphene flakes induced by horn
ultra-sonication exfoliation [136]. The basal planes of the graphene flakes are not
damaged largely corroborated by the low ratio of the D to G peaks intensity (ID/IG
= 0.29), which is much lower than that of chemically reduced graphene oxide (ID/IG
> 1.0) [167, 168]. It has been recently demonstrated that the ratio of the D band to
the D’ band intensity (ID/ID′) can be employed experimentally to obtain informa-
tion on the nature of defects in graphene [169]. In this case, the ratio (ID/ID′) is
around 2, implying that the structural disorder of the graphene flakes is dominated
by the edges, showing a good consistency with the former results. The featured
2D band and the ratio of the 2D band to the G band intensity (I2D/IG = 0.59) can



4.2 Graphene dispersion preparation and characterizations 49

Figure 4.4 Characterization for FMNS functionalized graphene flakes. (a) Raman spectrumcharacterization of Graphene-FMNS flakes. (b) UV-vis absorption spectra of both Graphene-FMNS flakes and pure FMNS. (c) ATR-FTIR characterization of Graphene-FMNS flakes. (d)Electrical characterization of different graphene-based sensors.

be interpreted as a typical result for multi-layer graphene flakes [170], which is well
consistent with the above AFM results.

Fig. 4.4 (b) shows the UV-vis absorption spectra of both Graphene-FMNS disper-
sion after purification and pure FMNS solution. On the pure FMNS curve (red), four
strong absorption bands at around 225 nm, 266 nm, 373 nm, and 446 nm are ob-
served, which are the characteristic absorption bands of FMNS in water [157]. On
the Graphene-FMNS curve (blue), one strong absorption band at around 268 nm is
observed, which is interpreted as the combination of two overlapping absorption
bands at 266 nm and 270 nm arising from FMNS and graphene dispersion, respec-
tively [171]. Additionally, some vanishing absorption bands on the Graphene-FMNS
curve match the bands of FMNS in the red curve, suggesting the successful removal
of excess FMNSmolecules and coupling of rest FMNS to graphene flakes, which can
be further verified by the FTIR spectra shown in Fig. 4.4 (c). Therefore, the Graphene-
FMNS flakes could be colloidally stabilized in the aqueous dispersion utilizing rela-
tively little amounts of FMNS.
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Figure 4.5 Typical morphology characterization of Graphene-FMNS sensing elements forgraphene-based sensors (D-sensors).

A typical attenuated total reflection Fourier transformed infrared (ATR-FTIR) spec-
trumof the dried powder ofGraphene-FMNSflakes is displayed in Fig. 4.4 (c). Graphite
powder without FMNS was used as reference. The spectra were intrinsically fea-
tureless and there were no apparent bands that came from the specific molecular
groups of FMNS (especially in the range 1500-1800 cm−1) [172], indicating that the
excess FMNS molecules have been removed and the graphene flakes were stabi-
lized by a very little amount of FMNS molecules. The current versus voltage (I-V)
curve of the sensors in Fig. 4.4 (d) demonstrates excellent linearity from -3 V to 3
V, suggesting a good ohmic contact between the Graphene-FMNS flakes and the
electrodes. A Schottky barrier at the interface between Graphene-FMNS flakes and
the IDE electrodes would suppress charge transport [173], whist a low resistance
ohmic contact provides a direct injection channel at the interface and minimizes
the interface’s influence on the intrinsic sensing properties of the Graphene-FMNS
flakes. The resistances for these sensors with different treatments are 105 Ω (refer-
ence sensor, R-sensor), 253 Ω (freeze-drying treatment sensor, F-sensor), and 685
Ω (dilution treatment sensor, D-sensor).

After graphene flakes transferring onto electrode device, the morphology of de-
posited G-FMNS flakes were characterized by SEM. In this work, G-FMNS flakes were
deposited on the gaps between interdigitated electrodes utilizing theDEP technique.
Thus, they bridge adjacent electrodes and act as sensing elements of a chemiresis-
tive type sensor. To investigate the influence of the morphology of G-FMNS flakes
on the sensing characteristics, three groups of G-FMNS flakes were prepared and
applied for three groups of graphene-based sensors, termed R-sensor (reference
sensor, no further treatment for the G-FMNS flakes dispersion following sonication
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Figure 4.6 Typical morphology characterization of Graphene-FMNS sensing elements forR-sensor and F-sensor. Termed R-sensor (reference sensor, no treatment for the Graphene-FMNS flakes dispersion before DEP deposition), F-sensor (the Graphene-FMNS flakes disper-sion was treated with freeze-drying before DEP deposition). (a) and (c) R-sensor. (b) and (d)F-sensor.

and centrifugation, namely reference dispersion, before DEP deposition), F-sensor
(the G-FMNS flakes dispersion was treated with freeze-drying and then re-dispersed
in DI water before DEP deposition), and D-sensor (the G-FMNS flakes dispersion was
diluted 10 times compared with the reference dispersion before DEP deposition) in
this work.

The morphology of G-FMNS flakes for the D-sensor were characterized by SEM.
As shown in Fig. 4.5, G-FMNS flakes form networks to bridge the electrodes on the
IDE device. These flakes stack on each other to generate compact conducting path,
which ensures good ohmic contact between the G-FMNS flakes and the electrodes
and exhibits very low resistance. Themorphology of G-FMNS flakes for the sensor ’R-
sensor’ and ’F-sensor’ was discussed in Fig. 4.6. For the R-sensor displayed in Fig. 4.6
(a) and (c), the Graphene-FMNS flakes form dense networks bridging the electrodes.
Due to the relatively high concentration of Graphene-FMNS flake dispersion, these
flakes stack on each other to generate a thick conducting layer. This ensures the low
ohmic contact between the Graphene-FMNS flakes and the electrodes, and the R-
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sensor exhibits very low resistance. Freeze-drying has been previously reported and
employed to create porous structured material [174, 175]. As illustrated in Fig. 4.6
(b) and (d), Graphene-FMNS flakes prefer to aggregate together to form large and
porous flakes under freeze-drying process. This porous structure enlarges the sur-
face area of the sensor elements while it makes the structure looser, which in turn
increase the electrical resistance of the sensing elements.

4.3 Sensing performance of sensors towards NH3

Following achieving graphene dispersion, sensor device was fabricated as the stan-
dard method descripted in chapter 2. To investigate sensing characteristics of the
developed graphene-based gas sensors, sensing measurements were conducted
utilizing the homemade gas sensing setup at room temperature (25 oC), as depicted
in Fig. 2.1 in chapter 2. The sensor response is defined as a relative change of resis-
tance in percent. As illustrated in Figure Fig. 4.7 (a), D-sensor shows 2.8% response
upon exposure to 10 ppm NH3 for 30 minutes. Thereafter, the electrical resistance
recovers slowly to the baseline under the N2 flow flushing. In Figure Fig. 4.7 (b), un-
der 1000 ppmNH3 cycling cycles of NH3 exposure and N2 flushing. Sensing behavior
to different concentration of NH3 ranging from 100 ppm to 1000 ppm is shown in
Figure Fig. 4.7 (c), the sensor exhibits 5.5% response upon exposure to 100 ppmNH3

for 15minutes and 18.5% response upon exposure to 1000 ppmNH3 for 15minutes.
Sensor response with the relationship of NH3 concentration (from 100 ppm to 1000
ppm) was plotted and fitted, as shown in Figure Fig. 4.7 (d). The slope of the linear
regression fitting for D-sensor is 0.014 %/ppm.

In the sensingmeasurement, it should be noted that before performing the sens-
ing measurements, the electrical resistance of each sensor was stabilized under
continuous N2 flushing for at least 2 hours, as shown in Figure Fig. 4.8 (a). Sens-
ing results for both R-sensor and F-sensor are illustrated in Fig. 4.8 while sensing
results for D-sensor are shown in Figure 3 in the main text. The R-sensor, shows
0.29% resistance increase upon exposure to 10 ppm NH3 for 30 minutes, as can
be seen in Fig. 4.8 (b). Thereafter, the electrical resistance recovers to the baseline
under the N2 flow and approaches its original baseline after 2.5 hours. To evaluate
the reproducibility of the sensor performance, an exposure cycling test with 1000
ppmNH3 was carried out, as shown in Fig. 4.8 (e). It is observed that after 4 cycles of
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Figure 4.7 Typical sensing characteristics of graphene-based sensors (D-sensor) towardsNH3 gas. (a) Dynamic response of sensors upon exposure to ultra-low concentration of NH3at 10 ppm. (b) Dynamic response of sensors under 1000 ppm NH3 cycling exposure. (c)Dynamic response of sensors upon exposure to successive different concentrations of NH3ranging from 100 ppm to 1000 ppm. (d) Linear fitting of D-sensor response as a function ofNH3 concentration from 100 ppm to 1000 ppm.

NH3 exposure and N2 flushing, the sensor exhibits stable response of around 3.9%
upon 1000 ppm NH3. When the R-sensor is exposed to different concentrations of
NH3 ranging from 100 ppm to 1000 ppm, the response reaches 0.43% at 100 ppm
and finally reaches 2.33% at 1000 ppm as shown in Fig. 4.8 (h). Followed the NH3 ex-
posure each time, the sensor demonstrates partial recovery under N2 flow-flushing
for 15 minutes. The F-sensor, upon exposure to 10 ppm NH3 for 30 minutes shows
2.0% response, see Fig. 4.8 (c). As shown in Fig. 4.8 (i), the F-sensor exhibits 2.5%
response upon exposure to 100 ppm NH3 for 15 minutes and 8.8% response upon
exposure to 1000 ppm NH3 for 15 minutes. Under 1000 ppm NH3 exposure cycling
test, as shown in Fig. 4.8 (f), the F-sensor possess as similar response characteristics
as the R-sensor. The F-sensor shows a stable response of around 12.5% after 4 cy-
cles of NH3 exposure and N2 flushing. The results of these three groups of sensors,
R-sensor, F-sensor, D-sensor are reproducible, as shown in Fig. 4.9 (a).

For the developed graphene-based gas sensors, sensing response time and re-
covery time were also investigated. The response time was defined as the time re-
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Figure 4.8 Typical sensing characteristics of graphene-based sensors (R-sensor and F-sensor) towards NH3 gas. (a) Sensor stabilization process under N2 flow. Typical dynamicresponse of sensors upon exposure to low concentration of NH3 at 10 ppm: (b) R-sensor,(c) F-sensor. (d) Response linear fitting of reference sensor (R-sensor). Typical dynamic re-sponse of sensors under 1000 ppm NH3 cycling exposure test, (e) R-sensor, (f) F-sensor. (g)Response linear fitting of F-sensor. Typical dynamic response of sensors upon exposure tosuccessive different concentrations of NH3 ranging from 100 ppm to 1000 ppm, (h) R-sensor,and (i) F-sensor.

quired for the sensor resistance to reach 63.2% of the estimated maximum during
the NH3 exposure period, corresponding with a one-time constant in a first-order
dynamic system; and the recovery time was defined as the time required for resis-
tance to decrease to 63.2% from the maximum value reached during exposure to
NH3 towards to the recovered state [176]. The response time and the recovery time
correspond with the one-time constant in a first-order dynamic system. To analyze
the response time and recovery time for each sensor, the dynamic response ver-
sus time curve for the corresponding period was fitted by the exponential decay
formula:
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Figure 4.9 Reproduced sensing measurement results and the responding curve fitting. (a)Reproduceable results of D-sensor, F-sensor, R-sensor exposure to different concentrationof NH3. (b)Sensor dynamic response exponential fitting and sensor recovery exponentialfitting upon exposure to 100 ppm NH3

∆R/R(%) = Ae
−t
t0 +B (4.1)

in which t0 and B were the response/recovery time and the steady-state response,
respectively. For example, the response curve fitting for the reference sensor (R-
sensor) upon 100 ppm NH3 is demonstrated in Fig. 4.9 (b),

∆R/R(%) = (−0.60)e
−t
660 + 0.58 (4.2)

so the response time t0 is 660 s. Similarly, the recovery curve fitting for the R-sensor
upon 100 ppm NH3 gives:

∆R/R(%) = (0.23)e
−t
220 + 0.17 (4.3)

so the recovery time is 220 s. As displayed in Fig. 4.8 (d) and (g), the response in-
creases monotonically with the rising of NH3 concentration. The slope of the linear
regression fitting for D-sensor is 0.014 ppm−1, suggesting the best sensitivity among
these three developed sensors.
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Figure 4.10 Sensor response upon exposure to different concentrations of NH3 rangingfrom 1000 ppm to 100 ppm: (a) R-sensor, (b) F-sensor, (c) D-sensor. (d) D-sensor responseupon exposure to 100 ppm NO gas.

Additionally, sensing characteristics upon exposure to a decreasing concentra-
tion of NH3 ranging from 1000 ppm to 100 ppm were also investigated, as shown
in Fig. 4.10 (a) - (c). With the NH3 concentration decreasing, the sensors show an
increasing gross response as well as a decreasing net response, which can be at-
tributed to the partial recovery within 15 minutes purging time. To investigate the
specific sensing response of the developed graphene-based gas sensor, theD-sensor
was exposed to 100 ppmof NO gas. As shown in Fig. 4.10 (d), D-sensor shows a 5.5%
response upon to 100 ppm NO and shows no recovery at the same conditions as
NH3 sensing. NO exhibits electron withdrawing behavior and shifts Fermi level to-
wards the band gas while NH3 exhibits electron donating behavior [174].

In terms of the sensitivity and recovery, the D-sensor exhibits the best sens-
ing performance among the developed sensors (R-sensors, F-sensors, D-sensors),
demonstrating 2.8% response towards 10 ppm NH3 and 18.5% response towards
1000 ppm NH3, which could be attributed to a thinner deposition layer than the
R-sensor and more homogeneous deposition layer than the F-sensor, respectively.
This indicates that the sensing performance could be affected by the morphology
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Table 4.1 Characteristics of graphene-based gas sensors for ammonia detection. CNH3 :the concentration of ammonia, unit: ppm. MC:micromechanical cleavage. ME:mechanicalexfoliation. PECVD: plasma enhanced CVD. LPE: liquid phase exfoliation. HM: Hummers’method. MHM: modified Hummers’ method. EP: electro-polymerization. CP: chemical poly-merization. Conditions: the temperature conditions of response and recovery, respectively.
Materials Methods CNH3 Response Conditions(ppm) (%)
graphene [101] MC 1 4 RT/150 oC

few layer graphene [102] ME 1000 1 RT/RT
vertically aligned graphene [109] PECVD 10000 13 RT/RT
graphene foam [177] CVD 1000 30 RT/120 oC

graphene [178] CVD 1000 90 RT/200 oC

graphene/Au particle [179] CVD 60 8 RT/infrared
graphene nanomesh [180] CVD 100 3.8 RT
graphene/PANI [4] CP 20 3.65 RT
graphene/Pd decoration [181] CVD 100 2.1 150 oC

graphene [182] LPE 100 0.3 RT/RT
fluorinated graphene [183] PECVD 100 3.8 RT/RT
Graphene [184] CVD 1300 1.5 RT
Ti/graphene [185] CVD 400 17.9 RT/UV
graphene/polypyrrole [186] CVD, EP 1 1.7 RT
graphene/V2O5 [187] CVD 100 295 RT+UV
Graphene-FMNS,our work LPE 10/1000 2.8/18.5 RT/RT/RT
rGO-CuPc [188] MHM 3200 15.4 RT
P doped graphene [189] HM 100 5.5 RT
rGO/Pt decoration [190] MHM 1000 10 RT
3D rGO micro-pillar [191] ALD 10 60 RT
sulfonated rGO hydrogel [192] MHM 20 7.1 RT

of graphene deposited on the sensors. The D-sensor sensitivity even outperforms
some of the recently reported graphene-based NH3 sensors in literatures, as listed
in Table. 4.1. There, however, most of the graphene-based sensing element mate-
rials were fabricated by more complicated and much costlier processes, like either
CVD or the modified Hummers’ method.
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4.4 The roles of FMNS on NH3 gas sensing

The role of FMNS for the graphene exfoliation and stabilization of its aqueous dis-
persion was previously reported experimentally [171]. Additionally, the underling
mechanism has been studied in chapter 3 via all-atom molecular dynamics simu-
lations [125]. The FMNS case model contained one monolayer graphene flake, 2
FMNS molecules, and 20 NH3 molecules. The bare case model was also created for
the reference, involving one monolayer graphene flake and 20 NH3 molecules. The
monolayer graphene contained 680 C atoms and was 4 nm x 4 nm large in both
cases. The simulation box size was 9 nm× 9 nm× 9 nm. The modeling parameters
setting refer to the modelling part in chapter 3.

The starting configurations of both models are displayed Fig. 4.11 (a) and (c),
all the NH3 molecules distributed randomly in the simulation box whilst the FMNS
molecules were aligned parallel to the graphene flake in the FMNS case. The rep-
resentative snapshots after equilibration are displayed in Figure Fig. 4.11 (b) and
(d). In the bare case, just a few NH3 molecules attached to the graphene flake. In
the FMNS case, the tails of FMNS molecules were attached to the graphene flake
firstly and then the NH3 molecules were anchored to the FMNS heads. This kind of
interaction between NH3 molecules and FMNS heads can be attributed to the hy-
drogen bond formation. The FMNS molecules attach non-covalently to the surface
of graphene flakes via π - π stacking interactions. The hydrophilic nature of FMNS
further stabilizes the G-FMNS flake dispersion in the solution.

Typical morphology of NH3 molecules in both cases are analyzed, as shown in
Fig. 4.12 . In the FMNS case, FMNS sticks to the surface of the graphene flakes
due to the π - π stacking interaction [125]. Intriguingly, phosphate groups of FMNS
molecules act as anchor sites to attract NH3molecules surrounding the FMNSheads,
as shown in Fig. 4.12 (a)-(b). Instead, in the Bare case, considering that there are
no effective and available anchor sites for NH3 molecules, the NH3 molecules dis-
tribute randomly and avoid the graphene flake, as shown in Fig. 4.11 (a)-(d). Addi-
tionally, the number density distribution of both FMNS heads and NH3 molecules in
the FMNS case as well as the number density distribution of NH3 molecules in the
Bare case are displayed in Fig. 4.12 (c). In the FMNS case, FMNS molecules exhibit
two peaks at both sides of graphene flake owing to the π - π stacking interaction.
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Figure 4.11 Representative snapshots for Bare case and FMNS model upon exposure toNH3, respectively. (a) Starting configuration of bare model. (b) Representative morphologysnapshot in bare model. (c) Starting configuration of FMNS model. (d) Representative mor-phology snapshot in FMNS model. Color code is the same as shown in Scheme1.

NH3 molecules show similar behavior to FMNS molecules in the FMNS case, while
the NH3 molecules display no peaks since NH3 molecules are distributed over the
whole simulation box in the Bare case. This further corroborates the morphology
observations as shown in Fig. 4.12 (a)-(b).

Radial distribution function (RDF) of NH3 molecules relative to the phosphorus
atom in the FMNS case are illustrated in Fig. 4.12 (d). The average distance of NH3

molecules from the phosphorus atom of FMNS molecules is around 0.39 nm. Ac-
cording to the criteria of the formation of hydrogen bonds in Visual Molecular Dy-
namics (VMD) (default cut-off distance 3.0 Å, and default cut-off angle 20o) [193],
the representative morphology of both NH3 molecules and FMNS molecules in the
FMNS case were analyzed, and it is found that hydrogen bonds were formed be-
tween NH3 molecules and FMNS head groups, as displayed in the inset of Fig. 4.12
(d). This interesting finding agrees well with the expectation that NH3 molecules
can form hydrogen bonds with –OH groups existing in FMNS. In previous publica-
tions on r-GObased ammonia gas sensors, their sensitivitywas enhanced compared
to pristine graphene based sensors for the reason that NH3 molecules could be
efficiently adsorbed by the abundant oxygen containing functionalization groups
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Figure 4.12 Representative morphology snapshots of NH3 molecules on the monolayergraphene flakes non-covalently functionalized by FMNS molecules in FMNS model. (a) Topview. (b) Bottom view. (c) Density distribution of FMNS molecules and NH3 molecules alongx coordinate in both bare model and FMNS model, respectively. (d) Radial distribution func-tions (RDF) of NH3 molecules as function of the relative distance to the center of mass ofFMNS molecules in FMNS model. Color code is the same as shown in Fig. 4.1.

(epoxy groups, hydroxyl groups, carboxyl groups, etc.) on the rGO surface through
hydrogenbond interactions [192]. In the currentwork, the samepurpose is achieved
intentionally by the adsorption of FMNS molecules on pristine graphene via π - π
stacking interaction. The molecules provide artificial reactive sites due to the abun-
dant hydroxy groups, which can trap NH3 molecules efficiently via hydrogen bond-
ing interaction.

4.5 Working mechanism of gas sensing

Pristine graphene is chemically inert and weakly interacts with analyte gas [186],for
example, intrinsic response of mechanical exfoliated graphene is very small, even
upon exposure to high concentration (1000 ppm) NH3 gas [102]. Functionalization
of graphene either by non-covalent approaches or by covalent approaches has been
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Figure 4.13 Shift of Fermi level in graphene flakes in FMNS model.

proven to be an effective way to prompt the interaction between graphene and ana-
lyte gas that was shown both theoretically and experimentally [103]. Covalent func-
tionalization usually involves harsh chemicals and damages the sp2 electronic struc-
ture in graphene, whilst non-covalent functionalization remains the intact structure
as well as the excellent electrical property of graphene and gains prominence [194].

In this work, graphene was non-covalently functionalized with FMNS molecules
via π - π stacking interaction and acted as support substrate layer of sensing element.
FMNS molecules exhibit several critical roles from the graphene preparation to gas
sensing. At the exfoliation stage, the FMNSmolecules attach tightly to the surface of
graphene flake due to π - π stacking interaction and keep the colloidal dispersion sta-
bilized in aqueous solution by creating high potential of mean force energy barrier
between the graphene flakes [125] As sensing element material, pristine graphene
is a semimetal with a zero band gap. [195]. However, in the ambient conditions,
pristine graphene usually shows p-type semiconductor behavior with holes carriers
as the major carriers due to the absorption of water or oxygen molecules, which
shifts the Fermi level of graphene in the valence band due to an increase of hole
carriers concentration [181]. Additionally, the electronic structure of graphene can
be modulated by doping with various aromatic molecules through π - π stacking
interaction [196].

Here, FMNS molecules present electron-withdrawing groups. They impose p-
type doping on graphene, which in turn shifts the Fermi level further into the va-
lence band. This leads to a further increase of hole carrier’s concentration in the
graphene flake. Theoretical studies reveal that NH3 is one of the strongest elec-
tron donors with considerable amount of electron transfer to graphene (arouond
0.027e−) compared with other electron donors [197, 103]. Upon exposure to NH3

gas, electrons from NH3 molecules are indirectly shifted towards graphene through
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Figure 4.14 Charge carriers transfer from NH3 molecules to graphene flakes. (Left panel)Few carriers transfer from NH3 to graphene. (Right panel) Increased carriers transfer fromNH3 to graphene via FMNS anchor sites due to the hydrogen bond formation in FMNSmodel.Color code is the same as shown in Fig. 4.1

the intermediate FMNS molecules [103], inducing n-type doping as well as a Fermi
level shift towards the Dirac point. Graphene has carrier-density-dependent con-
ductivity, the resistivity follows the standard dependence:

ρ−1 = σ = neµ (4.4)

where σ is conductivity, µ is carrier mobility, n is carrier concentration [90].
Following the depletion of holes in graphene, the conductance of graphene is

decreased and in turn the electrical resistance is increased, that is seen in ammonia
exposure experiments as shown in Fig. 4.7. During flushing of sensors with pure
nitrogen, weak hydrogen bonds are broken and NH3 molecules are released taking
electrons back. The donated electrons are returned from graphene to FMNS, and
the Fermi level is shifted towards the valence band. In the experiment, this is seen as
a returned to a lower sensor resistance, namely sensor recovery. The corresponding
shifts of Fermi level in graphene flakes are schemed in Fig. 4.13.

To summarize, in the Bare case, weak binding interaction takes place between
NH3 molecules and graphene flakes since there is no FMNS functionalization of
graphene [186]. Very fewelectrons fromNH3molecules canbe transferred to graphene,
which results in a weak response of a graphene-based gas sensors even upon ex-
posure to high concentrations of NH3 gas [198]. In the FMNS case, FMNS molecules
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not only work as p-type dopant to graphene but also as active anchor sites for NH3

molecules due to hydrogen bonding interaction, more electrons are transferred
from NH3 molecules to graphene and render graphene responsive even upon ex-
posure to low concentrations of NH3, as schemed in Fig. 4.14. Adsorption of NH3

molecules on FMNS through specific hydrogen bonding interaction is much weaker
than covalent bonding [199], bestowing a good recovery for the G-FMNS based sen-
sor towards NH3 sensing [200].

4.6 Summary

In this chapter, pristine graphene non-covalently functionalized by FMNS has been
produced for the application as NH3 sensing materials in a chemiresistive type gas
sensor. Raman characterizations indicate that the graphene flakes exhibit good
structural quality with few defects. The optimized ammonia sensors demonstrate
outstanding performance: ultralow limit-of-detection (1.6 ppm), excellent sensitivity
(2.8%, 10 ppm; 18.5%, 1000 ppm), reproducibility, reversibility, low power consump-
tion (work temperature, 25 oC) as well as low cost. Additionally, the roles of FMNS
from graphene preparation to NH3 sensing are elucidated via all-atom molecular
dynamics simulations: (1) stabilizer for the graphene dispersion, (2) p-type dopant
for graphene-based sensing element, and (3) active adsorption sites for NH3 gas
sensing.





Chapter 5

Highly selective pristine
graphene-based gas sensors

Selectivity is a long-standing issue for chemiresistive type gas sensors. In this chap-
ter, machine learning techniques will be employed for the signal processing in or-
der to enhance the selectivity of the gas sensors. Additionally, with unsupervised
or supervised machine learning algorithms, sensing signals of various odors could
be clustered/separated, which facilitates the odors discrimination and identifica-
tion. The developed strategy may facilitate miniaturization of e-noses, digitization
of smells, and identification of VOCs in various emerging applications.

5.1 Motivation

Olfaction is an evolutionary old and rather simply constructed sensory system, and
it provides sophisticated access to information about our surroundings [201]. The
olfactory system consists of the region from the olfactory epithelium to the olfactory
cortex [202]. Odorants, which are volatile and hydrophobic compounds possessing
molecular masses of smaller than 300 Daltons [203], reach the mucus-covered ol-
factory epithelium and then bind to specific olfactory receptors in nasal cavity, and
subsequently the odorant information is conveyed from the olfactory sensory neu-
rons to the olfactory cortex of the cerebrum, in which odor perception takes place
[204]. By means of learning or training, the human brain could memorize differ-
ent potentials or signals induced by different odorants, which enable human beings
with the ability to identify odors [205]. Inspired by the biological example, electronic



66 Highly selective pristine graphene-based gas sensors
noses (e-noses) in combination with efficient machine learning techniques aim to
achieve a similar performance and thus to digitalize the sense of smell [206]. In
this scenario, e-nose, or artificial nose, refers to an instrument, which comprises
an array of electronic chemical sensors with partial specificity and an appropriate
pattern-recognition system, capable of recognizing simple or complex odors, de-
fined by Gardner in 1993 [207]. Over the past decades, a variety of gas sensors
have been developed for e-nose systems, which demonstrate promising potential
in a wide range of applications [208–210, 22, 211].

Despite the significant progress of e-noses, their development still remains chal-
lenging due to the complex layout design of sensor array with multitude of recep-
tor types or sensor materials, and the need of high working temperature. For in-
stance, the critical hardware component of a typical e-nose system is a sensor array
consisting of a number of diverse sensors with semi-selectivity [212–215], which
is analogous to the olfactory receptors in human olfactory system. Metal-oxide-
semiconductor (MOS) type gas sensors have prevailed in commercial e-nosemarket
owing to their merits of low cost, feasible fabrication, good sensitivity, etc [216, 217].
Nevertheless, as presented in chapter 1, MOS type sensors usually operate at an el-
evated temperature in the range of 200–500 oC since thermal energy is essential to
activate the adsorption of ionized oxygen species as well as to overcome the barri-
ers of sensing reactions, in which a heater has to be taken into the consideration of
design in the sensor device [218]. Therefore, a lot of commercialized e-nose prod-
ucts are usually large, expensive, non-portable and laboratory instruments. On the
other hand, graphene is an excellent candidate of sensing materials as discussed in
the chapter 1 and chapter 4.

Typically, in feature extraction and pattern recognition algorithm of e-nose sys-
tems, single thermodynamic feature per sensor (e.g., maximum response or steady-
state response S) is prevalently utilized [219]. By contrast, kinetically transient-state
features are generally undervalued, which are inherent to the adsorption or des-
orption interaction between gas molecules and sensing element materials as well
as could provide robust quality information [209]. In addition to significantly en-
hancing gas discriminating performance, e-nose system utilizing transient features
exhibit benefits over the conventional algorithms, for instance, improved selectiv-
ity, reduced acquisition time as well as prolonged sensor lifetime, etc [220]. Given
the fact that multiple transient features could be readily extracted from the sens-
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Table 5.1 Physical properties of odor in this work.
Odor Property Smell

Molar mass: 154 g/mol
Eucalyptol(Euca) Boiling point: 172 °C Eucalyptus

Density: 922 kg/m³
Molar Masse: 142 g/mol

2-Nonanone(2Nona) Boiling point: 195 °C Fruity/floral
Density: 820 kg/m³
Molar mass: 164 g/mol

Eugenol(Euge) Boiling point: 254 °C Clove
Density: 1060 kg/m³
Molar mass: 122 g/mol

2-Phenylethanol(2Phe) Boiling point: 225 °C Rose
Density: 1020 kg/m³

ing response profile, molecule discrimination capabilities could bemaximized while
largely scaling down the number of gas sensors involved in the e-nose systems.

In this work, a highly discriminative and ultrasensitive electronic olfaction (e-
olfaction) platform for the detection, discrimination, and identification of basic odor
molecules is demonstrated, based on the use of a single-channel nano-sensor uti-
lizing non-covalently functionalized graphene as sensing element material. Four
odors, including eucalyptol (Euca), 2-nonanone (2Nona), eugenol (Euge), andphenethyl
alcohol (2Phe), which are generally employed in olfactory training among patients
with olfactory loss [221], as shown in Table. 5.1, are investigated in this work.
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5.2 Materials preparation and methods

5.2.1 Graphene dispersion preparation

The product information ofmaterials involved in this work, such as graphite powder,
APTS, are descripted in Table. 2.1. In this work, the optimized recipe for graphene
dispersion preparation was as below: 5 mL APTS aqueous solution (1 mg/mL) was
mixed with 5 mL graphite powder aqueous solution (30 mg/mL), the mixture was
then sonicated for 2 hours by horn-type sonicator (50% amplitude) in an ice bath.
Afterwards, the obtained solution was left to stand overnight. To further remove
un-exfoliated graphite particles, the suspensions were centrifuged at 4000 rpm for
2min, and the top 50% supernatant was pipetted out to another centrifugation tube.
The rest was discarded. Following feeding deionized (DI) water to the original vol-
ume, the supernatant dispersion was then re-dispersed by a mild sonication setup
for 10min in an ice bath. Thereafter, the above centrifugation and re-dispersing pro-
cedure were performed twice more. Finally, the aqueous dispersion of graphene
functionalized by APTS was achieved.

5.2.2 Sensor device fabrication

The sensor device was fabricated by dielectrophoretic (DEP) alignment of graphene
flakes on gold IDE fabricated on silicon wafers. Electrode fabrication was done utiliz-
ing a standardmicrofabrication process comprising photolithography, gold thermal
evaporation and lift-off, as introduced in our previous work [112]. IDE structure on
the device features gap size of 3 µmand finger width of 4 µm, respectively. Alternat-
ing current DEP with a signal generator was applied to deposit graphene on the de-
vice, which bridged neighboring electrodes precisely and achieved a homogeneous
graphene network on the device. DEP parameters, including frequency of the ap-
plied signal (f), peak-to-peak voltage (Vpp), and processing time (t), play a major role
in the alignment of graphene flakes. Our optimized parameters were as below: Vpp
= 10 V, f = 200 kHz, t = 30 s. In a typical DEP procedure, a droplet of 10 µL dispersion
was pipetted onto the IDE, which was fixed on a probe station, then alternating cur-
rent with specific frequency was applied on the sensor device for 30 s, followed by
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DI water rinsing and N2 flow drying. Sensor device fabrication was completed, and
stored under inert atmosphere (N2) until use.

5.2.3 Odor vapor preparation

Four basic odors, eucalyptol, 2-nonanone, eugenol, 2-phenylethanol, were investi-
gated in this work. The product information could be found in Table. 2.1 and the
physical information is shown in Table. 5.1. A bubbler evaporation system was de-
veloped to generate odor vapor as well as deliver odor vapor to the gas chamber
[222]. The flow rate of dry nitrogen was tuned by mass flow controller. The source
of both carrier gas and dilution gas was nitrogen, whose flow rate was precisely con-
trolled by mass flow controller (MFC). Odor concentration could be finely tuned by
combining the flow rate of both carrier and dilution gas.

5.2.4 Odor sensing measurement

Sensing performance of e-olfaction towards both individual odor and odor mixture
were evaluated, respectively. The gas chamber was a homemade gas sensing set-up
after minor modification, as shown in Fig. 5.1 and applied to measure the electrical
property of the sensor upon exposure to individual odor vapor or odor mixture
[112]. Upon odor vapor adsorbed by functionalized graphene on the sensor, the
electrical conductivity of the sensor shifted due to the occurrence of charge carrier
transfer between odor molecules and functionalized graphene. A constant voltage
(0.1V) was applied to the sensor and the sensor current was recorded by a source
meter. Following that, the path of carrier gas was switched off while the flow rate of
dilution gas was increased to desorb and flush odor molecules from the graphene
and released sensor recovery. To make the results reproducible, 24 repetition tests
were carried out for each odor test on the same condition. Before the initial cycle
test, a stabilization process to remove the adsorbed water or other contaminants
was performed, in which pure nitrogen flow was active until the resistance of the
sensor device approached a plateau state. In this work, a set of visual basic (VB)
scripts was developed to automaticallymanage thewholemeasurement procedure,
including, start time and end time of the odor exposure step as well as odor flushing
step, the flow rate of the carrier gas, and dilution gas in a different phase, as well as
acquire current information, etc.
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Figure 5.1 Custom-made odor sensing measurement set-up. Odor sensing system consistsof two modules, (left) odor vapor generation module, (right) odor sensing measurementmodule.

5.2.5 Evaluation method of odor discrimination performance

Odor discrimination aims to classify odor scatters with similar features into the
same class while odor scatters with distinctive properties into different groups. This
goal could be achieved via unsupervised machine learning. In this session, 4 odors,
as well as odor reference (pure N2), were discriminated. Before feeding into clus-
tering algorithms, feature data of all odors had transformation preprocessing using
StandardScaler, MinMaxScaler, and L2 normalization algorithms. The transformed
featureswere further applied principal component analysis (PCA) for dimensionality
reduction and analyzed with diverse clustering algorithms.

5.2.6 Evaluation method of odor identification performance

Odor identification is to predict the label information for the new odor from known
labels after algorithm training. This could be achieved via supervisedmachine learn-
ing. In this session, 4 odors, as well as odor reference (pure N2), were identified with
labels. In contrast to unsupervised machine learning, odor labels target had to be
predicted as well [223]. All the features together with additional target (odor la-
bels) information were split up into two sets, 75% data was used to train classifier
algorithms while the rest 25% data was used to test classifier algorithms. Before
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the training data were fed into classifier algorithm, for example, linear discriminant
analysis (LDA) algorithm, the features of the training dataset were transformed with
StandardScaler algorithm. Afterward, the transformation parameters generated
from training data were applied upon the test data set to generate transformed test
data set. The prediction accuracy achieved by the LDA algorithm could be obtained.
Meanwhile, the performance of LDA classifier algorithms was achieved using K-Fold
Cross-Validation (K = 10) approach. The above data processing of both unsupervised
and supervised machine learning was conducted via Python script.

5.2.7 Modelling

Molecular dynamic simulation work was performed with GROMACS 5.1.2 package
[224]. All molecules were modeled utilizing the GROMOS 54a7 force field [119], in
which forcefield parameters were generated using online server Automated Topol-
ogy Builder (ATB) and Repository Version 3.0 platform (https://atb.uq.edu.au/ ) [225].
There were two parts in the simulation work, including stabilization of APTS func-
tionalized graphene in water aqueous dispersion, as well as odor molecules inter-
action with APTS, functionalized graphene. In the first session, the system involved
a graphene flake, 4 APTS molecules, 12 sodium ions as well as water molecules in
a simulation box. Following reaching equilibrium of the system, APTS molecules
non-covalently adsorbed on graphene surface tightly due to π-π stacking interac-
tion [125]. Functionalized graphene with APTS were then transferred to another
simulation box. In the second simulation session, apart from APTS functionalized
graphene, odor molecules were also added into the box (individual odor or binary
odor mixture) as well as nitrogen molecules. The total amount of odor molecules
was 20, in other words, in the binary odor mixture case, 10 molecules for each odor
inside the box. The modeling parameters refer to the modeling section in chapter 3.

To investigate the binding energy and charge transfer amount between odor
molecules and APTS molecules, stationary calculations for all configurations were
performed using the Density-Functional based Tight-Binding (DFTB) approach. In
all calculations, the self-consistent charge extension (SCC) method was employed
[226], implemented in the DFTB+ code with third order corrections (DFTB3) [227],
and utilizing the 3ob-3-1 Slater-Koster parametrization. The partial charges were
determined by means of Mulliken population analysis [228].The binding energy be-
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Figure 5.2 Characterization of prepared graphene dispersion. (a) Raman spectrum of pre-pared graphene. (Blue) Graphite. (Red) APTS functionalized graphene dispersion. (b) UV-vis absorption spectra of prepared graphene. (Green) APTS aqueous solution. (Red) APTSfunctionalized graphene dispersion. (c) Digital photograph of prepared samples. (Left) APTSfunctionalized graphene dispersion, (middle) APTS aqueous solution, (right) DI water (d) Sen-sor sample of e-olfaction system. (Left) Sensor sample comparison with 5-Euro cent. (Right)Sensor sample size measurement.

tween different molecular structures were obtained via the total energy difference
between bonded and isolated states. This part calculation of DFTB was performed
by my colleague Dr. Arezoo Dianat.

5.3 Graphene materials characterization

Fig. 5.2 (a) shows the Raman spectra of both graphite and prepared graphene. Both
Raman spectra display three dominant peaks at wavenumber of around 1350, 1580,
2700 cm−1, corresponding to the D, G and 2D graphitic bands. The D band repre-
sents either edges or defects in the lattice and the G band represents sp2-hybridized
carbon bonds in graphene and graphite [166]. The D band is quite weak in graphite
(ID/IG = 0.16). When the size of graphene decreases in the course of exfoliation, the



5.3 Graphene materials characterization 73

Figure 5.3 SEM characterization of deposited graphene on IDE surface. (a) Magnification: 1000×. (b) Magnification: 5 000×. (c) Magnification: 10 000×. (d) Magnification: 30 000×.

amount of graphene edge exposed per flake increases, which gives a rise to the D
band intensity (ID/IG = 0.32). This value is much lower than that of chemically re-
duced graphene oxide (ID/IG > 1.0) [167]. The 2D band determines the number of
graphene layer. The feature of 2D band and the ratio of the 2D band to the G band
intensity (I2D/IG = 0.57) imply the existence of multi-layer graphene in our sample
[170]. Moreover, a downward shift to a lower wavelength (about 17 cm−1 lower than
that of the graphite) is observed on the 2D band of graphene sample, which corrob-
orates the multi-layer nature of Pyrene-derivative-functionalized graphene in the
sample [229, 230].These Raman spectra results suggest that the achieved graphene
flakes are multi-layer graphene with few defects.

TheUV-vis absorption spectra of both APTS aqueous solution and prepared grap-
hene aqueous dispersion are shown in Fig. 5.2 (b). There are three strong absorption
bands observed at around 235, 295, 424 nm in the UV-vis spectra of APTS, which are
typical absorption bands of APTS in water [231]. Generally, graphene is character-
ized by one absorption band at 228 nm due to the electronic π-π∗ transitions of the
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Figure 5.4 Electrical characterization of e-olfaction sensor. Sensor S1 to sensor S6.

C-C bond [232], as well as another absorption band at 268 nm due to the electronic
π-π∗ transitions of the C=C bond in the sp2 lattice [157]. However, as seen in shown
in Fig. 5.2 (b), the presence of APTS on the graphene flake nearly overlap those of
graphene between 250 and 450 N2, which could validate the occurrence of APTS in
graphene aqueous dispersion [233]. The UV absorption spectra result demonstrate
the efficient coupling between graphene and APTS molecules. The digital image of
the prepared dispersion as well as the sensor device are illustrated in Fig. 5.2 (c) and
(d), respectively.

Morphology of graphene flakes are shown in Fig. 5.3. Employing DEP electrical
field, graphene flakes grow initially across the edge of electrodes, then converge,
and finally make adjacent electrodes connected electrically. These graphene func-
tions as the conducting path as well as sensing elements for the sensor device. The
amount and morphology of deposited graphene could be tuned via the DEP param-
eters (Vpp, f, t). The average size of achieved graphene flake is around several hun-
dred nanometers, similar to our previous synthesis [111]. As shown in Fig. 5.4, the
current versus voltage (I-V) curve of developed sensors demonstrate good linearity
from -3 V to 3 V, indicating an excellent ohmic contact between the APTS functional-
ized graphene flakes and the electrodes.
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5.4 Workprinciple of graphene-basede-olfactionplat-
form

Graphene dispersion was prepared by exfoliation of graphite assisted with APTS in
aqueous solution, as shown in Fig. 5.5 (a). While the usual approach for graphene
sensor surface functionalization with pyrene derivatives rely on its modification af-
ter the deposition step [234], here the exfoliation and functionalization take place
at the same time [235], saving material processing time. Owing to the sulfonic
groups grafted on a pyrene base, APTS molecules exhibit hydrophilic behavior and
prefer to stick to graphene surface via π-π stacking interactions. In our previous
study, it was revealed that specific functionalized material on graphene through
non-covalently bonding played vital roles in graphene sensing application, which
were stabilizers for the graphene dispersion, p-type dopant for graphene sensing
materials, and active adsorption sites for analyte gas [111]. Following removing ex-
cess un-exfoliated graphite particles from the dispersion, high quality of function-
alized few-layer-graphene dispersion was achieved. A droplet of graphene disper-
sionwas pipetted onto a pre-fabricated sensor device by the dielectrophoresis (DEP)
approach. Applying alternating current (AC) field, graphene flakes were aligned
precisely across the gaps between adjacent electrodes and acted as sensing ele-
ment materials. Upon odor vapors approaching to graphene on the sensor sur-
face, charge carriers transfer occurred between odor molecules and functionalized
graphene, resulting in a shift of sensor’s conductance.

Odor sensing system was composed of two modules, odor vapor generation
module and electrical measurement module, as shown in Fig. 5.5 (b). In odor va-
por generation module, path (A and C) traversing odorant solvent functioned as
odor supplier, path (B) traversing a reference bottle functioned as odor diluter. The
source of both carrier gas and dilution gas was high purity dry nitrogen, whose flow
rate was precisely controlled by a mass flow controller (MFC). Odor concentration
could be finely tuned by combining the flow rate of both carrier gas and dilution gas.
In electrical measurement module, electrical conductance evolution of the sensor
was monitored and saved.

Raw data acquired from the odor sensing system was sensor current evolution
as a function of the operation. Following features extraction, part of feature data,
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Figure 5.5 Scheme of sensor fabrication, sensing characterization platform and results anal-ysis. (a) Procedure of sensor fabrication includes graphene preparation, sensor fabricationand odor exposure. (b) Odor sensing system comprises odor vapor generation module andelectrical measurement module. In individual odor sensing experiments, carrier gas path (Aor C) and dilution gas path B remain active. In odors mixture sensing experiments, carriergas paths (A and C) and dilution gas path B remain active. All sensing experimental workoperate at room temperature (20 oC). (c) Odor sensing signal processing and odor recogni-tion by machine learning algorithms.

as well as odor label data, were fed into machine learning algorithms in an attempt
to train classifier algorithms, while the rest were remained for odor identity predic-
tion, as illustrated in Fig. 5.5 (c). In all situations, each sensing test (containing odor
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exposure phase and odor flushing phase) was performed 24 times on the same
condition, which was achieved automatically by visual basic (VB) script.

5.5 Signal processing and features extractionmethod

In the pattern-recognition system of developed e-olfaction, rather than utilizing sin-
gle thermodynamical feature (such as steady-state response S) as a unique feature,
multiple kinetically transient-state features were applied. Raw data dumped from
the electrical measurement module was sensor current as a function of working
time, as shown in Fig. 5.6 (a). Since a constant voltage (0.1 V) was applied to the
sensor device, the sensor resistance evolution profile was readily derived according
to Ohm’s Law. To extract features from each repetition measurement profile, the
sensor resistance profile was split into 24 individual profiles, as shown in Fig. 5.6
(b). Herein, for each measurement, the odor exposure phase lasted 900 s (15 mins)
and the odor flushing phase lasted 600 s (10 mins). Sensing response (or fractional
change of sensor conductance) was then derived, as shown in Figure 5. 6 (c), which
could provide excellent pattern-recognition performance as well as compensate for
temperature cross-sensitivity and nonlinearities in the concentration dependence
[207]. Following that, sensing response for 24 repetition measurements was per-
formed with L2 Normalization, in which the sensing response of each odor was di-
vided by its norm and as a result, forced to lie on a hyper-sphere of unit radius. The
L2 Normalization aimed to compensate for sample-to-sample variations in concen-
tration [219], as shown in Fig. 5.6 (d).

To extract exponential fitting parameters, the sensing response profile was then
split into odor exposure curve and odor flushing curve, respectively, as displayed
in Fig. 5.6 (e) (f). The first derivative of sensing response and second derivative
of sensing response was implemented as well. As shown in Fig. 5.6 (g), the maxi-
mum value (kmax) in odor exposure phase and the minimum value (kmin) in odor
flushing phase were obtained. In the second derivative curve, the minimum value
(amin) in odor exposure phase was saved, as illustrated in Fig. 5.6 (h). Besides, the
area under odor exposure phase curve and odor flushing phase curve (from ta to
tb) was calculated and the maximum response (S) value relative to the baseline
was saved. In total, 11 transient-state features, containing exponential fitting pa-
rameters (a1, b1, c1, a2, b2, c2) aswell as kinetical parameters (S, kmax, kmin, amin, Area),
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Figure 5.6 Odor sensing signal processing and feature extraction. (a) Raw digital signal ofodor sensing (odor Euca as an example) consisting of 24 repetitions (a full test contains odorexposure phase and odor flushing phase). (b) Sensor resistance as a function of time after24 repetitions split-up. (c) Sensing response as a function of time. (d) Sensing response as afunction of time after data normalization. (e) Sensing response in odor exposure phase andexponential fitting. (f) Sensing response in odor flushing phase and exponential fitting. (g)First derivative of sensing response as a function of time. (h) Second derivative of sensing re-sponse as a function of time. (i) Scheme of typical sensing response and extracted features,including exponential fitting parameters (a1, b1, c1, a2, b2, c2) as well as transient parameters(S, kmax, kmin, amin, Area).

were saved for eachodormeasurement. Therefore, eachodor could be represented
with a feature vector (24 repetitions × 11 features). The signal processing and fea-
ture extraction procedures were implemented by Python script.

5.6 Odor detection threshold results

Clinically, humanolfactory function is evaluatedby the combined test of odor thresh-
old, odor discrimination, and odor identification (odor TDI test) [221]. In a similar
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Table 5.2 Gas flow rate and corresponding odor concentration in individual odor exposureexperiment. Vd: dilution nitrogen flow rate, unit, sccm.Vc :carrier nitrogen flow rate, unit,
sccm. Note: for the demonstration of odor detection threshold, the experimental data of2Phe under Scheme 20P, 40P, 60P, 80P, 100P were applied. For the demonstration of odordiscrimination andodor identification, the experimental data of all odor under Scheme ”80P”were applied.

Individual odor exposure phase
Vd 100 100 100 100 100
Vc 4 8 12 16 20
Scheme label 20P 40P 60P 80P 100P

Odor concentration (ppm)
Euca 96.154 185.186 267.858 344.828 416.667
2Nona 80.972 155.946 225.564 290.381 350.878
Euge 1.118 2.154 3.116 4.011 4.846
2Phe 4.393 8.460 12.237 15.753 19.035
(pure N2) / / / / /

Individual odor flushing phase
Vd 2000 2000 2000 2000 2000
Vc 0 0 0 0 0

fashion, the odor TDI test was applied to evaluate the performance of developed
e-olfaction. In this session, odor 2Phe was employed to investigate the detection
threshold of the developed e-olfaction device, whose sensing performance towards
2Phe odor at different concentrations (19.0 ppm, 15.8 ppm, 12.2 ppm, 8.5 ppm, and
4.4 ppm) was characterized, in which the flow rate information is illustrated in Ta-
ble. 5.2.

Meanwhile, e-olfaction response towards reference gas (pure N2) on the same
condition was characterized as well. After signal processing and features extraction,
feature vectors of 2Phe at different concentrations as well as reference gas were
achieved. Principal component analysis (PCA) was employed to reduce features
dimensionality and the first two principal components (PC1 vs PC2) were demon-
strated as shown in Fig. 5.7. There is a significant gap existing between odor 2Phe
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Figure 5.7 Odor detection threshold results. Odor 2Phe at decreasing concentrations arediscriminated from pure N2 (reference). (a) 19.0 ppm. (b) 15.8 ppm. (c)12.2 ppm. (d) 8.5ppm. (e) 4.4 ppm.

cluster and reference cluster at 2Phe concentration of 19.0 ppm. With 2Phe concen-
tration decreasing, the gap size between odor 2Phe cluster and reference cluster
decreases due to the low volume of 2Phe molecules in odor 2Phe cluster, as shown
in Fig. 5.7 (b) - (e). Due to the MFC flow rate range restriction in our setup, 4.4 ppm
is the theoretical limit of 2Phe concentration that could be achieved. These results
indicate that the developed e-olfaction could discriminate 2Phe well from the refer-
ence gas (background) and its odor detection threshold towards odor 2Phe could
be down to 4.4 ppm.
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Figure 5.8 Odor discrimination performance results. (a) Odor first principal component(PC1) vs second principal component (PC2) in e-olfaction space implementing on PCA(ground truth label attached). Color code: Euca (green), Euge (red), 2Phe (purple), 2Nona(blue), and reference (gray). (b) Accuracy metrics of odor clustering implementing on var-ious clustering algorithms. (c) Odor clusters dendrogram implementing on Agglomerativealgorithms. (d) Odor PC1 vs PC2 in e-olfaction space implementing on Agglomerative algo-rithms (predicted label attached). (e) Odor PC1 vs PC2 in e-olfaction space implementing onMini-Batch K-Means clustering algorithms (predicted label attached). (f) Odor PC1 vs PC2 ine-olfaction space implementing on K-Means clustering algorithms (predicted label attached).(g) Odor confusion matrix implementing on K-Means clustering algorithms. (h) Precision ofodor discrimination implementing on K-Means clustering algorithms.

5.7 Odor discrimination performance results

Discriminationperformanceof developed e-olfactiondevice towards odorswas eval-
uated, involving four odor molecules. In this part, the flow rate of both carrier gas
anddilution gas remained the same for each odor sensingmeasurement (Table. 5.1).
Following feature extraction and feature dimensionality reduction of each odor, the
first two principal components of odor were plotted (PC1 vs PC2) in e-olfaction fea-
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ture space. As seen in Fig. 5.8 (a), the first principal component explains 50.63%
of the variance, and the second principal component explains 22.76% of the vari-
ance. Together, the first two principal components explain 73.39% of the variance.
The actual label of the odor was appended and displayed in different colors, Euca
(green), Euge (red), 2Phe (purple), 2Nona (blue), and reference N2 (gray). 2Nona clus-
ter demonstrates excellent separation from the other odor clusters, whereas 2Phe
cluster, Euge cluster, and Euca cluster exhibit some overlapping.

In the absence of odor labels, odor clustering analysis based on unsupervised
machine learning algorithms was investigated as well. Clustering analysis attempts
to group similar samples based on a similarity measure, among which distance
functions, such as Euclidean distance, are most commonly utilized. Clusters are
organized in such a fashion that any two samples within the same cluster exhibit
minimum distance and any two samples across different clusters exhibit maximum
distance [236]. Herein, six unsupervised machine learning clustering algorithms
were employed, including Agglomerative hierarchical, Birch, K-means, Mini-Batch
K-Means, Spectral, and Gaussian Mixture. In light of the known number of odor
species, cluster number was accordingly assigned to 5 in the analysis. To cross-
validate the performance of clustering algorithms on odor discrimination, accuracy
metrics were compared, for example, precision, purity, Rand Index, F1-Score, and
Normalized Mutual Information (NMI). As shown in Fig. 5.8 (b), the result suggests
that the K-means clustering algorithm achieves an outstanding score in terms of the
above metrics.

To elucidate odor clustering results implementing on Agglomerative clustering
algorithm, predicted odor clusters were illustrated in e-olfaction space. In Fig. 5.8
(d), a sample of Euca locates closer to 2Nona cluster than Euca cluster and is then
merged into 2Nona cluster. Since Euge cluster is diffusive and overlaps a lot with
2Phe cluster, Euca cluster, and reference cluster, these Euge samples are therefore
merged into the corresponding clusters, respectively. Likewise, samples of 2Phe
drop into Euca cluster and are then combined into Euca cluster. These observations
are further corroborated by the odor dendrogram shown in Fig. 5.8 (c). In this plot,
2Nona cluster exhibits the largest distance from the other odor clusters while Euge
cluster approaches close to the reference cluster, Euca cluster, and 2Phe cluster.
Euca cluster is positioned close to 2Phe cluster. It is also observed that Euge cluster
exhibits the smallest size while 2Phe cluster exhibits the largest size.
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Similarly, clustering results implementing onMini-Batch K-Means clustering algo-
rithm and K-means clustering algorithm were demonstrated in e-olfaction feature
space, as shown in Fig. 5.8 (e)-(f). Comparing to the actual odor clusters displayed in
Fig. 5.8 (a), it is found that K-means clustering algorithm exhibit better performance
than Mini-Batch K-Means clustering algorithm. Odor confusion matrix implement-
ing on K-Means clustering algorithms is shown in Fig. 5.8 (g), by which the precision
(true positive divided to the all the predicted positive) metric for each odor is calcu-
lated and presented in Fig. 5.8 (h). These results reveal that odor 2Nona exhibits
the highest discriminative precision at 95.8% as well as odor Euca exhibits the low-
est discriminative precision at 67.7%. Incorporating K-Means clustering algorithms
into the developed e-olfaction, the average discriminative precision for the odors
could reach 83.3%.

5.8 Odor identification performance results

In odor discrimination session, the odor was categorized by odor feature similarity
measure without odor label. The odor discrimination approach played an essen-
tial role in odor clustering analysis in the absence of odor label. In this session,
in the presentence of odor labels, odor identification performance of developed
e-olfaction was investigated, which was a supervised machine learning approach.
Supervised machine learning utilized labeled datasets to train algorithms to clas-
sify datasets or predict outcomes for unforeseen datasets accurately [223]. Previ-
ous feature data of 5 odors (Euca, 2Nona, Euge, 2Phe, reference) as well as their
odor label were processed by Linear Discriminant Analysis (LDA), which was a linear
transformation technique for dimensionality reduction andwell-known classifier. In
contrast to PCA, LDA attempts to find a feature subspace that optimized class sep-
arability. Odor classification results by LDA are illustrated in Fig. 5.9 (a) and (b). The
first three linear discriminants account for 99.45% of the total variance (LD1, LD2,
LD3 explains 82.42%, 14.36%, 2.67% of the variance, respectively). These results
suggest that the four odor clusters are separated very well without any overlap-
ping. In addition to the LDA classifier, a variety of other classifiers were examined
and their performances were compared in terms of 10-fold cross-validation accu-
racy. The results suggest that apart from AdaBoost classifier (ABC), most classifiers
demonstrate excellent prediction performance with an average prediction accuracy
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Figure 5.9 Odor identification performance and feature importance results. (a) Odor classi-fication results by Linear Discriminant Analysis (LDA) classifier in 2D space (LD1 vs LD2) (b)Odor classification results by LDA classifier in 3D space (LD1 vs LD2 vs LD3) (c) Average pre-diction performance using 10-fold cross-validation on various algorithms. (d) LDA confusionmatrix for the testing set using hold-out cross-validation (training set size = 75%, testing setsize = 25%) based on 11 feature parameters. (e) Relative importance of 11 features on odoridentification. (f) LDA confusion matrix for the testing set using hold-out cross-validation(training set size = 75%, testing set size = 25%) based on 7 feature parameters. (g) Relativeimportance of 7 features on odor identification. (h) Correlation between odor physicochem-ical parameters and odor feature parameters by e-olfaction. Note: M: molecular Weight,
ρ: density, TB : Boiling point, Vp: vapor pressure, D: dipole moment, σ: surface tension,TPSA: topological polar surface area, α: polarizability, NDn: hydrogen bond donor number,
NAc:hydrogen bond acceptor number

of 80% or above. Among all the classifiers, LDA demonstrates the highest prediction
accuracy of 97.5% shown in Fig. 5.9 (c).

To assess the contribution of odor feature to odor identification, the prediction
performance of two groups involving in different feature parameters were exam-
ined, respectively, inwhich one group containing 11 feature parameters (a1, b1, c1, a2,
b2, c2, S, kmax, kmin, amin, Area) and the other group containing 7 feature parameters
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(a1, b1, c1, a2, b2, c2, S). LDA confusion matrix utilizing hold-out cross-validation (train-
ing dataset size = 75%, testing dataset size = 25%) for both groups were analyzed.
As shown in Fig. 5.9 (d) and (f), the group containing 11 feature parameters achieve
higher prediction accuracy (100%) than the group containing 7 feature parameters
(76.7%), which represent that the 4 additional feature parameters (kmax, kmin, amin,

Area) play a crucial role in odor recognition. This conclusion is corroborated by
the feature importance scores. In Fig. 5.9 (e), it is demonstrated that these 4 feature
parametersmake up 57.9% of total feature importance and single feature kmin con-
tributes to 21.4% of total feature importance. The first 7 most important features
are kmin, S, amin, kmax, Area, b1, b2.

Furthermore, the correlation between the odor feature and odor physicochem-
ical properties was explored. In particular, the correlation of the 7 most important
features (kmin, S, amin, kmax, Area, b1, b2) with odor physicochemical properties was
analyzed. Herein, two parameters are considered to hold a strong correlation if
the absolute value of their correlation coefficient is higher than 75% and moderate
correlation if the absolute value of their correlation coefficient is between 55% and
75%. As the correlation map shows in Fig. 5.9 (h), odor sensing maximum response
S holds a strong negative correlation with odor density and hydrogen bond accep-
tor amount of odor molecule. Odor feature b1 shows a strong positive correlation
with odor boiling point, topological polar surface area (TPSA), and hydrogen bond
donor amount of odor molecule, as well as a strong negative correlation with odor
vapor pressure and odor surface tension. Odor feature b2 has a strong positive cor-
relation with odor density, boiling point, TPSA, and hydrogen bond donor amount
of odor molecule as well as a strong negative correlation with odor vapor pressure.

Odor feature kmax reveals a strong positive correlation with odor vapor pres-
sure as well as a strong negative correlation with odor density, hydrogen bond
donor amount of odor molecule. Odor feature kmin exhibits an intimate positive
correlationwith odor density andmoderate positive correlationwith hydrogenbond
donor/acceptor amount of odormolecule. Odor feature amindemonstrates a strong
positive correlation with odor density and a moderate positive correlation with hy-
drogen bond donor/acceptor amount of odor molecule. Odor feature Area shows
a strong negative correlation with odor density and moderate negative correlation
with hydrogen bond donor/acceptor amount of odor molecule. To sum up, odor
density and odor hydrogen bond donor count impose an essential influence on e-
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Table 5.3 Correlation between odor feature and odor physicochemical properties. Note:strong positive correlation (++), moderate positive correlation (+); strong negative correla-tion (–), moderate negative correlation (-).

ρ TB Vp σ TPSA NDn NAc

S – –
b1 ++ – – ++ ++
b2 ++ ++ – ++ ++
kmax – ++ – -
kmin ++ + +
Amin ++ + +
area – - -

olfaction features. Besides, odor vapor pressure, odor boiling point, and TPSA exert
additional influence on feature b1 and feature b2, as shown in Table. 5.3.

5.9 Electronic perception response tobinaryodormix-
ture

The sensing response of developed e-olfaction towards binary odor mixture was in-
vestigated as well, which was analogous to olfactory perception towards odor mix-
ture in humans. Binary odor mixture with different flow rate combinations were
prepared and the odor sensing response was measured in the same way as in in-
dividual odor sensing experiments. In all cases, the total flow rate of carrier gas
remained constant during the odor exposure phase. Following the same protocols
for data processing and feature extraction as previously described, feature data of
odor mixture were then analyzed by PCA. As it is illustrated in Fig. 5.10 (a), the first
2 principal components account for more than 70% of the total variance, and the
first 6 principal components account for almost 90% of the total variance. The first
2 principal components for the Euca-2Nona odor mixture and Euge-2Phe odor mix-
ture are represented in Fig. 5.10 (b) and (c), respectively. As shown in Fig. 5.10 (b),
pure 2Nona cluster is separated very well from pure Euca cluster without any over-
lapping. With the increasing flow rate of Euca (or decreasing flow rate of 2Nona),
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Figure 5.10Binary odormixture similarity to odor component results. (a) Explained varianceof first 6 principal components of odor mixture features and their cumulative explainedvariance, odor mixture (Euca and 2Nona) as an example. (b) PCA analytical result of odormixture (Euca and 2Nona). (c) PCA analytical result of odor mixture (Euge and 2Phe). (d)Schematic diagram of centroid distance component and similarity of odor mixture to odorcomponent. d1, centroid distance component 1, centroids distance of odor mixture clusterand odor component 1 cluster. d2, centroid distance component 2, centroids distance ofodor mixture cluster and odor component 2 cluster. (e) Centroid distance component (CDC)analytical result of odor mixture (Euca and 2Nona). (f) CDC analytical result of odor mixture(Euge and 2Phe). (g) Probability of odor mixture (Euca and 2Nona) to odor component Eucaas a function of odor Euca ratio. (h) Probability of odor mixture (Euge and 2Phe) to odorcomponent Euge as a function of Euge ratio. (i) Scheme of binary odor mixture similarityto odor component, odor mixture of Euca and 2Nona generats Euca similar feature, odormixture of Euge and 2Phe generats Euge similar feature.

the odor mixture cluster tends to move toward the pure Euca cluster and vice versa.
The same behavior is observed for the 2Phe and Euge mixtures, as illustrated in
Fig. 5.10 (c).
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Furthermore, quantitative analysis of odor mixture feature was carried out as

well. The centroid points (virtual point) of individual odor clusters and odor mixture
clusters were obtained at first, and distances between the centroid point of odor
mixture cluster and centroid point of pure odor cluster weremeasured in PCA space.
Consequently, each odor mixture has two distance parameters, d1 and d2, and they
could be represented in a 2D coordination system (d1 vs d2), as illustrated in Fig. 5.10
(d)-(f). A statistical result based on the introduced concept “probability” is shown in
Fig. 5.10 (g) and (h). These results suggest that the feature of odor mixture Euca-
2Nona behave closer to odor Euca and feature of odor mixture Euge-2Phe behave
more similar to odor Euge, which is well summarized in Fig. 5.10 (i).

In previous human psychophysical studies, it was reported that an odor mixture
could give rise to one of the three outcomes:an elemental perception, a configural
perception, an overshadowing effect [237, 238]. An elemental perception implies
that both components of odor mixture are perceived in the odor mixture, whereas
a configural perception infers a new odor is perceived [239]. Overshadowing refers
to that there is recognition of only one odor component in a binary mixture [240].
Hence, upon processing an odor mixture, the developed e-olfaction generates fea-
tures closer to one odor component in binary odormixture, which behaves similarly
to human perception of ”overshadowing effect” towards binary odor mixture.

5.10 Odor perception prediction analysis

In audition and vision, the frequency of sound and wavelength of light are highly
predictive of tone and color, respectively [242]. The mapping of stimulus character-
istic onto human perception have been well defined, but not in olfaction. In 1968,
Dravnieks envisioned that e-nose system enabled inspect samples of odorous air
and report the intensity and quality of an odor without the intervention of a human
nose [243]. In the past decades, a variety of e-nose systems served to detect and
discriminate odors, nonetheless, few efforts have beenmade to go beyond that, for
instance, to predict the perceptual pleasantness of odors [244].

Interestingly, it has been reported that the primary axis of human perception
is odor pleasantness, and the primary axis of physicochemical properties correlate
with the primary axis of olfactory perception, which allows us to predict the per-
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Figure 5.11 Relationship between odor perceptual pleasantness and odor PC1 in e-olfactionfeature space. (a) Odor first principal component (PC1) vs second principal component (PC2)in physico-chemical space. Euca (green), 2Nona (blue), Euge (red), 2Phe (purple). (b) Corre-lation between odor perceptual intensity in perceptual space and odor PC1 in e-olfactionfeature space. (c) Correlation between odor perceptual pleasantness and odor PC1 in e-olfaction feature space.This figure was produced and provided by my colleague AntonieLouise Bierling [241].

ceptual pleasantness of novel molecules based on their physicochemical proper-
ties alone [241, 245]. Inspired by this research work, it is reasonable to propose a
hypothesis that there might be a correlation between the primary axis of olfactory
perception and the primary axis of e-olfaction features. The basis is that the physic-
ochemical features of molecules determine the odor sensing response profile gen-
erated on the developed e-olfaction system, which has been concluded from Fig. 5.9
(h). The odor sensing response profile further determines the e-olfaction features
of odor. In another word, the e-olfaction features of odor could be regarded as a
transformation of physicochemical properties of odor molecules. In this procedure,
the e-olfaction functions as a signal transformer or signal interpreter, which is re-
sponsible for converting odor physicochemical features into odor features (such as
the 11 features from e-olfaction in this work), just similar to the Fourier transform
method in mathematics. The correlation between odor perceptual pleasantness/in-
tensity in perceptual space and odor first principal (PC1) in e-olfaction feature space
is demonstrated in Fig. 5.11 (a)-(c). As it implies, theremight be a possibility to build a
linear model to link odor perceptual pleasantness/intensity in perceptual space and
odor first principal (PC1) in e-olfaction feature space. This linear model then would
allow us to predict the perceptual pleasantness/intensity of novel odor molecules
using the developed e-olfaction system. Nevertheless, in the current work, as it is
shown in Fig. 5.11 (a)-(c), it is difficult to bring about such an accurate prediction
model since only 4 odor molecules are examined. More odor molecules will be in-
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Table 5.4 Simulation details in molecular dynamic simulations. A: simulation of graphenestabilization.B: simulation of dor mixture adsorption on graphene.

Simulation I Simulation II
Amount Euca-2Nona Euca-Euge Euca-2Phe Euge-2Phe Euge-2Nona 2Nona-2Phe
Graphene 1 1 1 1 1 1 1
APTS 4 4 4 4 4 4 4
water 23576 / / / / / /
N2 / 500 500 500 500 500 500
Euca / 10 10 10 / / /
2Nona / 10 / / / 10 10
Euge / / 10 / 10 10 /
2Phe / / / 10 10 / 10

Conditions
Ensemble NPT NVT NVT NVT NVT NVT NVT
Time(ns) 50 20 20 20 20 20 20
Size(nm)
Graphene 4×4 4×4 4×4 4×4 4×4 4×4 4×4
Box 9×9 9×9 9×9 9×9 9×9 9×9 9×9

vestigated to derive a reliable linear model for odor perception prediction in our
following project work.

5.11 Odor molecules interaction with functionalized
graphene

To provide insights on the underlying mechanism of ”overshadowing effect” gen-
erated on developed e-olfaction in odor mixture circumstance, the interaction be-
tween odor molecules and functionalized graphene were carried out via classical
molecular dynamics simulation anddensity functional theory (DFT) calculation. Pure
odormodels, such as Euca, 2Nona, Euge, 2Phe, aswell as odormixturemodels, such
as Euca-2Nona, Euge-2Phe, Euca-Euge, Euca-2Phe, Euge-2Nona, 2Nona-2Phe, were
created and simulated. All models contained the same amount of odor molecules.
The model configuration and simulation conditions refer to Table. 5.4.
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Figure 5.12 Odor molecules interaction with functionalized graphene. Simulation of odormolecules interaction with APTS molecules on graphene viamolecular dynamic simulation.(a) Snapshot of odor molecules interaction with APTS on graphene in pure Euca odor. (b)Snapshot of odor molecules interaction with APTS on graphene in pure 2Nona odor. (c)Snapshot of odor molecules interaction with APTS on graphene in Euca-2Nona odor mix-ture. (d) Snapshot of odor molecules interaction with APTS on graphene in pure Euge odor.(e) Snapshot of odor molecules interaction with APTS on graphene in pure 2Phe odor. (f)Snapshot of odor molecules interaction with APTS on graphene in Euge-2Phe odor mixture.(g) Center of mass (COM) distance between odor molecules and APTS molecules. (h) Bind-ing energy and (i) Charge transfer amount between odor molecules and APTS on graphenecalculated by DFT (considering π-π stacking configuration for Euge and 2Phe molecules).Snapshot color code: graphene (gray), Euca (lime), 2Nona (blue), Euge (orange), 2Phe (pur-ple), carbon (cyan), nitrogen (blue), sulfur (yellow), oxygen (red).

Morphology of odormolecules on graphene surface is demonstrated in Fig. 5.12
(a)-(f). The center-of-mass (COM) distance between odormolecules and APTS ismea-
sured and shown in Fig. 5.12 (g). Binding energy and charge transfer amount be-
tween odor molecules and APTS molecules are calculated by DFT and illustrated in
Fig. 5.12 (h) and (i), respectively. In the individual odor case shown in Fig. 5.12 (a)-
(b), odor molecules of both Euca and 2Nona favor to surround APTS. The heads of
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Figure 5.13 Odor molecules structure and head group definition in the molecular dynamicsimulation analysis. Head of Euca marked (green), head of 2Nona (blue), head of Euge (red),head of 2Phe (purple), and head of APTS (gray).

odor molecules, which contain oxygen functional group, prefer to point into APTS,
which is mainly governed by traditional dipole-dipole interaction [246]. In the odor
mixture model shown in Fig. 5.12 (c), it is observed that Eucamolecules approached
APTS much closer than 2Nona, which was supported by the COM distance to APTS
shown in Fig. 5.12 (g). Comparing the odormixturemodel with the pure odormodel,
the COM distance to APTS of odor Euca decreases while the COM distance to APTS
of 2Nona increases, which indicates competitive adsorption of Euca and 2Nona on
APTS. Thebinding energy of Euca is a bitweaker than 2Nona, whereas Eucamolecule
possesses a smaller and more compact size than 2Nona, which might be more ben-
eficial for Euca to approach APTS closely.

Odor Euge and 2Phe exhibit very similar structures, which consist of a benzene
ring andoxygen-containing functional groups. In the pure odor case shown in Fig. 5.12
(d)-(e), similar to Euca and 2Nona, Euge and 2Phe molecules are found to surround
APTS, too. The odormolecules’ heads are found to point into the APTS head, which is
mainly affectedby hydrogenbonding interactionbetween theheadof odormolecules
and the head of APTS, as defined in Fig. 5.13 [247]. Hydrogen bonding interaction
is believed to be stronger than conventional dipole-dipole interaction. Apart from
hydrogen bonding interaction, π-π stacking interaction exists between Euge or 2Phe
and APTS as well, which doesn’t exist in Euca or 2Nonamodel. For this reason, some
Euge and 2Phemolecules are observed to stack onto APTS in Fig. 5.12 (f). In the odor
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mixture model, the COM distance to APTS is demonstrated and compared with the
pure odor model shown in Fig. 5.12 (g). In the odor mixture model, the COM dis-
tance to APTS of Euge decreases a lot whilst the COM distance to APTS of 2Phe in-
creases, which could be interpreted into competitive adsorption of Euge and 2Phe
on APTS. This competitive adsorption is originated from different binding energy to
APTS, as depicted in Fig. 5.12 (h). The binding energy of Euge is far stronger than
2Phe, leading to intimate binding between Euge and APTS. Consequently, Euge oc-
cupies more space near APTS than 2Phe. The simulation results on the other pairs
of odor molecules are illustrated in Appendix A.

Odor molecules interact with APTS involving in two events: odor molecules ad-
sorption on APTS as well as charge transfer between odor molecules and APTS,
which both synergistically yield characteristic sensing response [248]. The charge
transfer amount between odor molecules and APTS is displayed in Fig. 5.12 (i). Un-
der the same circumstances, odor Euca transfers 18.4% more charge to APTS than
2Nona while Euge transfers 83.8% more charge to APTS than 2Phe. With both odor
adsorption and charge transfer taken into account, the stronger odormolecules em-
brace more chance to approach closely to functionalized graphene and dominate
the signal characteristic in the odor mixture, which subsequently covers the signal
of the other odor. To sum up, owing to the difference in binding energy and capa-
bility of charge transfer, the developed e-olfaction generated a ”shadowing effect”
towards processing binary odormixture, which explains and supports the observed
experimental results.

5.12 Summary

In the present study, the odor identification performance of developed biomimetic
electronic olfaction is successfully demonstrated. The developed e-olfaction system
comprises a single channel nanosensor rather than a sensor array in conventional
e-nose system and operates at room temperature, which shows great potential to
develop into aminiaturized, portable, and implantable device. Instead of traditional
thermodynamical feature, kinetically transient-state features were extracted from
odor sensing response profile, which made the best use of characteristic response
profile of odor sensing. Noncovalently functionalized graphenewas applied as sens-
ing element materials and imposed the devices merits of selective adsorption and
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ultrahigh sensitivity. Similar to human olfaction, the developed e-olfaction exhibited
excellent performance in olfactory assessment, including odor detection threshold,
odor discrimination and odor identification. Four odors were employed to imple-
ment the olfactory evaluation test, including Euca, 2Nona, Euge, 2Phe, which are
typically employed in olfactory training for patients suffering from olfactory disor-
der. The developed e-olfaction demonstrated ultralow odor threshold towards odor
2Phe (4.4 ppm in the current lab condition) as well as excellent discrimination per-
formance (83.3%). Most importantly, incorporating with machine learning classifier
algorithm (LDA), the developed e-olfaction achieved ultrahigh odor identification ac-
curacy (97.5%). Simultaneously, the e-olfaction manifested efficient processing ca-
pability towards binary odormixture. The e-olfaction feature of binary odormixture
was shown to behave close to one odor component while the feature of the other
odor was partially covered, which was analogous to the ”overshadowing effect” in
human perception upon processing binary odor mixture. Classic molecular simu-
lation as well as density function theory calculation was implemented to shed light
upon the underlying mechanism. The results suggest that, owning to the distinct
capability of odor in terms of binding energy and charge transfer, competitive ad-
sorption upon sensing elemental materials occurs between two odor components
in odor mixture.



Chapter 6

Gases discrimination between PH3

and NH3

In the previous chapter, we have demonstrated the feasibility to discriminate differ-
ent odors using graphene-based gas sensor in combination with machine learning
algorithms. In this chapter, we would like to extend this strategy into more real
practical application, such as industrial gases discrimination. We have phosphine
(PH3) and ammonia (NH3) gases as an example and verify the potential to discrimi-
nate these gases. Moreover, the adsorption behavior of analyte gases on graphene
surface will be investigated viamolecular dynamics simulation. This work has been
accepted and published online by Advanced Intelligent Systems since 19th, March,
2022 (DOI:10.1002/aisy.202200016).

6.1 Motivation

Ammonia (NH3) andphosphine (PH3) are both common inorganic compoundswidely
used in many industrial processes, while exposure to even low concentrations of
them adversely affects human health, as introduced in chapter 1. Consequently,
the development of highly sensitive, reliable, and efficient gas sensors to monitor
NH3 and PH3 gas concentrations in an industrial environment is of the utmost im-
portance. Over the past decades, a variety of gas sensors have been developed for
both NH3 and PH3 detection, respectively [249, 250]. In spite of remarkable progress
of the sensors, there are still some limitations. On one hand, formost of commercial
gas sensors, a high operating temperature is required [218]. On the other hand, the



96 Gases discrimination between PH3 and NH3

Figure 6.1 Schematic of CuPc molecule. (a) Chemical structure of CuPc, molecular formula,C32H12CuN8O12S4Na4. (b) CuPc molecule ball-and-stick model.

gas sensor is usually dedicated to one gas detection task under a pre-specified con-
dition. For instance, in order to monitor the NH3 gas in an industrial environment,
a specific gas sensor dedicated to NH3 detection has to be used; to monitor the PH3

gas in the same work place, another specific gas sensor dedicated to PH3 detection
is required. To the best of our knowledge, very few gas sensors with the capability
to discriminate or identify multiple industrial gases in the same environment have
been demonstrated.

In this work, an ultrasensitive, highly discriminative, graphene nanosensor for
the detection and identification of ammonia and phosphine at room temperature
is demonstrated. Graphene, exfoliated and functionalized by a copper phthalocya-
nine derivate (CuPc), was employed as sensing material in chemiresistive formats.
Multiple features were extracted from the characteristic sensing response-profile
for each analyte gas and then applied to represent the gas. In combination with
efficient machine learning techniques, our graphene nanosensor demonstrates ex-
cellent gas identification performancewhenexposed to ultralowgas-concentrations
(from 100 ppb to 1 ppm). Molecular dynamics simulations were carried out to inves-
tigate the sensingmechanism in terms of the interaction between the functionalized
graphene and the analyte gases.
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Table 6.1 Simulation details in molecular dynamic simulations.
Simulation I c Simulation II: analyte gas adsorption

Molecules graphene stabilization case: 100-NH3 case: 100-PH3

Graphene 1 1 1
CuPc 4 4 4
water 23523 / /
N2 / 400 400
NH3 / 100 /
PH3 / / 100

Conditions
Ensemble NPT NVT NVT
Time(ns) 100 5 5

Size(nm2)
Graphene 4×4 4×4 4×4
Box 9×9 9×9 9×9

6.2 Graphene dispersion preparation

The specific product information of chemicals involved in this work, such as graphite
powder, CuPc, are listed in Table. 2.1 in chapter 2. The chemical structure of CuPc is
illustrated in Fig. 6.1. The protocol of graphene preparation refers to the graphene
preparation section in chapter 2.

6.3 Modelling

In this work, molecular dynamic simulation tool was employed to investigate the
adsorption behavior of analyte gases on graphene surface. The simulation was im-
plemented on GROMACS 5.1.2 platform with GROMOS 54a7 force field [115]. The
forcefield parameters of all molecules (except Cu atom)were generated on the Auto-
mated Topology Builder (ATB) and Repository Version 3.0 platform [225]. The force-
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field parameters of centrally coordinated Cu atom in CuPcmolecule was referred to
previous work [251]. The simulation work consisted of two steps, the first step was
the stabilization of CuPc functionalized graphene in water aqueous condition while
the second step was to examine the interaction between analyte gas molecules and
functionalized graphene by CuPc molecules. In the first part, the simulation box
contained a graphene flake (4 nm × 4 nm, 680 atoms), 4 CuPc molecules and wa-
ter molecules. Reaching the equilibrium state, CuPc molecules were attached on
graphene surface via π-π stacking [125]. In the second part, the graphene flake
functionalized by CuPc molecules from the previous box were introduced into a
new simulation box. In addition, analyte gas (NH3 or PH3) molecules and nitrogen
gas were present in the simulation system. Themodelling parameters refer to chap-
ter 3. Model configuration details are shown in Table. 6.1.

6.4 Discrimination performance results

The schematic illustration of the graphene nanosensor development-workflow is
shown in Fig. 6.2. Following that, graphene flakes are deposited on interdigital
electrodes (IDE) by dielectrophoretic alignment under an alternating current (AC).
Upon exposure to analyte gas in the gas sensing measurement system (as shown in
Fig. 6.3), the resistance of the sensor device shifts owing to the exchange of charge
carriers between the analyte gas and the sensing material. This shifting is depen-
dent on the course of the analyte gas exposure and analyte gas flushing and is re-
flected by the measured current evolution. Features are extracted from the charac-
teristic sensing response profile, which are then employed to represent the analyte
gas. Finally, these feature data are processed by machine learning classifier algo-
rithms and the identification performance of each analyte gas are demonstrated.

In order to assess the quality of the prepared graphene and to validate the cou-
pling of CuPc to the graphene surface, both Raman spectrum characterization and
UV-vis absorption characterization were carried out, as shown in Fig. 6.4 (a) and (b).
Fig. 6.4 (a) presents the Raman spectra of both graphite and the prepared graphene
(Gra-CuPc). In the Raman spectra of graphite, three dominant peaks are found at
wavenumbers of around 1340 cm−1, 1570 cm−1, 2680 cm−1, corresponding to the
D, G and 2D graphitic bands. The D band represents either defects or edges in the
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Figure 6.2 Schematic of graphene nanosensor development workflow. (a) Schematics ofgraphene exfoliated and modified by CuPc. (b) Graphene working as sensing elements ingas sensor and interacting with analyte molecules (e.g., NH3). (c) Time-dependent currentprofile of graphene nanosensor upon exposure to analyte gas. (d) Feature vectors repre-senting analyte gas extracted from sensing response profile. (e) Feature data processing viasupervised machine learning classifier algorithms. (f) Sensor performance evaluation andclassification results displaying.

lattice, and the G band represents sp2-hybridized carbon bonds in graphene and
graphite, while the 2D band indicates the layer number of graphene [166]. In the
Raman spectra of Gra-CuPc, the D, G, 2D bands are located at wavenumbers 1340
cm−1, 1585 cm−1, 2700 cm−1, which exhibits redshifts by 15 cm−1 and 20 cm−1 in G
and 2D bands in comparison with graphite spectra. This significant redshift of the
G band and 2D band for Gra-CuPc are the evidence of the strong coupling as well
as charge transfer between the CuPc and graphene [252, 253].

In addition to the observation of the characteristic bands of graphite, an extra
band at wavenumber of 1534 cm−1 is observed, which is attributed to isoindole ring
stretching, pyrrole stretching as well as displacement of the C-N-C bridge bond re-
lated to the central copper ion of CuPc molecule [254]. This observation further
confirms the successful functionalization of CuPc on graphene. The observation of
D band in the Raman spectra of Gra-CuPc implies the presence of edge defects in the
graphene flakes caused by probe-type ultra-sonication exfoliation [136].The basal
planes of the graphene flakes are not heavily damaged as supported by the small
intensity ratio of the D to G peaks (ID/IG = 0.50), which is much lower than that of
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Figure 6.3 Schematic of gas sensing platform. Gas sensing platform consists of four parts,gas delivering system, gas exposure chamber, signal acquisition system and signal displaysystem.

chemicallymodified graphene oxide (ID/IG > 1.0). The intensity ratio of the 2D band
to the G band (I2D/IG = 0.52) suggests the existence of multi-layer graphene in our
prepared Gra-CuPc samples [170].

Fig. 6.4 (b) presents the UV-vis spectra of both CuPc and the prepared Gra-CuPc
dispersion. In the UV-vis spectra of CuPc, the typical Q band of phthalocyanine
derivatives in thewavelength region between 500nm and 750nm are noticed, which
consists of two bands, the prominent peak at 629 nm and the satellite shoulder at
663 nm, corresponding to the presence of a dimer and a monomer of CuPc, respec-
tively [255, 256]. Very little absorption is noticed at higher wavelengths (> 750 nm).
As shown in the inset in Fig. 6.4 (b), CuPc aqueous (right tube) solution exhibits a
dark blue color while Graphene-CuPc displays a gray color. In the UV-vis spectra of
Gra-CuPc, the presence of such bands is still apparent even after implementing high-
speed centrifugation that is intended to remove excess CuPc molecules, confirming
the existence of CuPc molecules in the Gra-CuPc dispersion. Nevertheless, signifi-
cant absorption is seen for wavelengths above 750 nm, agreeing well with the pres-
ence of graphene flakes in Gra-CuPc dispersion [257]. Fig. 6.4 (c) and (d) show the
morphology images of Gra-CuPc flakes deposited on our sensor devices. Graphene
flakes are foundmostly aggregated on the gaps while few flakes are left on the gold
electrodes even after DI water flushing. The graphene flake size is several hundred
nanometers, which is far smaller than the gap width (around 4 µm) and several
graphene flakes are observed to stack on each other to connect the adjacent elec-
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Figure 6.4 Characterization results of graphene functionalized by CuPc (Gra-CuPc). (a) Ra-man spectrum characterization of Gra-CuPc. (b) UV-vis absorption spectra characterizationof pure CuPc aqueous solution and Gra-CuPc dispersion. Inset figure, Gra-CuPc dispersionsample (left tube) and pure CuPc dispersion sample (right tube). (c) and (d) Scanning Elec-tron Microscope (SEM) characterization of Gra-CuPc flakes deposited on gas sensor.

trodes electrically. Tuning the DEP parameters, the morphology of graphene flakes
deposition can be further optimized [258].

Following the sensing measurement, the time-dependent currents upon expo-
sure toNH3 andPH3 at different concentrationswere converted into time-dependent
response signals. The response profiles for each analyte gas and for each concen-
tration consists of 24 reproduced tests, as shown in Fig. 6.5 (a). Each individual
test contains two phases, the analyte gas exposure phase (15 mins) and analyte
gas flushing phase (10 mins). In order to standardize the sampling process and the
cleaning process and to avoid any intervention by the operator, the whole sensing
measurement was automated by a set of VB script. As it is depicted in Fig. 6.5 (a),
upon exposure to the 100 ppb analyte gas, the average response magnitude of NH3

is 92% higher than that of PH3 while the response magnitude of PH3 is close to that
of reference gas (pure N2). This suggests that, at the 100 ppb concentration, the
interaction between NH3 and functionalized graphene is stronger than the interac-
tion between PH3 and functionalized graphene, while the interaction between PH3
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Figure 6.5 Sensing signals and extracted features. (a) Typical response profile of graphenegas sensor towards 100 ppb analyte gas (NH3, PH3, and reference gas N2) under cyclingexposure testing. A complete test is composed of 24 repetitions test. (b) Schematic of sens-ing response profile S(t) for single cycle test, consisting of analyte exposure phase (t1 − t2,15 min in this work) and analyte flushing phase (t2 − t3, 10 min in this work). Before ini-tial cycle, a stabilization process (t0 − t1) is performed under pure N2 flow to reach a base-line. The feature vector representing each analyte gas consists of 11 parameters, including,
a1, b1, c1, a2, b2, c2, S, kmax, kmin, amin, area.

and functionalized graphene is quite weak. It is also noticed that there is a larger
drift in the NH3 response profile than in the PH3 response. This behavior is most
prominent at the initial repetitions of the sensing measurements, which may be ex-
plained by the fact that, for the NH3 analyte gas, there are still some NH3 residues
on the functionalized graphene surface even after the last flushing [176]. For the
PH3 analyte gas, the analyte flushing time is suitable for a full recovery due to low
amount of PH3 adsorbed on the sensor surface and the weak bonding between PH3

and functionalized graphene, as discovered similarly in previous work [111].
To obtain feature data for each gas, the response profiles were further pro-

cessed, as demonstrated in Fig. 6.5 (b). In order to efficiently discriminate the an-
alyte gases, multiple features were extracted from the response profile for each
analyte gas instead of using only the response magnitude. A total number of 11
transient parameters were obtained from each individual response profile. Both re-
sponse profiles in analyte gas exposure phase (t1−t2) and analyte gas flushing phase
(t2 − t3) are fitted by an exponential function, by which 3 coefficients (a1, b1, c1) for
analyte gas exposure fitting curve and 3 coefficients (a2, b2, c2) for analyte gas flush-
ing were found, respectively. Furthermore, calculations of the first derivative and
the second derivative of the response profile as a function of time were conducted,
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Figure 6.6 Response profile of graphene gas sensor towards (a) 500 ppb (b) 1000 ppb ana-lyte gas (NH3, PH3, and reference gas N2) under cycling exposure testing.

by which both the maximum value (kmax) and the minimum value (kmin) of the first
derivative of the response profilewere acquired, aswell as theminimumvalue (amin)
of the second derivative of the response profile was determined, respectively. Be-
sides, the transient response S in the whole exposure phase (t1− t2) was calculated,
as well as the area under the whole response profile (t1 − t3) was integrated. There-
fore, each analyte gas is represented by a feature vector, which consists of 24 arrays
of 11 features. All these parameters were acquired using a Python script. Sensing
response towards higher analyte concentrations are displayed in Fig. 6.6.

In this work, feature vectors of both NH3 and PH3 at different concentrations
(100 ppb, 500 ppb, and 1000 ppb) were characterized by the developed gas sen-
sor. Feature vectors of pure N2 were determined as a reference, too. All these data
were then analyzed employing unsupervised machine learning (Principal Compo-
nent Analysis, PCA) as well as supervisedmachine learning (e.g., Linear discriminant
analysis, LDA), as shown in Fig. 6.7. Specifically, PCA is a non-parametric statistical
technique primarily utilized for dimensionality reduction or compression of a high-
dimensional dataset onto a lower-dimensional feature subspace with the aim of
maintaining most of the relevant information [259]. The PCA score plots of all data
are presented in Fig. 6.7 (a) and (b). The first principal component explains 49.1% of
the variance, while the second and third principal components explain 24.7% and
11.0% respectively. Together, the first three principal components explain 84.8% of
the variance. As it can be seen in the 2D plot, NH3 clusters are located on the left
side, PH3 clusters are located on the middle, and reference gas cluster is located on
the right side. Obviously, PH3 clusters are close to reference gas cluster, especially at



104 Gases discrimination between PH3 and NH3

Figure 6.7 PCA score plot for both NH3 and PH3 analyte gas at different concentration. (a)2D space plot. (b) 3D space plot. (c) Linear discriminant analysis (LDA) score plot for bothNH3 and PH3 analyte gas at 100 ppb concentration. (d) LDA score plot for both NH3 and PH3analyte gas at 500 ppb concentration.

100 ppb, while NH3 clusters are far away from the reference gas cluster, suggesting
that NH3 induces a more discriminative signal than PH3 upon interacting with func-
tionalized graphene on the sensor. At low concentration (100 ppb), the PH3 cluster
exhibits some overlapping with reference gas cluster, indicating that the effective
response between PH3 and functionalized graphene is extremely weak at low con-
centration. With increasing PH3 concentration, the distance between PH3 cluster
and reference cluster increases as well, suggesting an enhanced signal response at
higher concentration. Utilizing supervisedmachining learning techniques, the classi-
fication results of both NH3 and PH3 from the reference gas (pure N2) were achieved,
for instance, using the LDA classifier, as depicted in Fig. 6.7 (c) and (d). In contrast
to the PCA algorithm, the LDA algorithm attempts to find a feature subspace that
optimizes class separability [260]. As it is observed, at 100 ppb concentration, NH3

forms an isolated cluster while PH3 cluster exhibits some overlapping with refer-
ence gas cluster. At 500 ppb concentration, the three clusters separate from each
other well, which suggests a perfect classification among these three analyte gases.
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Figure 6.8 LDA score plot for both NH3 and PH3 analyte gas at 1000 ppb concentration.

The LDA classification results are consistent with the PCA results. LDA classification
results on 1000 ppb refers to Fig. 6.8.

To evaluate the classification performance of the developed gas sensor, several
critical metrics for each analyte gas were evaluated. A hold-out cross-validation ap-
proach was employed to calculate the confusion matrix, by which 70% of the fea-
ture data was utilized to train the LDA classifier algorithm and 30% of the feature
data was then applied to validate the trained classifier. The confusionmatrix results
for 100 ppb analyte gas are shown in Fig. 6.9 (a). NH3 has a good classification re-
sult while PH3 achieves moderate classification results due to its signal overlapping
with reference gas. With the confusion matrix results, the performance metrics, in-
cluding accuracy, sensitivity, specificity, precision and F1-score were determined for
each analyte gas, as shown in Fig. 6.9 (b).

In terms of these above metrics, the developed gas sensor exhibits an excellent
classification performance for NH3 (accuracy- 100.0%, sensitivity-100.0%, specificity-
100.0%) while the performance is moderate for PH3 (accuracy- 77.8%, sensitivity-
75%, specificity-78.6%) due to some confusion with reference gas. Furthermore,
the sensor’s overall classification accuracy with respect to different classifier algo-
rithms were compared as well, in which the k-fold cross-validation (k=10) approach
was employed [261]. As presented in Fig. 6.9 (c), the overall classification accuracies
achieved by most classifier algorithms are above 80%. Likewise, the sensor’s per-
formance towards 500 ppb and 1000 ppb are demonstrated in Fig. 6.9 (d)-(f) and
Fig. 6.9 (g)-(i), respectively. The sensor presents an excellent classification perfor-
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Figure 6.9 Discrimination results at different concentrations. (a) Confusion matrix of ana-lyte gas classification using LDA classifier algorithm at 100 ppb concentration. (b) Sensorperformance metrics towards NH3, PH3 and N2 at 100 ppb concentration using hold-outcross-validation method. (c) Sensor classification accuracy relationship with classifier algo-rithms at 100 ppb concentration using k-fold cross-validation method. (d) Confusion matrixof analyte gas classification using LDA classifier algorithm at 500 ppb concentration. (e) Sen-sor performancemetrics towards NH3, PH3 and N2 at 500 ppb concentration using hold-outcross-validation method. (f) Sensor classification accuracy relationship with classifier algo-rithms at 500 ppb concentration using k-fold cross-validation method. (g) Confusion matrixof analyte gas classification using LDA classifier algorithm at 1000 ppb concentration. (h)Sensor performance metrics towards NH3, PH3 and N2 at 1000 ppb concentration usinghold-out cross-validation method. (i) Sensor classification accuracy relationship with classi-fier algorithms at 1000 ppb concentration using k-fold cross-validation method.

mance for 500 ppb analyte gas. For 1000 ppb, a good classification performance is
achieved for both NH3 (accuracy- 94.4%, sensitivity-100%, specificity-90.9%) and PH3

(accuracy- 94.4%, sensitivity-75%, specificity-100.0%). For 500 ppb and 1000 ppb an-
alyte gas, the overall classification accuracy achieved by most classifier algorithms
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Figure 6.10 Overall sensing performance results. (a) Overall performance of developed gassensor towards NH3, PH3 and N2 at different concentration. (b)Performance of developedgas sensor towards individual gas.

remains higher than 80%, as illustrated in Fig. 6.9 (f) and (i). The overall sensor per-
formance is summarized in Fig. 6.10, which demonstrates the excellent classification
performance of developed gas sensor towards both NH3 and PH3.

6.5 Potentialmechanismto thediscriminated features

As previously displayed in the PCA score plot, the NH3 cluster is located far away
from the reference gas cluster while the PH3 cluster is located close to the refer-
ence gas cluster. To provide some insight into the fundamental sensingmechanism,
a molecular dynamics simulation was carried out to investigate the interaction be-
tween analytemolecules and functionalized graphene. Two cases, the NH3 case and
the PH3 case, were created and modeled on the same condition. The distribution
of the molecules at the initial state and after reaching equilibrium for both gases
is presented in Fig. 6.11 (a)-(b) and (c)-(d), respectively. In the initial state, analyte
molecules are randomly distributed in the simulation box. Reaching the equilibrium
state, all NH3 molecules are adsorbed by the CuPc molecules, which are attached to
the graphene flake via π-π stacking interactions [125, 147]. In the PH3 case, only a
part of the PH3 molecule population is adsorbed, of which some PH3 molecules are
attached to graphene surface and others to CuPc.

Meanwhile, the analyte molecules’ adsorption amount as a function of simula-
tion time is presented in Fig. 6.11 (e). The amount of NH3 molecules adsorbed on
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Figure 6.11Morphology of analyte gas molecules interacting with functionalized graphene
via molecular dynamics simulation. (a) Initial configuration in NH3 case model. (b) Equilib-rium configuration in NH3 case model. (c) Initial configuration in PH3 case model. (b) Equi-librium configuration in PH3 case model. Color code: graphene flake (dark yellow), copper(orange), nitrogen (blue), hydrogen (white), phosphorus (tan), sulfur (light yellow), oxygen(red), carbon (cyan), carrier gas (red line). (e) Analyte gas molecules adsorption amount asa function of simulation time in both NH3 case model and PH3 case model. (f) Analyte gasmolecules number density along x axis in both NH3 model and PH3 model.

the graphene surface is approximately 61% higher than that of PH3 under the same
condition. The distributions of both analytemolecules along the x axis in the simula-
tion box are plotted in Fig. 6.11 (f). The graphene flake is fixed at position x = 0. In the
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NH3 case (blue line), 4 peaks can be observed at x = -0.70 nm, -0.36 nm, 0.31 nm, and
0.66 nm. Two inner peaks (x = -0.36 nm, 0.31 nm) are supposed to be the results of
NH3 molecule adsorption on the graphene surface while the two outer peaks result
fromNH3molecules adsorption on CuPcmolecules. The intensity of the outer peaks
is higher than the intensity of the inner peaks, which agrees well with the distribu-
tion observation of more NH3 molecules being attached on CuPc molecules. Likely,
in the PH3 case (red line), there are 4 peaks present at x = -0.74 nm, -0.37 nm, 0.31
nm, 0.67 nm. Two inner peaks are caused by the adsorption of PH3 molecules on
the graphene surface while two outer peaks are induced by the adsorption of PH3

molecules on the CuPc molecules. The intensity of the inner peaks is about 140%
higher than the intensity of the outer peaks in the PH3 case, which confirms the
observation of more PH3 molecules being attached on the graphene surface. Nev-
ertheless, the intensity of the outer peaks of NH3 ismuch higher than the intensity of
outer peaks of PH3, which explains that the adsorption amount of NH3 molecules by
CuPcmolecules is larger than the adsorption amount of PH3 molecules by graphene.
Beyond the active range (-1.5 nm < x < 1.5 nm), the number density of NH3molecules
vanishes while the number density of PH3 molecules remains at a low level, which
validates the observation that, NH3 molecules are concentrated on CuPc molecules
while around 40% of PH3 molecules remain distributed randomly in the simulation
box. The simulation results imply that the interaction between CuPc molecules and
NH3molecules benefit the adsorption of NH3 on functionalized graphene, which can
be attributed to strong hydrogen bonding interaction between NH3 and the sulfonic
group (SO3−) in CuPcmolecules [262, 263]. In contrast to NH3 molecules, the interac-
tion between CuPc molecules and PH3 molecules is weaker and contributes less to
PH3 adsorption sinceweak normal intermolecular forces (for instance, dipole-dipole
interaction, van der Waals forces) dominate [264].

6.6 Summary

In this chapter, an ultrasensitive, highly discriminative platform for the detection
and identification of NH3 and PH3 at room temperature using graphene nanosen-
sors has been demonstrated. Graphene is exfoliated and successfully functional-
ized by copper phthalocyanine derivate (CuPc). In combination with efficient ma-
chine learning techniques, the developed graphene nanosensor demonstrates an
excellent gas identification performance even at ultralow concentration, 100 ppb
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NH3 (accuracy-100.0%, sensitivity-100.0%, specificity-100.0%), 100ppbPH3 (accuracy-
77.8%, sensitivity-75.0%, and specificity-78.6%). Molecular dynamics simulation re-
sults reveal that the CuPc attached on the graphene surface facilitates the adsorp-
tion of NH3 on graphene owing to hydrogen bonding interactions. This smart sensor
prototype paves a path to design highly discriminative, highly sensitive, miniatur-
ized, non-dedicated gas sensors towards a wide spectrum of industrial gases.



Chapter 7

Conclusions and outlook

7.1 Conclusions

The previous chapters have presented the-state-of-the-art work on the develop-
ment of pristine graphene-based gas sensors and their application towards inor-
ganic gases detection (NH3, PH3) and volatile organic compounds (VOCs) sensing
at room temperature. With the integration of machine learning techniques, the
selectively of the sensors has been significantly enhanced and the application of
such smart platform could be extended to more than individual gas detection field.
The excellent discrimination performance and identification performance has been
demonstrated towards various gases, such as, odors, PH3, NH3, etc.

In chapter 3, the stabilization mechanism of functionalized graphene in disper-
sants aqueous dispersion has been elucidated using all-atom MD simulations. The
morphology of FMNS molecules on graphene flakes has been investigated. It was
found that the tail group of the FMNS molecules prefers to stick to the graphene
flake while the head group prefers to extend toward the solvent, consistent with
their hydrophobic and hydrophilic nature, respectively. The calculation of the PMF
of a pair of graphene flakes covered with adsorbed FMNS molecules has been car-
ried out to evaluate influence of FMNSon thedispersion and stabilization of graphene
flakes. To achieve approximately the same PMF energy barrier of 10 kJ/(mol·nm2),
the surface coverage of graphene flakes by FMNSmolecules is 44% lower than by SC
molecules, and 71% lower than by SDBS molecules, respectively, which illustrates
the superior dispersion and stabilizing performance for exfoliated graphene flake
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dispersion. At a high surface coverage, graphene flakes repel each other which
leads to the stabilization of graphene dispersions, and at lower coverage graphene
flakes can agglomerate easily. The formation of FMNS clusters can suppress the
adsorption of FMNS molecules on the graphene surface in the case of high concen-
tration of FMNS and reduce the surface coverage of graphene flake. From the simu-
lations results, it is found that the optimalmass ratio between FMNS andmonolayer
graphene is 1.06which yields the highest surface coverage of the graphene flakes by
FMNS (0.34molecules/nm2). These simulation results provide a basis for the under-
standing of graphene exfoliation assisted by FMNS-like dispersant and paves a path
to design highly efficient and biocompatible dispersants for liquid phase exfoliation
of defect-free, few layers graphene.

In chapter 4, pristine graphene non-covalently functionalized by a biocompatible
stabilizer, i.e., FMNS, was produced for the application in a highly efficient NH3 gas
sensor. The stabilized graphene dispersion was prepared through exfoliation from
readily available graphite particles assisted with the FMNS dispersant. Themorphol-
ogy of graphene flakes deposited onto the IDE structure of the gas sensorwas found
to exhibit an influence on the sensing characteristics. Moreover, the NH3 adsorption
behavior on the FMNS-functionalized graphene flakes was elucidated via all-atom
molecular dynamics simulations. The roles of FMNS from graphene preparation to
NH3 sensing were discussed: FMNS acts as a stabilizer for the graphene dispersion,
as a p-type dopant for graphene-based sensing element, and provides active ad-
sorption sites for NH3 gas sensing. This work provides an efficient path to design
highly efficient graphene-based NH3 gas sensors employing FMNS-like molecules,
which is fabricated with a facile and environmentally friendly process, biocompati-
ble materials, low-cost equipment, and scale-up capability.

In chapter 5, a biomimetic electronic olfaction using graphene single channel
nanosensor have been proposed and its performance is evaluated by incorporat-
ing with machine learning algorithm. With previously ”learned experience”, the e-
olfaction demonstrates outstanding odor identification performance, maximizing
results from single sensors. Without previously ”learned experience”, the e-olfaction
possibly predicts the odor perceptual pleasantness of odor molecules by establish-
ing a prediction model, although a larger number of odorants need to be analyzed
for more significant statistics. It is expected that the integration of arrays contain-
ing a variety of graphene functionalization together with the machine learning ap-
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proach in each of them would multiply the possibilities and further increase the
discrimination power for a much larger amount of target odor molecules and their
complex mixtures. The developed e-olfaction mechanism might allow for nasal im-
plant application to warn presence of odor for the people who exhibit olfactory dis-
order. Its compact size meets the miniaturization trend for implantable electronic
sensing devices and could be integrated into mobile device for odor identification.
The developed e-olfaction could be applied for the detection of volatile organic com-
pound (VOC) in widely fields, e.g., environmental monitoring, public security, smart
farming, disease diagnosis, etc.

In chapter 6, an ultrasensitive, highly discriminative, graphene nano-sensing ap-
proach for the detection and identification of NH3 and PH3 at room temperature is
demonstrated. The exfoliation method provides a simple technique to functional-
ize graphene at the same step, using the resulting high quality multi-layer flakes as
sensing material in miniaturized chemiresistive type sandwiched between gold mi-
croelectrodes. In combination with efficient machine learning techniques, the anal-
ysis of 11 features from the sensing response profile provides excellent and highly
sensitive gas identification performance for NH3 and PH3 at ppb levels, with nearly
100% accuracy, sensitivity and specificity for both gases at 500 ppb andmaintaining
the same level of performance for NH3 at 100 ppb. Molecular dynamics simulation
results indicate that the CuPc molecules attached on graphene surface act as effec-
tive sites for NH3 molecule adsorption via hydrogen-bonding while the attraction
between CuPc molecules and PH3 is quite weak. It is believed that the developed
nanosensor prototype provides a solution to design highly discriminative and sen-
sitive, miniaturized, non-dedicated gas sensor which can be applied towards a wide
spectrum of industrial gases.

7.2 Outlook

In this work, some preliminary works on odor/gas discrimination using graphene-
based gas sensors (e-olfaction) have been conducted. However, there are still a lot
of challenges/issues/problems remaining to be investigated/clarified/addressed in
this domain before this technology is ready to be transferred to practical application.
These include, but are not limited to the below aspects:
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• The test time (sampling time), which consists of sensing response time (15
mins) and recovery time (10 mins), could be further optimized. Of course, the
test time is dependent on the specific application. For example, for the in-
stant odor detection/the point-of-care testing of disease diagnosis, the sam-
pling time should be further shortened. In order to achieve this purpose,
sensing materials could be optimized to increase the response speed of de-
veloped sensors, such as introducing functionalization/modifications (such as
noble metal nanoparticles, Au, Pt, etc.) to graphene materials, or optimizing
the material deposition process to obtain a thinner sensing film, or replacing
the current sensingmaterial with someother advancedmaterials (for instance,
carbon nanotubes, metal–organic frameworks, Mxenes, etc.)

• To enhance the detection capability of e-olfaction towards a wide range of
odors, instead of adopting single species of sensing material, gas sensor with
multiple channels usingmultiple specifically functionalizedmaterials might be
superior.

• To enhance the data processing efficiency of e-olfaction on portable device,
cloud computing of sensing data processing and analyzing could be consid-
ered.

In addition, a new domain combining the e-olfaction feature of odors and the
human olfaction perception of odors could be established to decode the ”secret”
of odor, which might be beneficial for odor digitalization. For example, much ef-
forts could be contributed to investigate the relationship between the odor features
produced in e-olfaction space and odor features in psychological space. Assuming
these three features are correlated, it would be helpful to predict the olfactory per-
ception of odors using the e-olfaction device directly. In this case, large amount of
odor could bemeasured by the developed e-olfaction device as well as precepted by
well-organized olfaction perceptional test in large amount of population. With ma-
chine learning technique, the correlation model between the e-olfaction features
and the perceptional features of the odors might be created.
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The Appendix is supplementary information for Chapter 5.
Odor concentration could be determined via the below equation [265, 266]:

C(ppm) = 106 × Podor

P0

× vc
vc + vd

(7.1)
Where, Podor is saturated vapor pressure of odorant solvent at room temperature,
P0 is the input nitrogen gas pressure (760mmHg), Vc and Vd are the flow rate (sccm)
of both carrier gas and dilution gas, respectively. Atmospheric pressure is applied
in our experiments and the working temperature is room temperature. Odor infor-
mation refers to Table. A.1
Table A.1 Odor physicochemical property parameters [221, 267]. M : molecular weight(unit: g/mol); ρ: density (unit: g/cm3); TB : Boiling point (unit: °C); Vp: Vapor pressure(unit:Pa); D: Dipole moment(unit: Debye); σ: Surface tension (unit: dyn/cm); TPSA: Topolog-ical Polar Surface Area (unit: Å2); α: Polarizability (unit: Å3); NDn: Hydrogen bond donornumber(unit: 1); NAc: Hydrogen bond acceptor number(unit: 1).

odor M ρ TB Vp D σ TPSA α NDn NAc

Euca 154 0.92 172 253.31 1.58 61.5 9.2 18.5 0 1
2Nona 142 0.82 195 213.31 2.88 26.5 17.1 18.4 0 1
Euge 164 1.06 254 2.94 2.81 30.9 29.5 17.9 1 2
2Phe 122 1.02 225 11.57 1.60 40.4 20.20 13.87 1 1
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Table A.2 Gas flow rate in odor mixture exposure experiment. Vd:dilution nitrogen flowrate (sccm), Vc:carrier nitrogen gas flow rate (sccm).
Gas flow rate at exposure phase for odor mixture task

Vd 100 100 100 100 100
Vc 20 20 20 20 20
Combination of odor mixture (constant total odor carrier gas flow rate, 20 sccm)
Odor mixture 100%–0% 75%–25% 50%–50% 25%–75% 0%–100%
Euca-2Nona 20–0 15–5 10–10 5–15 0–20
Euge-2Phe 20–0 15–5 10–10 5–15 0–20
Euca-Euge 20–0 15–5 10–10 5–15 0–20
Euca-2Phe 20–0 15–5 10–10 5–15 0–20
Euge-2Nona 20–0 15–5 10–10 5–15 0–20
2Phe-2Nona 20–0 15–5 10–10 5–15 0–20

Gas flow rate at flushing phase for odor mixture task
Vd 2000 2000 2000 2000 2000
Vc 0 0 0 0 0
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Figure A.1 Raw sensing signal of e-olfaction towards to different odors.

Odor fingerprint pattern consisting of 7 most important features is represented
in the radar chart shown in Fig. A.2 (a)-(e). From these graphics, Euca possesses
strong peaks in odor feature S, area, amin, kmin, and kmax. 2Phe exhibits a strong
peak in odor feature b1, b2, amin, and moderate peak in odor feature S, area, kmin,
and kmax. Euge demonstrates a strong signal in odor feature b1, b2, amin, and kmin.
2Nona shows the ultrahigh signal in odor feature kmax, S, area, b1 and moderate
signal in odor feature b2. Odor reference reveals a strong peak in odor feature
amin, kmin, S. Each odor is represented by a unique and characteristic pattern, which
could be utilized as the odor fingerprint or odor identity. Interestingly, it is observed
that a large overlapping area exists between any two odors among Euca, Euge, and
2Phe, as shown in Fig. A.2 (f)-(h). These results further corroborate the previous re-
sult that odor clusters overlapping exists within Euca, Euge, and 2Phe, displayed in
Fig. A.2 (a).

Similar to the results of odor mixture Euca-2Nona and odor mixture Euge-2Phe
shown in the main text, the other groups of odor mixture are displayed in Fig. A.3-
Fig. A.6. From these results, it is indicated that the nature of odor mixture 2Phe-
2Nona behaves much more similar to 2Phe, whereas the odor mixture Euca-2Phe
overlaps with both odor components. The nature of odor mixture Euge-2Nona ex-
hibitsmuch closer to Euge and odormixture Euge-Euca behave in the samemanner.
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Figure A.2 Odor fingerprints. Odor fingerprint is analyzed based on 7 features with highimportance loading. (a) Euca. (b) 2Phe. (c) Euge. (d) 2Nona. (e) Odor reference (pure N2). (f)Euca and 2Phe. (g) Euca and Euge. (h) Euge and 2Phe.

The statistical results for binary odormixture similarity to odor component is shown
on Fig. A.7.

Figure A.3 Binary odor mixture (2Nona and 2Phe) similarity to odor component. (a) PCAanalytical result of odor mixture (2Nona and 2Phe). (b) Centroid distance component (CDC)analytical result of odor mixture (2Nona and 2Phe).
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Figure A.4 Binary odor mixture (Euca and 2Phe) similarity to odor component. (a) PCA ana-lytical result of odor mixture (Euca and 2Phe). (b) Centroid distance component (CDC) ana-lytical result of odor mixture (Euca and 2Phe).

Figure A.5 Binary odor mixture (2Nona and Euge) similarity to odor component. (a) PCAanalytical result of odor mixture (2Nona and Euge). (b) Centroid distance component (CDC)analytical result of odor mixture (2Nona and Euge).

Figure A.6 Binary odor mixture (Euca and Euge) similarity to odor component. (a) PCA ana-lytical result of odor mixture (Euca and Euge). (b) Centroid distance component (CDC) ana-lytical result of odor mixture (Euca and Euge).
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Figure A.7 Statistical results for binary odor mixture similarity to odor component. (a) Prob-ability of odor mixture (Euca and Euge) to odor component Euca as a function of odor Eucaratio. (b) Probability of odor mixture (Euca and 2Phe) to odor component Euca as a functionof odor Euca ratio. (c) Probability of odor mixture (Euge and 2Nona) to odor component2Nona as a function of odor 2Nona ratio. (d) Probability of odor mixture (2Phe and 2Nona)to odor component 2Nona as a function of odor 2Nona ratio.



121

For the other combination groups of odor mixture, molecular dynamic simula-
tion were conducted as well, as shown in Fig. A.8–Fig. A.11. The center of mass
(COM) distance between odor molecules and APTS molecules were calculated as
well, as shown in Fig. A.12. From the simulation results, it is shown that in odor
mixture 2Nona-2Phe, 2Phemolecules approach closer to APTS than 2Nona. In odor
mixture Euca-2Phe, Euca molecules approach closer to APTS than 2Phe. In odor
mixture Euge-2Nona or Euge-Euca, Euge molecules approach closer to APTS than
the other component. This means Euge molecules possess much higher chance to
be adsorbed by APTSmolecules, which consists well with the binding energy results
calculated by DFT shown in Fig 5.12(h).

Figure A.8 Simulation results of odor molecules (2Nona, Euca) interaction with APTSmolecules on graphene. (a) Snapshot of 2Nona molecules interaction with APTS ongraphene. (b) Snapshot of 2Phe molecules interaction with APTS on graphene. (c) Snap-shot of odor molecules interaction with APTS on graphene in 2Nona-2Phe odor mixture. (d)Center of mass (COM) distance between odor molecules and APTS molecules.
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Figure A.9 Simulation results of odor molecules (Euca, 2Phe) interaction with APTSmolecules on graphene. (a) Snapshot of Euca molecules interaction with APTS on graphene.(b) Snapshot of 2Phe molecules interaction with APTS on graphene. (c) Snapshot of odormolecules interaction with APTS on graphene in Euca-2Phe odormixture. (d) Center ofmass(COM) distance between odor molecules and APTS molecules.

Figure A.10 Simulation of odormolecules (2Nona, Euge) interaction with APTSmolecules ongraphene. (a) Snapshot of 2Nona molecules interaction with APTS on graphene. (b) Snap-shot of Euge molecules interaction with APTS on graphene. (c) Snapshot of odor moleculesinteraction with APTS on graphene in 2Nona-Euge odor mixture. (d) Center of mass (COM)distance between odor molecules and APTS molecules.
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Figure A.11 Simulation of odor molecules (Euge, Euca) interaction with APTS molecules ongraphene. (a) Snapshot of Euca molecules interaction with APTS on graphene. (b) Snapshotof Euge molecules interaction with APTS on graphene. (c) Snapshot of odor molecules inter-actionwith APTS on graphene in Euca-Euge odormixture. (d) Center ofmass (COM) distancebetween odor molecules and APTS molecules.

Figure A.12 Center of mass (COM) distance between odor molecules and APTS molecules.(Left) Pure odor model. (Right) Odor mixture model.
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Figure A.13 Configurations of odor molecules interacting with APTS molecules via DFT cal-culation. (a) Odor 2Nona with APTS. (b) Odor Euca with APTS. (c) Odor 2Phe with APTS (with-out π-π interactions). (d) Odor Euge with APTS (without π-π interactions). (e) Odor 2Phe withAPTS (with π-π interactions). (f) Odor Euge with APTS (with π-π interactions).

Figure A.14 Odor molecules interaction with APTS molecules via DFT calculation. (a)Odor dipole moment interacting with APTS molecules. (b) Charge transfer between odormolecules and APTS molecules (considering non-stacking configuration for Euge and 2Phemolecules).
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