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Locally Active

Sharp Edge of Chaos Edge of Chaos

(locally active and stable
but potentially unstable)

(locally active and stable) 

Fig. 7. Sharp edge-of-chaos parameter domain is a proper
subset of edge-of-chaos parameter domain, which in turn is a
proper subset of local-activity parameter domain.

YQ(iω), for at least one frequency ω = ω0:

1. Re[Y11] < 0
2. Re[Y22] < 0
3. 4 (Re[Y11] Re[Y22] + Im[Y12] Im[Y21])

× (Re[Y11] Re[Y22] − Re[Y12] Re[Y21])

< (Re[Y12] Im[Y21] − Re[Y21] Im[Y12])2 (85)

Remarks

(i) It can be proved that in both Theorems 6 and 7,
it is always possible to find a locally-passive coupling
network18 which will destabilize the homogeneous
solution. The proof is, however, quite involved.

(ii) The mathematical characterization of the sharp
edge-of-chaos domain for m > 2 port state variables
remains to be derived.

6. Examples from Turing, Smale
and Prigogine

All complexity related examples, problems and
issues presented in [Turing, 1952; Smale, 1974;
Prigogine, 1980] can be analyzed and explained via
local activity. We will illustrate the application of
the local activity theorem on some examples from
these papers.

6.1. Turing’s two-cell
reaction–diffusion equations

Figure 8 shows two identical cells containing two
molecules with concentrations Xi and Yi, respec-
tively, which migrate by “diffusion” towards each
other. The resulting reaction–diffusion equations
are shown below the figure. There are two port state
variables (Xi, Yi) with positive diffusion coefficients
D1 = 0.5 and D2 = 4.5. Let us recast these four
equations into the following matrix form:




•
X1
•

Y1
•
X2
•

Y2




=





5 −6 0 0
6 −7 0 0
0 0 5 −6
0 0 6 −7





︸ ︷︷ ︸
G1





X1

Y1

X2

Y2





+





−0.5 0 0.5 0
0 −4.5 0 4.5

0.5 0 −0.5 0
0 4.5 0 −4.5





︸ ︷︷ ︸
G2





X1

Y1

X2

Y2





=





4.5 −6 0.5 0
6 −11.5 0 4.5

0.5 0 4.5 −6
0 4.5 6 −11.5





︸ ︷︷ ︸
G=G1 +G2





X1

Y1

X2

Y2




(86)

Cell 1

X1

Y1

Y2

X2

Cell 1 Cell 2

Cell 2

X1 = (5X1 − 6Y1 + 1) + 0.5(X2 − X1)

Y1 = (6X1 − 7Y1 + 1) + 4.5(Y2 − Y1)

X2 = (5X2 − 6Y2 + 1) + 0.5(X1 − X2)

Y2 = (6X2 − 7Y2 + 1) + 4.5(Y1 − Y2)

Fig. 8. Turing’s two-cell reaction–diffusion equations.

18The coupling may not represent simple diffusions, but may involve some dissipative locally passive nonlinear and/or dynamic
couplings.

𝑑
𝑑𝑡
𝑋 = 5 𝑋 − 6 𝑌 + 𝐼!

𝑑
𝑑𝑡 𝑌 = 6 𝑋 − 7 𝑌 + 𝐼"

the uncoupled reaction cell has a unique globally asymptotically 
stable operating point 𝑄 for any choice for the DC terms 𝐼! and 𝐼"

𝑋
𝑌

a second-order reaction cell

𝑮𝟏 =

5 −6 0 0
6 −7 0 0
0 0 5 −6
0 0 6 −7

stable 𝑮𝟐 =

−0.5 0 0.5 0
0 −4.5 0 4.5
0.5 0 −0.5 0
0 4.5 0 −4.5

stable

𝑮 ≜ 𝑮𝟏 + 𝑮𝟐 =

4.5 −6 0.5 0
6 −11.5 0 4.5
0.5 0 4.5 −6
0 4.5 6 −11.5

unstable

What are the mechanisms behind these diffusion-driven instabilities?
Hint: the key factor is the choice of right coefficients in the reaction cell

%
%&

𝑋!
𝑌!
𝑋"
𝑌"

= 𝑮𝟏

𝑋!
𝑌!
𝑋"
𝑌"

+ 𝑮𝟐

𝑋!
𝑌!
𝑋"
𝑌"

= 𝑮

𝑋!
𝑌!
𝑋"
𝑌"

A.M. Turing, “The chemical basis of morphogenesis,” Phil. Trans. Roy. Soc. B, vol. 237, pp. 37–72, Aug. 1952

Turing’s equations:



What is the Smale Paradox

S. Smale, 1974: “There is a paradoxical aspect to the example. One has two dead (mathematically dead)
cells interacting by a diffusion process, which has a tendency in itself to equalize the
concentrations. Yet in interaction, a state continues to pulse indefinitely.”

S. Smale, “A Mathematical Model of Two Cells via Turing’s Equation,” American Mathematical Society,
Lectures in Applied Mathematics, vol. 6, pp. 15-26, 1974

• The kinetic equation of each reaction cell is described by a nonlinear vector field in ℝ#.

Object of study: two biological cells 
immersed in a dissipative medium

• For any initial condition the uncoupled cell approaches a globally asymptotically stable (GAS) equilibrium 𝑄

𝝁 =

𝜇! 0 0 0
0 𝜇" 0 0
0 0 𝜇' 0
0 0 0 𝜇(

𝜇) > 0

diffusionreaction

𝒛𝟏, 𝒛𝟐 ∈ ℝ( 𝑖 ∈ {1, 2, 3, 4}, : , ,𝒛𝟏, 𝒛𝟐 ≥ 𝟎 ,

• Adjoining the two cells along a membrane, as long as 𝒛𝟏(0) ≠ 𝒛𝟐(0), the two-cell array features a certain 
oscillatory behaviour for a given choice of the diffusion coefficient matrix 𝝁. 

+ 𝝁 (𝒛𝟐 − 𝒛𝟏)

+ 𝝁 (𝒛𝟏 − 𝒛𝟐)

𝑑
𝑑𝑡
𝒛𝟏 = 𝑹 𝒛𝟏

𝑑
𝑑𝑡 𝒛𝟐 = 𝑹 𝒛𝟐

Model: a nonlinear form of Turing’s equations:



The Smale Paradox: A 50-Year Old Problem

“Various forms of Turing’s equations, or reaction-diffusion equations have appeared
in one form or another in many works and fields.”

S. Smale, 1974:

“However, any sort of systematic understanding or analysis seems far away.”

“Before one can expect any general understanding, many examples will have to be
thought through, both on the mathematical side and on the experimental side.”

“The work here poses a sharp problem, 

S. Smale, “A Mathematical Model of Two Cells via Turing’s Equation,” American Mathematical Society,
Lectures in Applied Mathematics, vol. 6, pp. 15-26, 1974

namely to axiomatize the properties 
necessary to bring about oscillation via diffusion”

Answer: it is necessary that the reaction cell is locally-active at the globally asymptotically stable operating point 𝑄

The cell is then said to be poised on Edge of Chaos at the operating point 𝑄

Ascoli, Tetzlaff, Demirkol, Chua, 2022:

A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O. Chua, “Edge of Chaos Resolves Smale Paradox,” 
IEEE Trans. on Circuits and Systems-I: Regular Papers, 2022 DOI: 10.1109/TCSI.2021.3133627



Complexity in Reaction-Diffusion Systems
• Array of diffusively-coupled regularly-spaced identical reaction cells

• The array would then admits the homogeneous solution, i.e.

𝐶!,#

𝑣!,#

𝑅𝑅

𝑅 𝑅

lim
&→+

𝑣),- = 𝑉• Assume 𝐶),- to feature a GAS operating point, with

lim
&→+

𝑣),- = 𝑉 ∀𝑖 ∈ 1,… ,𝑀 , ∀𝑗 ∈ {1,… ,𝑁}

What are the necessary conditions 

for the 

destabilization

of the 

homogeneous solution?

Symmetry-breaking phenomena with 
spatio-temporal pattern formation in 
homogeneous media is an example 

par excellence of complexity

I. Prigogine, and G. Nicolis, “On Symmetry-Breaking Instabilities in Dissipative Systems,” 
J. Chem. Phys., vol. 46, no. 9, pp. 3542–3550, 1967



Schrödinger, Prigogine, Eigen,
Gell-Mann, Turing, and Smale
have all been searching for a 

missing new Physics Principle 
to explain Complexity

in physical systems



and its Pearl,

the Edge of 
Chaos,
is in fact the

Missing New Principle

The Local Activity



Definition of Local Activity
A system is said to be 

locally active

if and only if

it is capable to

amplify

infinitesimal fluctuations in energy



• Let us then apply the local activity definition to a memristor

• Particular memristor physical realizations may act as local energy sources

Locally-Active Memristors

Memristors fabricated at NaMLab. 
Contact is made to the terminals of one of them for electrical measurements. 

The lower (upper) inset shows a microscope image (a scanning electron microscope 
image) with a zoom-in view of the memristor structures.

Locally-active memristors may enable the hardware implementation of bio-inspired
computing paradigms (Dr. E. Covi, ERC Starting Grant 2021, MEMRINESS)



Rigorous definition of local activity for a memristor

Definition:

𝛿ℇ(𝑡&, ̅𝑡) = /
'!

̅'
𝛿𝑣(𝜏) 2 𝛿i(𝜏) d𝜏 < 0

for some finite time 𝑡 = ̅𝑡

• impractical for testing purposesThe current-controlled memristor M is locally active at the operating 
point 𝑄 = (𝑉. , 𝐼.) if there exists at least one possible small-signal 
current 𝛿i(t), which, superimposed upon the bias level 𝐼. from 𝑡 = 𝑡/, 
leads to a negative net energy entering the one-port over 𝑡 ∈ 𝑡/, 𝑡 , i.e. 

• Let a small-signal current 𝛿𝑖(𝑡) add up to the bias level 𝐼)

• fortunately, there exists a powerful theorem, which
simplifies this investigation

,

extended memristor

𝑣 = 𝑅 𝒙, 𝑖 2 𝑖
lim
*→&

𝑅(𝒙, 𝑖) ≠ ∞
𝒙̇ = 𝑓 𝒙, 𝑖

𝑖, 𝑡 ≡ 𝑖 𝑡 = 𝐼)+𝛿i(𝑡)
𝑣(𝑡) = 𝑉)+𝛿𝑣(𝑡)

𝑥(𝑡) = 𝑋)+𝛿𝑥(𝑡)!

𝑖
• Let the current-controlled memristor M be biased at 𝑄 = (𝑉) , 𝐼))

𝑣𝐼- = 𝐼)

M

+

−𝑖, = 𝐼)+𝛿i(𝑡)

memristor overall response

• for the application of the theorem it is necessary to 
derive the device small-signal impedance about 𝑄



Solve 𝑥̇ = 𝑓(𝑥, 𝐼&) = 0

System-theoretic method to derive the DC voltage-current characteristic of a memristor

State solutions: 𝑋! 𝐼& , … , 𝑋. 𝐼&

⇓
Calculate the corresponding voltage values from Ohm’s law

⇓
Mark the following points on the current-voltage plane

Repeat the above procedure for each value of 𝐼& ∈ (−∞,∞)
⇓

𝑥̇ = 𝑓(𝑥, 𝑖)
𝑣 = 𝑅 𝑥 . 𝑖

𝑉! 𝐼& = 𝑅 𝑋! 𝐼& 2 𝐼&, … , 𝑉. 𝐼& = 𝑅 𝑋. 𝐼& 2 𝐼&

𝐼&, 𝑉!(𝐼&) , … , (𝐼&, 𝑉.(𝐼&))

• First-order current-controlled generic memristor model:

⇒

/

⇓
Interpolate the current-voltage pairs derived in all the iterations

DC 𝑉-𝐼 characteristic of the memristor
(only a positive sweep in 𝐼/ was carried out)

• Insert a DC current 𝐼, into the memristor 𝐼, ≡ 𝐼 = 𝐼&

⇒
𝐼$

𝐼

M
+

−
𝑣

Note: A negative differential resistance
(NDR) region in the DC 𝑉-𝐼 locus of a 
one-port is a signature for local activity

⇒ Let , where 𝐼& is any real number

𝑉/V

𝐼/A

𝑉/(𝐼&)

𝐼&

𝑉!(𝐼&)

𝑉"(𝐼&)

0
0

𝑄!=(𝐼&, 𝑉!)

𝑄"=(𝐼&, 𝑉")

𝑄/=(𝐼&, 𝑉/)

NDR region



Small-signal model of a first-order memristor
𝑥̇ = 𝑓 𝑥, 𝑖

DAE set of a first-order extended memristor

𝑑𝛿𝑥
𝑑𝑡

= 𝑎 𝑄 S 𝛿𝑥 + 𝑏 𝑄 S 𝛿𝑖
𝛿𝑣 = 𝑐 𝑄 S 𝛿𝑥 + 𝑑 𝑄 S 𝛿𝑖

!𝑎 𝑄 ≜
𝜕𝑓 𝑥, 𝑖
𝜕𝑥 !

!𝑏 𝑄 ≜
𝜕𝑓 𝑥, 𝑖
𝜕𝑖 !

!𝑐 𝑄 ≜
𝜕𝑣(𝑥, 𝑖)
𝜕𝑥 !

!𝑑 𝑄 ≜
𝜕𝑣(𝑥, 𝑖)
𝜕𝑖 !

• Linearize the DAE set about an operating point 𝑄 = (𝐼., 𝑉.)

where

• Transform the linearized system in the Laplace domain (with 𝛿𝑥(0) = 0)

𝑠 S ℒ{𝛿𝑥(𝑡)} = 𝑎 𝑄 S ℒ{𝛿𝑥(𝑡)} + 𝑏 𝑄 S ℒ{𝛿𝑖(𝑡)}

ℒ{𝛿𝑣(𝑡)} = 𝑐 𝑄 6
𝑏 𝑄

𝑠 − 𝑎 𝑄
6 ℒ{𝛿𝑖(𝑡)} + 𝑑 𝑄 6 ℒ{𝛿𝑖(𝑡)}

ℒ{𝛿𝑥(𝑡)} =
𝑏 𝑄

𝑠 − 𝑎 𝑄
S ℒ{𝛿𝑖(𝑡)}

ℒ{𝛿𝑣(𝑡)} = 𝑐 𝑄 6 ℒ{𝛿𝑥(𝑡)} + 𝑑 𝑄 6 ℒ{𝛿𝑖(𝑡)}

𝑍. 𝑠 ≜
ℒ 𝛿𝑣 𝑡
ℒ 𝛿𝑖 𝑡

• The local impedance 𝑍. of the memristor about 𝑄 is computed via

𝑝 𝑄 = 𝑎 𝑄𝐾 𝑄 = 𝑑 𝑄 𝑧 𝑄 =
𝑎 𝑄 , 𝑑 𝑄 − 𝑏 𝑄 , 𝑐 𝑄

𝑑 𝑄
,,

1

,

𝑟! 𝑄 = 𝐾 𝑄

𝑟" 𝑄 =
𝐾 𝑄 4 𝑧 𝑄
𝑝 𝑄 − 𝑧 𝑄 𝑙 𝑄 =

𝐾 𝑄
𝑧 𝑄 − 𝑝 𝑄

𝛿𝑖

𝛿𝑣
+

−
𝑍!(𝑠)

Memristor small-signal equivalent circuit model at 𝑄

lim
)→/

𝑅(𝑥, 𝑖) ≠ ∞
, 𝑥 ∈ ℝ

𝑣 = 𝑣(𝑥, 𝑖) = 𝑅 𝑥, 𝑖 S 𝑖

Small-signal resistance at 𝑄: 𝑟 𝑄 = 𝑟" 𝑄 ∥ 𝑟# 𝑄

𝑉/V

𝐼/A

𝑉/(𝐼&)

𝐼&

𝑉!(𝐼&)

𝑉"(𝐼&)

0
0

𝑄!=(𝐼&, 𝑉!)
𝑄"=(𝐼&, 𝑉")

𝑄/=(𝐼&, 𝑉/)
NDR region

DC 𝑉-𝐼 characteristic of the memristor
(only a positive sweep in 𝐼$ was carried out)

𝑟 𝑄# = !
𝜕𝑉
𝜕𝐼 !!

< 0

where

= 𝐾 𝑄 S
𝑠 − 𝑧 𝑄
𝑠 − 𝑝 𝑄



𝑟! 𝑄 = 𝐾 𝑄

𝑟" 𝑄 =
𝐾 𝑄 4 𝑧 𝑄
𝑝 𝑄 − 𝑧 𝑄 𝑙 𝑄 =

𝐾 𝑄
𝑧 𝑄 − 𝑝 𝑄

𝛿𝑖

𝛿𝑣
+

−
𝑍!(𝑠)

Memristor small-signal equivalent circuit model at 𝑄

Small-signal resistance at 𝑄: 𝑟 𝑄 = 𝑟" 𝑄 ∥ 𝑟# 𝑄

A current-driven one-port is Locally Active at 𝑄⇔ any one of 4 conditions applies:

1. 𝑍) 𝑠 has a pole 𝑝 such that ℜ 𝑝 > 0

2. 𝑍) 𝑠 has a simple pole of the form 𝑝 = 𝑗𝜔𝑃, and

res 𝑍) 𝑠 , 𝑝 = lim
,→01#

𝑠 − 𝑗𝜔𝑃 2 𝑍) 𝑠

is either a complex number or a negative real number

3. 𝑍) 𝑠 has a multiple pole of the form 𝑝 = 𝑗𝜔𝑃

4. ℜ 𝑍) 𝑗𝜔 is negative for at least one real-valued angular frequency 𝜔

Local Activity Theorem

Notes:

• condition 4. holds true at an operating point along the NDR region, where

• conditions 2. and 3. refer to marginal cases

ℜ 𝑍. 0 ≡ 𝑟 𝑄 < 0

𝑉/V

𝐼/A

𝑉/(𝐼&)

𝐼&

𝑉!(𝐼&)

𝑉"(𝐼&)

0
0

𝑄!=(𝐼&, 𝑉!)
𝑄"=(𝐼&, 𝑉")

𝑄/=(𝐼&, 𝑉/)

DC 𝑉-𝐼 characteristic of the NaMlab memristor
(only a positive sweep in 𝐼$ was carried out)

NDR region

𝑟 𝑄# = !
𝜕𝑉
𝜕𝐼 !!

< 0



A one-port

is said to be on the 

Edge of Chaos

if

it is locally active at some 

asymptotically-stable

operating point 𝑄

Definition: Edge of Chaos (EOC)

(i.e. only condition 4. from the 

Local Activity Theorem applies)

A current-driven one-port is Locally Active at 𝑄⇔ any one of 4 conditions applies:

1. 𝑍) 𝑠 has a pole 𝑝 such that ℜ 𝑝 > 0

2. 𝑍) 𝑠 has a simple pole of the form 𝑝 = 𝑗𝜔𝑃, and

res 𝑍) 𝑠 , 𝑝 = lim
,→01#

𝑠 − 𝑗𝜔𝑃 2 𝑍) 𝑠

is either a complex number or a negative real number

3. 𝑍) 𝑠 has a multiple pole of the form 𝑝 = 𝑗𝜔𝑃

4. ℜ 𝑍) 𝑗𝜔 is negative for at least one real-valued angular frequency



Edge
of
chaos

local
passivity

local
activity

Edge of Chaos
is the 

“Pearl”
embedded within

the domain of
Local Activity



Edge of Chaos
is an

innate characteristic
of a

dynamical system



Chua’s 
Riddle



Chua’s Riddle
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Chua’s Riddle

0( )
2 2
E Ei t i teé ù= - + +ê úë û

-

Exponential waveform 
with time constant  1t =

0( )
2 2
E Ei t i teé ù= + -ê úë û
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i0
0 t

E

i 4Ω i

i0
0 t

∞

19

• This is yet another example of Complexity. How may this happen?



What is 
inside

the

?Black Box



Chua’s Riddle

0( )
2 2
E Ei t i teé ù= - + +ê úë û

-

Exponential waveform 
with time constant  1t =

0( )
2 2
E Ei t i teé ù= + -ê úë û

E

i

-E/2
i0
0 t

E

i 4Ω i

i0
0 t

∞

Hint : the Black Box contains just two basic 
linear two-terminal circuit elements



The Answer
to 

Chua’s Riddle 
is the Essence of the 
Edge of Chaos



Chua’s 
Riddle: 

Solution



The voltage-controlled one-port within the 

black box is poised on the Stable Locally-

Active operating regime, also referred to as

Edge of Chaos

-2Ω

-2H

Y(s)

E

i 4Ω

Y’(s)

-E/2

0

Time Constant
τ = -1

i

i0

∞

2 2

2

I(s) 1 -1Admittance, Y'(s)= = =
V(s) (2 - 2s) 2 (s - 1)

-1 -1 (-1 - iω) 1 ωY'(iω)= = = +i
2(-1+ iω) 2(-1+ iω)(-1 - iω) 2 (1+ ω ) 2 (1+ ω )

1Re Y'(iω)= > 0, -  < ω < 
2(1+ ω )

¥ ¥

×0
ω

iω

1

-2Ω

-2H

Y(s)

E

i

-E/2

0
Time Constant

τ = 1

i

i0

2 2

2

I(s) 1 -1Admittance, Y(s)= = =
V(s) (- 2 - 2s) 2 (s + 1)

-1 - (1- iω) -1 ωY(iω)= = = + i
2(1+ iω) 2(1+ iω)(1- iω) 2 (1+ ω ) 2 (1+ ω )

-1Re Y(iω)= < 0, -  < ω < 
2(1+ ω )

¥ ¥

× 0
ω

iω

-1

Including the passive and linear resistor in series with 

the original one-port, the resulting overall voltage-

controlled one-port within the red box is poised on the 

Unstable Locally-Active operating regime



A miniaturized volatile niobium oxide memristor with locally-active behaviour

NbO device stack from NaMLab

𝑉/V

𝐼/A

𝑉)

𝐼)

0
0

Qualitative sketch of the device DC 𝑉 − 𝐼 characteristic
obtained under current sweep. Blue: stable branch

𝑄 = (𝐼) , 𝑉))

𝑉/V

𝐼/A

𝑉)

𝐼)

0
0

Qualitative sketch of the device DC 𝐼 − 𝑉 characteristic obtained
under voltage sweep. Blue: stable branch. Red: unstable branch

𝑄 = (𝑉) , 𝐼))

𝐼)"

𝐼)#

𝑄2 = (𝑉) , 𝐼)")

𝑄2 = (𝑉) , 𝐼)")

stable
unstable

𝑖 Q
(𝑡
)
=
𝐼 R +

-

v

i = 𝐼0

𝑣 Q
(𝑡
)
=
𝑉 R +

-

𝑣
=
𝑉 R

i

-

+

stable

i = 𝐼.: load line

𝑣 = 𝑉.: load line

Experimental observations

• stable NDR region
• condition 4. from

the Local Activity
Theorem holds
true at DC at any
NDR bias point

unstable
NDR V-range



𝑑𝑥
𝑑𝑡

= 𝑔(𝑥, 𝑣)

𝑖 = 𝐺 𝑥 𝑣

𝐺 𝑥 = 6.50 . 1012 −6.66 . 1013 𝑥 + 2.14 . 1014. 𝑥5 − 2.14 . 10167. 𝑥2 + 1.19 . 10162. 𝑥8

𝑔 𝑥, 𝑣 = 5.19 . 109 −2.05 . 104. 𝑥

NbOx threshold switch from NaMLab

with state evolution function

and memductance function

generic memristor model based upon the Unfolding Principle

+ 7.21 . 109 −0.07 . 109. 𝑥 + 2.27 . 103. 𝑥5 − 2.40 . 105. 𝑥2 + 1.25 . 1016. 𝑥8 − 2.69 . 1013. 𝑥3 . 𝑣5

A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,”
IEEE Trans. Circuits Systems–I: Reg. Papers, vol. 62, no. 4, pp. 1165–1175, Apr. 2015



Memristor Dynamic Route Map (DRM) under Voltage Control

Memristor DRM under a range of DC voltage values

𝑑𝑥
𝑑𝑡 = 𝑔(𝑥, 𝑣)

𝑖 = 𝐺 𝑥 , 𝑣

Memristor DAE set:

• If the DC voltage lies within the NDR region, there exists 3 possible 
operating points, of which the intermediate NDR one is unstable

stable
unstable

A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS–I, vol. 62, no. 4, pp. 1165–1175, 2015

𝑉/V

𝐼/A

𝑉)

𝐼)

0
0

𝑄

𝐼)"

𝐼)#

𝑄2

𝑄3

stable
unstable

𝑣 = 𝑉.

unstable
NDR V-range



𝑉,
+

−

𝑅,

𝑖
𝑣
+

−

DC biasing circuit [1]

Biasing circuit for stabilizing a NDR operating point on 
the DC locus of the voltage-controlled device

𝑣 =
𝑉-

1 + 𝐺(𝑥) 2 𝑅-

𝑖 =
𝑉- − 𝑣
𝑅-

load line (for determining the intersections with the device DC 𝐼 versus 𝑉 locus) 

memristor voltage

[1] A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS–I, vol. 62, no. 4, pp. 1165–1175, 2015
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𝑑𝑥
𝑑𝑡 = 𝑔 𝑥,

𝑉-
1 + 𝐺(𝑥) 2 𝑅-

𝑖 = 𝐺 𝑥 2
𝑉-

1 + 𝐺(𝑥) 2 𝑅-

voltage-controlled memristor model (for the DRM analysis)



Stabilization of an Operating Point on the NDR Region of the 
DC Characteristic of the Memristor under Voltage Control

𝑅- > − a𝑟
)
≜ −

1

a𝑑𝑖
𝑑𝑣 )

Arrowed %;
%&
= 𝑔 𝑥, <!

!=>(;)4A!
versus 𝑥 loci sharing NDR bias point 𝑋 DC load line 𝐼 = <!B<

A!
for each 𝑅C, 𝑉C pair in (a) and memristor DC locus 

(a) (b)

condition for the stabilization of NDR operating point 𝑄

load line slope: −1/𝑅C
memristor DC locus slope at 𝑄 : 1/ |𝑟 .

• Apply a DC voltage 𝑉C across the 𝑅C-ℳ series one-port so that the load line intersects the device DC locus in a NDR operating point 𝑄.



Memristive Variant of the Pearson-Anson Relaxation Oscillator
and Its Small-Signal Equivalent Circuit Model

𝑍4 𝑠 =
ℒ{𝛿𝑣5(𝑡)}
ℒ{𝛿𝑖5(𝑡)}

= 𝐾 2
𝑠 − 𝑠6,8$

𝑠 − 𝑠9%,8$ 2 𝑠 − 𝑠9&,8$

𝐾 =
1
𝐶

𝑠D,E" = −
𝑅"
𝐿

𝑑𝑣
𝑑𝑡 = 𝑓"(𝑥, 𝑣) ≜

1
𝐶
𝑉, − 𝑣
𝑅,

− 𝐺 𝑥 2 𝑣

𝑑𝑥
𝑑𝑡

= 𝑓!(𝑥, 𝑣) ≜ 𝑔 𝑥, 𝑣

State equations of the second-order cell:

where 𝐾, 𝑠6,8$, and 𝑠9',8$ for 𝑖 ∈ {1,2} may be expressed in terms of the 
parameters of the memristor small-signal equivalent circuit model as

• Local input impedance of the oscillator at the coupling port 𝐴 − 𝐵

Memristive variant of the Pearson-Anson oscillator

𝑠F#,E" = −
𝑅"
𝐿 +

𝑅! + 𝑅G
𝐶 S 𝑅!S 𝑅G

±
1
2 S

𝑅"
𝐿 +

𝑅! + 𝑅G
𝐶 S 𝑅!S 𝑅G

"
− 4 S

1
𝐿 S 𝐶 1 + 𝑅" S

𝑅! + 𝑅G
𝑅! S 𝑅G

𝑅!

𝑅" 𝐿

𝑅, 𝐶
𝑍4

𝛿𝑖5

𝛿𝑣5
+

−

Oscillator small-signal equivalent circuit about 𝑄H = (𝑋, 𝑉) [3] 

, ,

A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos Theory Resolves Smale Paradox,” IEEE TCAS–I, 2022, DOI: 10.1109/TCSI.2021.3133627
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𝐵

𝑣5𝑉,
+

−

𝑅,

𝑖
𝑣
+

−
𝐶𝑣:

+

−

𝑖;(

𝑍4(𝑠)

𝐴

+

−



Scenario 1: Cell dynamics when the memristor ℳ is polarized in one PDR bias point 

𝑉) = 2.5392 V, 𝑅) = 30 Ω, C = 5 nF

• Choose 𝑉- and 𝑅- so that the load line meets the device DC 𝐼-𝑉 locus at a point 𝑄 = (𝑉, 𝐼) lying on either of the PDR branches
• The cell is found to be locally passive at a globally asymptotically stable (GAS) operating point 𝑄4 = (𝑋, 𝑉), irrespective of 𝐶

𝑉) = 0.7275 V, 𝑅) = 330 Ω, C = 5 nF

𝑉$ = 0.7275 V, 𝑅$ = 330 Ω

𝑉$ = 2.5392 V, 𝑅$ = 30 Ω

Cell phase portrait for

Cell phase portrait for

Device bias point for

Device bias point for

𝑣 =
𝑉$

1 + 𝐺(𝑥) E 𝑅$
𝑣-nullcline:

𝑔(𝑥, 𝑣) = 0𝑥-nullcline:

𝑄% = (𝑋, 𝑉)stable operating point:



Scenario 2: Cell dynamics when ℳ may stabilise in either of the PDR regions

Cell phase portrait for

• Choose 𝑉- and 𝑅- so that the load line meets the device DC 𝐼-𝑉 locus in three points, namely

𝑉C = 0.875 V, 𝑅C = 0.5 Ω, and 𝐶 = 100 nFPossible device bias points for 𝑉C = 0.875 V, 𝑅C = 0.5 Ω

• The cell correspondingly has three operating points

𝑄3 = 𝑉3 , 𝐼3 in PDR! 𝑄 = 𝑉, 𝐼 in NDR 𝑄2 = 𝑉2 , 𝐼2 in PDR", ,

𝑄4,! = 𝑋3 , 𝑉3 , 𝑄4," = 𝑋, 𝑉 𝑄4,/ = 𝑋2 , 𝑉2,

locally passive at either of the locally-stable operating points 𝑄4,! and 𝑄4,/, irrespective of 𝐶
locally active and unstable at the unstable operating point 𝑄4,", irrespective of 𝐶

• The cell is found to be

stable cell operating point
unstable cell operating point



locally active and unstable at 𝑄H

Cell phase portrait for

𝑉C = 1.3 V , 𝑅C = 100 Ω, C = 6 nF

Device bias point for 𝑉C = 1.3 V , 𝑅C = 100 Ω

Scenario 3: Cell dynamics when ℳ is polarized in one NDR operating point 

• Choose 𝑉C and 𝑅C so that the load line meets the device
DC 𝐼-𝑉 locus at a point 𝑄 = (𝑉, 𝐼) lying on the NDR

• The stability of the cell the respective operating point
𝑄H = (𝑋, 𝑉) depends critically upon the capacitance 𝐶

poised on the EOC at 𝑄H

Cell phase portrait for

𝑉C = 1.3 V , 𝑅C = 100 Ω, C = 2 nF

The cell is silent,

The cell is an oscillator,

stable cell operating point



Classification of Cell Operating Regimes for all Possible Cases Studies in Scenario 3

• Case study:

• Scenario 3: choose 𝑉- and 𝑅- so that 𝑄 = (𝑉, 𝐼) lies on the NDR branch of the device DC 𝐼-𝑉 locus. 
the stabilization condition 𝑅C > − |𝑟 . for the voltage-controlled memristor applies throughout the NDR branch→• Let 𝑅- = 100Ω

Classification of all possible operating regimes of the cell in scenario 3

supercritical Hopf bifurcation locus 𝐶 = 5𝐶(𝑋)

• The memristor operating point 𝑋 is directly determined by the choice for 𝑉-

for C < 5𝐶 the cell is silent, poised on the EOC at 𝑄/ = (𝑋, 𝑉)

for C > 5𝐶 the cell is an oscillator, locally active and unstable at 𝑄/ = (𝑋, 𝑉)

if 𝑉- = 1.3V, then 𝑋 = 389, 𝑉 = 0.994V

(𝑋, w𝐶) = (389,4.085𝑛𝐹) supercritical Hopf bifurcation point



A stable operating point Q of a given one-port
may be destabilized by coupling the one port to a 

passive environment if and only if 
Q is poised on the 

Edge of Chaos 

Fundamental Result: Edge of Chaos Theorem 



Coupled System

𝑑𝑣!
𝑑𝑡

= 𝑓"(𝑥!, 𝑣!, 𝑥", 𝑣") ≜
1
𝐶
𝑉G − 𝑣!
𝑅G

− 𝐺 𝑥! S 𝑣! +
𝑣" − 𝑣!
𝑅I

𝑑𝑥!
𝑑𝑡

= 𝑓!(𝑥!, 𝑣!, 𝑥", 𝑣") ≜ 𝑔 𝑥!, 𝑣!

𝑑𝑣"
𝑑𝑡 = 𝑓((𝑥!, 𝑣!, 𝑥", 𝑣") ≜

1
𝐶
𝑉G − 𝑣"
𝑅G

− 𝐺 𝑥" S 𝑣" +
𝑣! − 𝑣"
𝑅I

𝑑𝑥"
𝑑𝑡

= 𝑓'(𝑥!, 𝑣!, 𝑥", 𝑣") ≜= 𝑔 𝑥", 𝑣"

36

• State equations:

𝑉-
+

−

𝑅-

𝑖!
𝑣!
+

−
𝐶 𝑣:,!

+

−

𝑖;*,!

𝑉-

+

−

𝑅-

𝑖"
𝑣"
+

−
𝐶𝑣:,"

+

−

𝑖;*,"𝑅:𝑖;+

M1 M2

A1

B1

A2

B2

• Two identical cells, poised on the EOC on their own, are diffusively coupled through a passive and linear resistor 𝑅:

• The common expectation is that, irrespective of 𝑅: , the memristive array would admit the homogeneous solution, 
where each of the two identical cells converges to the GAS operating point it would approach in the uncoupled case.

• Surprisingly, this is the case only for appropriately large 𝑅: values.



• For C = 4nF < w𝐶 = 4.085nF the uncoupled cell is poised on the EOC domain

Uncoupled cell under silence, and Homogeneous Solution of the Two-Cell Array 

• Uncoupled cell, memristor bias parameters: 𝑅- = 100Ω, and 𝑉- = 1.3V.

Single cell, approaching a globally asymptotically stable
operating point (silent state) as times goes to infinity

Homogeneous solution of the two-cell array. Here 𝑅J = 50Ω

• Coupling two identical copies of this cell via a resistor of large resistance, the resulting array displays the homogeneous solution

37
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Diffusion-driven Instabilities in the Two-Cell Array:
Formation of Static Turing patterns

Development of an inhomogeneous static solution, i.e. a Turing pattern, in the two-cell array for 𝑅I = 40Ω

• The destabilisation of the homogeneous solution, due to a pitchfork bifurcation, gives way to a Turing pattern for 𝑅: = 49.7Ω
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Diffusion-driven Instabilities in the Two-Cell Array:
Formation of Dynamic Patterns

Development of an inhomogeneous dynamic solution in the two-cell array for 𝑅I = 25Ω

• Decreasing the coupling resistance further, oscillatory waveforms first develop in the cellular medium out of a Hopf supercritical
bifurcation, at the expenses of the inhomogeneous static solution, for 𝑅: = 28.1 Ω

Smale, 1974:

“There is a paradoxical aspect to the example.
One has two dead (mathematically dead) cells
interacting by a diffusion process which has a
tendency in itself to equalize the concentrations.
Yet in interaction, a state continues to pulse
indefinitely.”

A simple 4th-order bio-inspired reaction-
diffusion memristor cellular array reproduces
the same paradoxical phenomena observed by
Smale in a 8th order system from cell biology



Some Insights on the Bifurcations of the Bio-Inspired Array 

n𝑍K .%
𝑠 =

ℒ{𝛿𝑣L(𝑡)}
ℒ{𝛿𝑖L(𝑡)}

= n𝑍H& ."&
𝑠 || ( 𝑅I+ n𝑍H' ."'

𝑠 )

A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos Theory Explains Smale Paradox,” TCAS-I, 2022, DOI: 10.1109/TCSI.2021.3133627

• As 𝑅I is decreased, a 1st bifurcation occurs when 1 of the 4 poles of |𝑍L .( for 𝑄M' ≡ 𝑄M& = (𝑋, 𝑉) moves to the RHP, i.e. for [3] 

where 𝑄L = 𝑄M', 𝑄M& ,

• As 𝑅I is decreased further, a 2nd bifurcation occurs at 𝑅I = 𝑅I,", when a complex conjugate pole pair of |𝑍L .( for 𝑄M' ≠ 𝑄M& move to the RHP  

𝑅I = 𝑅I,! ≜
−2 S 𝑟" (𝑋)

1 + 𝑟"(𝑋)
𝑟! 𝑋 || 𝑅

• The closed-form expression for the small-signal impedance of the memristor array is

For our case study, 𝑅I,! = 49.7 Ω, as observed earlier, the first time a Turing pattern forms in the bio-inspired array.

Using a numerical method to track the evolution of the poles of |𝑍L .( on complex plane, the theory predicts a value 28.1 Ω for 𝑅I,", as observed 
earlier, the first time the cells were first found to pulse together, forming a dynamic pattern, in numerical simulations.

with 𝑄M' = (𝑋!, 𝑉!) ≠ 𝑄M& = (𝑋", 𝑉")

𝑅:𝑖;+

a𝑍5% ),% 𝛿𝑣I
+

−

𝛿𝑖I

a𝑍J )-
(𝑠)a𝑍5& ),&

The simplest ever reported electrical circuit reproducing Smale paradoxical observations Local equivalent circuit model of the two-cell array

𝑉-
+

−

𝑅-

𝑖!
𝑣!
+

−
𝐶 𝑣:,!

+

−

𝑖;*,!

𝑉-

+

−

𝑅-

𝑖"
𝑣"
+

−
𝐶𝑣:,"

+

−

𝑖;*,"𝑅: 𝑖;+

M1 M2

A1

B1

A2

B2

𝑣J
+

−

𝐴K

𝐴KK



Edge of Chaos Theory
Explains the 

Origin
for the 

Diffusion-driven 
Instabilities

in the Two-Cell Array



Conclusions

• With an outlook toward future research, the theory of Local Activity shall enable the development of a
systematic and rigorous approach to design bio-inspired circuits with small-signal memristive amplifiers

• Applications include the development of high-performance brain-like machines and biologically-plausible
neuromorphic systems

• Edge of Chaos may be interpreted as a new physics principle, which extends the second law of thermodynamics
to open systems

• In this seminar we presented the simplest ever-reported reaction-diffusion system supporting the Smale Paradox,
explaining, once and for all, the mechanisms behind diffusion-driven static and dynamic pattern formation, therein

A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos Theory Explains Smale Paradox,” TCAS-I, 2022, DOI: 10.1109/TCSI.2021.3133627

• This principle explains the hidden mechanisms underlying the emergence of heterogeneous patterns in
homogeneous media, what Prigogine defined as the instability of the homogeneous

Thank You
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• Cellular Neural/Nonlinear Networks with Locally-Active Memristors may allow

2. to reproduce complex phenomena in biological systems, including the human brain
1. to process data more efficiently than conventional purely-CMOS structures

A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS–I, vol. 62, no. 4, pp. 1165–1175, 2015
A. Ascoli, A.S. Demirkol, R. Tetzlaff, S. Slesazeck, T. Mikolajick, and L.O. Chua, “On Local Activity and Edge of Chaos in a NaMLab Memristor”, Frontiers in Neuroscience, 
2021, DOI: 10.3389/fnins.2021.651452



Ronald Tetzlaff, TU Dresden

Acknowledgements

Leon Chua, University of California Berkeley Ahmet Samil Demirkol


