<u>New Tools for Simulating Charge and Exciton</u> <u>Transport on the Nanoscale</u>

Jochen Blumberger Department of Physics and Astronomy and Thomas Young Centre University College London

Seminar

Chair of Materials Science and Nanotechnology, TU Dresden

16. September 2021

European Commission

Engineering and Physical Sciences Research Council

Current research areas in my group

1 Charge and Exciton dynamics in organic materials (solar to electricity)

2 Electron transfer/transport in biology (bioelectronics)

Methods:

-Mixed quantum/classical non-adiabatic dynamics

-Neural Networks

-DFT

-QM/MM

-Molecular dynamics (MD)

3 Transition metal oxide-liquid water interfaces (solar to fuel)

- -Master equations
- -Kinetic Monte Carlo

-Markov models

Charge and exciton transport in nanoscale molecular materials

Organic Transistors

Charge transport

Light harvesters

Excitation Energy transfer

Excitonic Solar Cells

Exciton dissociation to charges, recombination

This talk: No electrodes No molecule-electrode couplings No external fields

Focus: Intrinsic charge/exciton transport property of material

In other words: Diffusion constants rather than currents

DFT band structure

rubrene

DFT band structure

rubrene

Valence Band (VB)

 $VB \simeq$ linear combinations of HOMOs

 Nuclear relaxation: reorganization energy (λ) (diagonal electron-phonon coupling)

 \rightarrow Charge localization, small polaron formation

- Nuclear relaxation: reorganization energy (λ) (diagonal electron-phonon coupling)
- \rightarrow Charge localization, small polaron formation
- Thermal fluctuations of electronic coupling (H_{ab}) (off-diagonal electron-phonon coupling)
 - \rightarrow Charge localization, polaron formation

 Nuclear relaxation: reorganization energy (λ) (diagonal electron-phonon coupling)

 \rightarrow Charge localization, small polaron formation

• Thermal fluctuations of electronic coupling (H_{ab}) (off-diagonal electron-phonon coupling)

 \rightarrow Charge localization, polaron formation

 Non-adiabatic (non-Born-Oppenheimer) effects between band electronic states (Non-adiabatic coupling vectors (*d_{kl}*))

- Nuclear relaxation: reorganization energy (λ) (diagonal electron-phonon coupling)
- \rightarrow Charge localization, small polaron formation
- Thermal fluctuations of electronic coupling (H_{ab}) (off-diagonal electron-phonon coupling)
 - \rightarrow Charge localization, polaron formation
- Non-adiabatic (non-Born-Oppenheimer) effects between band electronic states (Non-adiabatic coupling vectors (*d_{kl}*))

Needed: Coupled electron-nuclear = non-adiabatic dynamics of charge carrier in valence band at finite temperature for truly nanoscale systems

<u>Fragment Orbital-Based</u> <u>Surface Hopping (FOB-SH)</u>

A Carof S Giannini J Spencer F Gajdos

FOB-SH in a nutshell

JCP **145**, 064102 (2016), *JCP* **147**, 214113 (2017), *JPCL* **9**, 3116 (2018), *PCCP* **21**, 26368 (2019)

excess hole or electron

State basis of SOMO orbitals

Hole wavefunction:

$$\mathcal{Y}(\boldsymbol{r},t) = \mathop{\text{a}}_{k} u_{k}(t) f_{k}(\boldsymbol{r},\boldsymbol{R}_{I}(t))$$

Electronic Schrodinger equation:

$$i\hbar\dot{u}_{k} = \sum_{l} u_{l} \left(H_{kl} - i\hbar \left\langle \phi_{k} \left| \dot{\phi}_{l} \right\rangle \right) \right)$$

nuclei

Classical nuclear dynamics

$$\boldsymbol{F}_{I,i} = -\frac{\P}{\P \boldsymbol{R}_I} \boldsymbol{E}_i \quad \boldsymbol{E}_i = \boldsymbol{H}_{ii}^{diag}$$

*i*th adiabatic electronic state

Stochastic hopping from surface $E_i \rightarrow E_j$ with probability

$$p_{j\neg i}(u_k,H_{kl},d_{kl})$$

Antoine Carof

Jacob Spencer

F. Gajdos

1. Fast calculation of Hole Hamiltonian

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

0

0

0

 H_{60}

0

Hole Hamiltonian (``Tight binding"): Analytic overlap force field $H_{kl} = \left\langle f_k \left| H \right| f_l \right\rangle$ method (AOM) $H_{kl} = \overline{C} \, \overline{S}_{kl}$ $0 (H_{14})$ $\begin{array}{ccccccc} H_{14} & 0 & 0 & 0 & 0 & 0 \\ 0 & H_{25} & 0 & 0 & 0 & 0 \end{array}$ H_{11} H_{12} $H_{_{23}}$ H_{22} H_{21} $H_{_{32}}$ $H_{_{33}}$ 0 0 $H_{_{36}}$ 0 0 0 $0 \quad 0 \quad H_{_{44}} \quad H_{_{45}} \quad 0 \quad H_{_{47}} \quad 0$ H_{41} H =0 $H_{52} = 0 = H_{54} = H_{55} = H_{56} = 0 = H_{58}$ 0 $0 \quad H_{_{63}} \quad 0 \quad H_{_{65}} \quad H_{_{66}} \quad 0 \quad 0$ ê ê ê $0 \quad 0 \quad 0 \quad H_{74} \quad 0 \quad 0 \quad H_{77} \quad H_{78}$ ê ê ê $0 \quad 0 \quad 0 \quad 0 \quad H_{_{85}} \quad 0 \quad H_{_{87}} \quad H_{_{88}} \quad H_{_{89}}$ 0 0 0 H_{96} 0 H_{98} H_{99} $\hat{\mu}$ 0 0

Density of states rubrene valence band

→ Good agreement AOM vs sDFT for peak position and band width (0.5 eV)

2. Fast calculation of nuclear gradients

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016 A. Carof, S. Giannini, JB, JCP 147, 214113, 2017

$$F_{I,i}^{ad} = -\sum_{kl} U_{ik}^{T*} \nabla_{I} H_{kl} U_{li} \qquad d_{I,ij}^{ad} = \frac{1}{E_{j} - E_{i}} \sum_{kl} U_{ik}^{T*} \nabla_{I} H_{kl} U_{lj} + \dots$$
nuclear force on
adiabatic PES *i*

$$\nabla_{I} H_{kl} = C \nabla_{I} S_{kl} \qquad \text{off-diagonal gradients in HOMO basis}$$
(diagonal gradient from force field)
$$\widehat{\nabla}_{I} S_{kl} = d_{I,kl} + d_{I,lk}^{*} \qquad \text{overlap gradients in HOMO basis}$$

 $\boldsymbol{d}_{I,kl} = \left\langle \boldsymbol{j}_{k} \middle| \nabla_{\boldsymbol{p}} \boldsymbol{j}_{l} \right\rangle$

overlap gradients in HOMO basis

NACV in HOMO basis (finite difference)

Antoine Carof

3. Making surface hopping work

Decoherence correction: damping of inactive states • using frozen Gaussian approximation

$$c_i \to c_i \exp(-t_{ia}^{-1} Dt)$$
 $\tau_{ia}^{-1} = \sum_I \frac{|F_{I,i}(t) - F_{I,a}(t)|}{2\hbar a_I^{1/2}}$

Schwartz, Bittner, Prezhdo, Rossky, JCP 104, 5942 (1996)

Detection of trivial crossing: (i) State tracking algorithm ۰

Giannini, Carof, JB JPCL (2018) similar to Tretiak's algorithm

(ii) Enforcing sum rule: $\underset{i}{\overset{\circ}{g}}g_{ia} = -\frac{d|c_a|^2}{dt}|c_a|^{-2}dt \quad g_{ja} = \underset{i}{\overset{\circ}{g}}g_{ia} - \underset{i^{1}i}{\overset{\circ}{g}}g_{ia}$ Wang and Prezhdo, JPCL 5, 713 (2014)

Removal of decoherence-correction induced artificial long-range CT ٠ via projection of wavefunction in moving active region

Giannini, Carof, JB JPCL (2018)

Organic Single Crystals

Samuele Giannini

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

~small polaron hopping

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

Why no band transport? What limits polaron size?

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

→ polaron localised due to λ (local e-p coupling)

Why no band transport? What limits polaron size?

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

Giannini et al. Adv. Theor. Simul. 3, 2000093, 2020.

IPR = inverse participation ratio (number of molecules over which charge is delocalized)

a index = active state PES in FOB-SH

Giannini et al. Adv. Theor. Simul. 3, 2000093, 2020.

IPR = inverse participation ratio (number of molecules over which charge is delocalized)

a index = active state PES in FOB-SH

Giannini et al. Adv. Theor. Simul. 3, 2000093, 2020.

Giannini et al. Adv. Theor. Simul. 3, 2000093, 2020.

From trajectories to charge mobilities

Charge mobility: FOB-SH vs Experiment

Giannini et al. Nature Comm. 10, 3843, 2019; Adv. Theor. Simul. 3, 2000093, 2020.

 \rightarrow major improvement over band theory!

Samuele Giannini

 μ_{band}

 μ_{SH}

 μ_{hop}

- PER-e⁻-c*
- ∎ pMSB-h⁺-a
- pMSB-h⁺-b
- ANT-h⁺-a
- ▲ ANT-h⁺-b
- NAP-h⁺-a
- NAP-h⁺-b
- PER-e⁻-a
- ★ PER-e⁻-b
- **≭** RUB-h⁺-a
- RUB-h⁺-b
- PEN-h⁺-T₁

Mobility correlates well with polaron size (as published)

Giannini et al. Nature Comm. 10, 3843, 2019.

<u>What limits charge mobility in organic crystals?</u> <u>Thermal fluctuations of electronic coupling</u>

Giannini et al. Nature Comm. 10, 3843, 2019.

Three ``design rules'' for high mobility OS

Ziogos et al. J. Mater. Chem. C 8, 1054, 2020.

Orestis Ziogos

- 1. $H_{\rm ab} > \lambda/2$
- \rightarrow to get delocalized polarons, avoid small polaron formation/hopping transport

- 2. Isotropic H_{ab} in 2D or 3D + favourable sign combinations
- \rightarrow to ensure that electronic states at top of valence band are delocalized (at 0 K)
- 3. Minimize thermal fluctuations of H_{ab}
- \rightarrow to ensure that electronic states remain delocalized (at finite *T*)

Amorphous, nano- and single crystalline pentacene

M. Ellis et al., Adv. Mater., 2021, in press.

Pentacene samples prepared with MD

Melting of crystal at 800 K
 Quenching to 300 K at different quench times

Hole delocalization and crystallinity

M. Ellis et al., Adv. Mater., 2021, in press.

Transport mechanism and crystallinity

M. Ellis et al., Adv. Mater., 2021, in press.

FOB-SH vs Experiment

Summary

- Developed a non-adiabatic MD method for real-time propagation of charge carriers and Frenkek excitons in ``soft" materials
- Practical: -large systems (1000 sites ≙10⁵ valence electrons)
 -convergence: 10³ trjs 1ps each in 1 day on 10³ cores
- Predictive: Experimental mobilities/diffusion constants well reproduced
- New picture of charge transport in high mobility molecular materials: Large polaron diffusion - distinct from band and small polaron hopping transport
- Provides numerical benchmarks for new theories e.g. transient localization theory, stochastic Liouville
- Useful: Prediction of charge mobility in new materials

Outlook

- Extending state space of electronic Hamiltonian in FOB-SH / FE-SH
- \rightarrow Charge separation and recombination at n-p type interfaces (excitonic solar cells)
- \rightarrow Exciton dissociation at n-p type interfaces
- Beyond Surface Hopping
- → Classical limit of exact factorisation (Abedi, Gross, Agostini,...)
 Ehrenfest + quantum momentum terms
 Problem: Divergence of quantum momentum in Eq. S28 of *Min* et al. *JPCL* 2017
- → Surface Hopping with Quantum Nuclei/RPMD (Tully, Shushkov, Miller,...) Problem: Many beads but only one electronic SE. Expensive.

Acknowledgement

Non-adiabatic dynamics/Organics

Antoine Carof, Samuele Giannini, Orestis Ziogos, Matt Ellis, Jan Elsner, Wei-Tao Peng, Jacob Spencer, Fruzsina Gajdos, Ljiljana Stojanovic (UCL) Harald Oberhofer / Karsten Reuter (TUM) Jenny Nelson FRS, Artem Bakulin (Imperial) David Beljonne (Mons) Marcus Elstner (KIT) Irene Burghardt (Frankfurt) Henning Sirringhaus FRS (Cambridge)

Thanks for listening!

Breakdown of traditional transport theories

H. Oberhofer, K. Reuter, JB Chem Rev. 117, 10319, 2017.

Upper speed limit for hopping

$$\mu_{hop} \leq \frac{2\pi c \tilde{\delta} d_{ab}}{k_B T} = \mu_{hop}^{\max}$$

ET rate << vibrational relaxation rate

Troisi, Org. Electron. 12, 1988 (2011)

Lower speed limit for band

$$\mathcal{M}_{band} \stackrel{3}{=} \frac{qd_{ab}}{v_g m^*} = \mathcal{M}_{band}^{\min}$$

carrier mean free path > lattice spacing

→ CT in OS ``between" hopping and band transport

Ultrafast estimation of electronic couplings

F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).

Speed-up of 6 orders of magnitude, 20% loss of accuracy

F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).

Analytic Overlap Method (AOM) for electronic couplings H_{kl} (as published)

Density of states and IPR (new data)

Detailed balance and internal consistency

Convergence IPR wrt system size (new data)

Convergence 2D mobility wrt system size

Convergence IPR wrt time step (new data)

Convergence 2D mobility wrt time step (new data)

Summary: Nature of holes in OS crystals

Giannini et al. Nature Comm. 10, 3843, 2019.

Summary: Nature of holes in OS crystals

Giannini et al. Nature Comm. 10, 3843, 2019.

