Convergence: Impacting Engineering Curricula, Patient Care & Implantable Microanalytical Systems

guiseppi@tamu.edu

Anthony (Tony) Guiseppi-Elie

url=https://www.biochips.org

Bioelectronics, Biosensors and Biochips (C3B[®]), EnMed, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA. Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA.

AMERICAN INTERNATIONAL INSTITUTE OF MEDICAL SCIENCES, ENGINEERING & INNOVATION

Institute of Materials Science Chair of Materials Science and Nanotechnology

AIIMSEI.org

NanoSeminar Series | TU-Dresden | May 23rd, 2024

Improving Human Health Through Nano-BioTechnology: Research in Bioelectronics, Biosensors and Biochips (C3B®)

Disclosures

Collect, store and share health information securely

Improvia Hgalth

Functional neurostimulation for improved health outcomes

Diagnostic biosensors for the management of hemorrhagic trauma

INTERNATIONAL EDUCATION HUB

Thank you!

My High-level Motivations

Grand Challenge Problems

biomedical devices using organic materials – **More of Moore** – *for biology*

Enabling direct electronic communication between solid state devices and the biology – **More than Moore** – the abo-bio interface.

My Guiding Axiom

Grand Challenge Problems

which you cannot measure."

systems are far too complicated to control."

Outline

Convergence in the Academy EnMed and Liberal Arts-Engineering

Convergence in Research

- Electroconductive Hydrogels Biosensors and Bioelectronics
- Microanalytical Systems

Hemorrhagic Trauma and Allotransplantation

ElectOMICS

Polymers, Fields, and Genes

Summary

Convergence

... the integration of historically distinct fields or disciplines that leads to the emergence of a new and unified whole to address need and create

transformative impact.

Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond

Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond (**2014**)

Committee on Key Challenge Areas for Convergence and Health; Board on Life Sciences; Division on Earth and Life Studies; National Research Council.

Washington (DC): National Academies Press (US); 2014 Jun 16.ISBN-13: 978-0-309-30151-0ISBN-10: 0-309-30151-3

Convergence: Engineering-Medicine

- Defining "Transformative Impact" Example of Biomedical Engineering.
- Create a "Biomedical Engineer".

The Whitaker Foundation **710 million USD Expended on BME**

- 1,500 faculty grants awarded
- 400 graduate fellowships
- 75 BME departments
- 13 BME buildings built

Katona PG. Biomedical engineering and the Whitaker foundation: a thirty-year partnership. *Ann Biomed Eng.* **2006** Jun;34(6):904-16. doi: 10.1007/s10439-006-9087-7.

Convergence

... the integration of historically distinct fields or disciplines that leads to the emergence of a new and unified whole to address need and create transformative impact.

Convergence: Engineering-Medicine

Convergence: Liberal Arts-Engineering

EnMed is an innovative engineering medical school option created by Toyas A&M University

Program Objectives

transformational technology for health care.

Produce a **Physicianeer**

EnMed Working Group

TEXAS A&M UNIVERSITY School of Medicine

Anand, Nagamangala <u>nkanand@tamu.edu</u> Hurtado, John E jehurtado@tamu.edu Ugaz, Victor Ugaz@tamu.edu Jacobs, Timothy tjjacobs@tamu.edu Guiseppi-Elie, Anthony <guiseppi@tamu.edu> Boone, Timothy tboone3@houstonmethodist.org Wright, Amy S. aswright@houstonmethodist.org Burt, Trevor tmburt@houstonmethodist.org Ogden, Paul E. ogden@medicine.tamhsc.edu Gibson, Jeremy L. Gibson@medicine.tamhsc.edu Trache, Andreea Trache@medicine.tamhsc.edu Peterson, Thomas TPETERSON@medicine.tamhsc.edu Wilson, Emily < Ewilson@tamhsc.edu Chico, Diane E. Chico@medicine.tamhsc.edu Wells, Gregg B. <u>GBWells@medicine.tamhsc.edu</u> Brandt, Paul C. Pbrandt@medicine.tamhsc.edu

EnMed Working Group - ENGINEERING

N. K. Anand Sr. Associate Dean

Anthony Guiseppi-Elie Professor, Department Head, Biomedical Engineering

John E. Hurtado Assoc. Dean, Academic Affairs

Timothy Jacobs Director, Interdisciplinary Engineering Programs

Victor Ugaz TEES Director of Research Development

- April 2018
- Track approved for the HM Campus
- Inaugural class to matriculate in July 2019

LCME* Approval

What does this mean? A campus expansion in Houston **200 TAMU students in Houston** A uniquely blended Engineering and Medicine curriculum **Opportunity for motivated faculty**

ENMED PROGRAM OBTAINS LCME APPROVAL

*Liaison Committee on Medical Education

Academic Program – From Engineer to Physicianeer

MD-MEng 🗸

Every EnMed admit will have

• A BS in Engineering, Computer Science or equivalent undergraduate preparation

Ramping to...

Every EnMed graduate will earn an MD and MEng

- Expert at life science and technology
- Invent something transformational
- Understand research and commercialization
- Be prepared to be early adopters and thought leaders

EnMed students / year

Leadership

- A world-class physicianscientist
- Internationally recognized leader in biomedical imaging and bioengineering
- Member of National Academy of Medicine and the National Academy of Engineering

RODERIC I. PETTIGREW, PHD, MD

CEO of EnHealth and Executive Dean for EnMed

Founding Director, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH)

Best to Lead

Academic Program – From Engineer to Physicianeer

MD-MEng 🗸

Medicine Content Sequence

- Duration 18 months
- Course titles and duration same as regular curriculum
- Weekly theme and case relevant learning activities
- Mapped to USMLE Step 1 Content

Engineering Content Sequence

- Four-course sequence
- Students will learn to view the human body as an integrated <u>engineered</u> system.
- Presented from a new perspective that values the confluence of engineering principles and its problem-solving approach with those taught during medical training.

Academic Program – From Engineer to Physicianeer

	EY 201	9 EnN	/led (Curriculum	Concept Mode	1					Revised 6.28.17	/					
Jun '19	Jul	y'19		Aug '19	Sept '19	Oct '1)	Nov	'19	Dec '19	Jan '20	Feb	20	Mar '20	Apr '20	May '20	Jun '20
	Prematricu lation program	Orientation	POM	Gro	ss Anatomy POM g Content I (1 so	th)	G	iross Ana POM ering Con	tomy t. II (1 s	sch)	EC III ¹	Pod	mtroc	Enginee	ering Content II	I (2 sch) ¹	
	Jul	v '20		Aug '20	Sept '20	Oct '2)	Nov	'20	Dec '20	Jan'21	Feb	0'21	Mar '21	Apr '21	May '21	Jun '21
						-	~	Endo/Re	Inte	gu	Block 1	Blo	ck 2	Block 3	Block 4	Block 5	Block 6
				me/Onc	Renal/GU (GI/ Nutrition	FBMSF	0	mer M	nt/	IME	ED		Sur	gery	Step 1 Prep Examinati	and Electives
				Engineeri	ng Content IV (2	sch)'		Eng Cont	: IV (2 so	ch)	E	nginee	ring Inn	ovation I (1 sch)			
	Jul	y'21		Aug '21	Sept '21	Oct '2	1	Nov	'21	Dec '21	Jan '22	Feb	0'22	Mar '22	Apr '22	May'22	Jun '22
	Blo		trics	Block 8	Block 9 Ob-Gyn	Block 1 Psyc	.0 chiat	Block	(11	Block 12 FMED	Electives	Elec	tives	Electives	Electives	Electives	Step 2 Prep and Exam
					Engineering Inr	novation II (2	sch) ²									
			_				-										
	Jul	y'22		Aug '22	Sept '22	Oct '2	2	Nov	'22	Dec'22	Jan'23	Feb	23	Mar '23	Apr '23	May'23	Jun '23
	Engineer Innovatio Require Elective (4 sch			Engineering nnovation II Required Elective ³ (4 sch)	Engineering I Innovation IV Required Elective ³ (4 sch)	Engineer Innovatio Require Elective (4 sch	ing n IV ed e ³			Emerge	ency Medicine, A	cting Ir	nternshi	p, ICU, Electives	5	Graduation	
	Notes:						1.4							Engineering Co	ontent		
	Engineering Content III and IV - 1 sch for CSIE					h for CSIE ar	E and 1 sch for Grand Kounds										
		3 Eng	inee	ring Innovat	ions III and IV R	equired Flec	iver a cierkship-specific needs statement at the end of each cierkship										
	Engineering innovations III and IV Require Flexibility for interviews and other off-cam				-campus ac	aden	nic progra	ams will	Electives, AI, ICU, EM								

18

From Engineer to Physicianeer

Cannon Woodbury UT Dallas Biomedical Engineering Lamees Elnihum Texas A&M University Chemical Engineering (minors in Aerospace and Chemistry)

2017-18 Pilot Cohort

2018-19 Pilot Cohort

Kenneth Livingston UT Dallas Electrical Engineering

IT's MERCING

EnMed Curriculum - at a glance

Г	Curriculum Model (EnMed)																																																		
AY 21-22																																																			
			Jur	n '21	l		Jul	'2	1		Α	ug '	21		Se	ep '2	21		00	:t '2	1			Vov	'21			De	c '2	1		Jan	'22			Feb '	22	Ν	/lar	'22		Ар	or '2	2		Ma	y '22	2	J	lune	'22
MS1		6	13	20	27	5	12	19	26	2	9 1	16 2	23 3	0 6	6 1	3 2	0 2	7 4	1:	1 18	8 25	5 1	8	1	5 <mark>2</mark> 2	<mark>2</mark> 29	9 6	13	20) 27	3	10 1	.7 2	4 31	7	14	21 28	7	<mark>14</mark>	21 2	8	4 11	1 18	3 25	2	9 1	6 2	3 30	6	13	20 27
	25														FO	MI									* F	ОМ	Ш					Neur	rosci	ence		5	* Intr	o to	ak	In	ntro	to	12	С	ardi	ovasc	ular	Re	esear	ch, Mi	ilitary,
	020	Engine				ng		tion	amp				Me	ledical Gross		oss A	Anato	omy (MGA)			_					ы В	, La	ī ¥					Disease		ise	g Bre	Diseas		se Vod			caraiovasculai		(Clinic Vacat	al traii	ning, Iove				
	Ŭ		Pre	matr	ricul	ation		enta	potc				Prac	tice	of N	/ledi/	cine	(Pol	M) 1				No		Р	оM	1	esti	Vint	Brea		Р	νoΜ	2			PoN	2	bring	P	οM	2	*		P	oM 2		Op	otiona	al Inno	vation
				Col	urse	urse			δ. V							*						EnM	1ed St	udent (Grand	Rounds	s (EnMS	GR)	S	E	nMed	d Stude	ent Gra	and Ro	unds ((EnMSG	iR)		Im	mersio	on (IIE)										
			1	_	1				Ро				_	En	gine	ering	g Inn	nova	tion	s in l	Mec	dicin	ie I	_	_	_	_			_					E	ngine	eering	Innov	atio	ns in	Me	dicine	e II	-					Lypei	ience	(112)
F										_			╧	╧				_				_																													
							Jul	2	1		A	ug '	21	4	Se	эр '2	21		00	:t '2	1			Vov	'21			De	c '2	1		Jan	'22	_		Feb	22	N	/lar	'22	-	Ар	or '2	2		Ma	y '22		-	une	'22
						5	12 :	19	26	2	9 1	16 2	23 3	0 6	δ <u>1</u>	3 20	0 2	7 4	11	1 18	8 25	5 1	8	1	5 22	2 29	9 6	13	20	27	3	10 1	.7 2	4 31	7	14	21 28	7	14	21 2	.8	4 11	1 18	3 25	2	9 1	6 2	3 30	6	13	20 27
	4					a	,			Hematology				~					SR	5			_		In	tegu	imen	n			COMPANY						a		e				Lo	ng B	Block :	1			Elect	ive	
COM	202					Now	Move		C	ncol	ogy		ке	enal GU			31/ N	utri	trition	EBN	EBM	Er	Endo Rep	kepr	0		t M	SK					USMLE (Inc		dividual		ecuv reak	eak	ectiv		ntat			//Su	irgery	_	cl			2	
Γ	8						and	entat				_	_	_	_	┸	_								/inte	sreak	CO R	M Ste	р	Stud	iy/Pr	rep &		Ξ.	ng Br		Ċ			nort I	BIOCK		un El	Sr M/De		BIOCK	Z				
						eak		Orie						Р				PoN	ИЗ										>	5				E	Exam	ו)	D		Sprin		-	P.			ycn/	Paul				sycn/	Jogyn
						ä	i	ł				Engineering Innovations in Medicine III															F				Inn	ovatio	ans l	n Cler	kshir																
H												-	-													Т	Т						_										T			II CICI	Konny	p (ne)			RAD
F												+	+	+	+	+	+	+	+							+	+																+-								1010
F		Jul '21 Aug '21 Sep '21 Oct '21 Nov '21 De										c '2	1		Jan	'22			Feb '	22	Ν	/lar	'22		Ap	or '2	2		Ma	y '22	2		lune	'22																	
				T		5	12	19	26 2 9 16 23 30 6 13 20 27 4 11 18 25 1					1 8	8 15 22 29 6 13				20	27	3 10 17 24 31 7 14 2				21 28 7 14 21 2				8	3 4 11 18 25 2					6 2	3 30	6	13	20 27												
								Lor	ng B	lock	2	_							l	ong	Blo	ock 3		_				-					Long	g Bloc	k 4		_ 1						Ses	sion 1	1	Se	ssior	1 2		Sessio	on 3
	g							IM	I/Su	rgery	y			EI	lectiv	/e	IM/Surgery Elective					e			IM/Surgery						ctive	Liective				ective		Elective		/e		Elect	ive								
NC3	02					Short Block 3 Short Block 4 Shor					Short Block 5 Short Block 6					inte	/inte reak	Short Block 7 Short Block 8						:k 8	SB 8								lantium. Calantium																		
Γ	8					FM/Ped/Psych/ObGyn FM/Ped/Psych/ObGyn FM/Ped/Psych/ObGyn						n Fl	M/P	ed/F	osyc	h/Ol	oGyn	3	; œ	FM/Ped/Psych/ObGyn FM/Ped/Psych/ObGyn								ves, S	Selectives																						
														P	οM	5 -	RE	QUI	IRE	D											PoM 6 - IPE REQUIRED																				
							I	nno	vati	ons	In Cl	erks	hip I	l + Ir	nnov	atio	n Im	nmer	rsion	i Exp	oerie	ence	(IIE) as i	indio	ate	d					In	nov	ation	s In C	Clerks	hip III	I + Innovation Immersion Experienc						ice (l	(IIE) as indicated						
																RAD											F	RAD												RAE)										
				_	1		Jul	2	1		A	ug '	21		Se	эр '2	21		00	:t '2	1		I	Vov	'21			De	c '2	1		Jan	'22			Feb '	22	Ν	/lar	'22	4	Ар	or '2	2		Ma	y '22	2	J	lune	'22
						5	12	19	26	2	9 1	16 2	23 3	0 (6 1	3 20	0 2	74	11	1 18	3 25	5 1	8	1	5 22	2 29	9 6	13	20	27	3	10 1	7 2	4 31	7	14	21 28	7	14	21 2	8	4 11	1 18	3 25	2	9 1	6 2	3 30	6	13	20 27
						S	essio	on 4		Se	essio	n 5	4	Se	ssio	n 6	4	Ses	sion	n 7		Se	ssior	n 8		Ses	ssion	9		_		Ses	ssion	n 10	S	iessio	n 11	PoN Capsto	И пе &	Ses	ssior	า 12		Sessi	on 1	3					
5	100			-			Elective Ele									nan																																			
2	8					EM, AI, ICU, Electives, Selectives & Capstone									one																																				
		_	-			Time off for Interviews (4 week interview										-		-																																	
			-																		noci	N III	ay si	int (anul	ing 0	n spe	ECId	iity)													_				+				
							l li	nno	vati	ons l	n Cle	erksl	nip I\	V + I	nno	<i>r</i> atio	on In	nmei	rsior	n Exp	perie	ence	e (IIE) as	indi	cate	d					Inno	vatio	ns In C	lerks	hip V -	+ Innov	ation I	mme	rsion	Expe	erienc	e (IIE) as in	dicate	ed					

Program Outcomes

Class of 2023

Every EnMed graduate will earn an MD and MEng

- Expert at life science and technology
- Invent something transformational
- Understand research and commercialization
- Be prepared to be early adopters and thought leaders

Dual Medicine-Engineering degree

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

MD/MS

? years

MB, BCh, BAO, and BE 8 years

School of Medicine and **Advanced Medical** Engineering

Dual Medicine-Engineering Degrees

UNIVERSITY OF ILLINOIS UIC **COLLEGE OF MEDICINE**

MD/MS (BIOE) 5 years

An M.D. Program Built at the Nexus of Engineering and Innovation

Carle Illinois MD **COLLEGE OF MEDICINE**

4 years

Convergence

... the integration of historically distinct fields or disciplines that leads to the emergence of a new and unified whole to address need and create transformative impact.

Convergence: Engineering-Medicine

Convergence: Liberal Arts-Engineering

Convergence: Liberal Arts-Engineering

- Provide a well-rounded education that combines technical akillo with a breader understanding of opcial, cultu
 Program Objective
- Premium value on fostering creativity, critical thinking, and effective communication skills alongside engineering expertise.

Produce a Socratic Engineer

ANDERSON® UNIVERSITY

College of Engineering

- Christian (Southern Baptist Convention)
- Liberal Arts
- Regional serving
- ~4,117 students ('22-'23)

College of Engineering Design. Build. Sustain.

Phillip Sharp, MIT Institute Professor and Nobel Laureate (2011)

Outline

Convergence in the Academy

EnMed and Liberal Arts-Engineering

Convergence in Research

- Electroconductive Hydrogels Biosensors and Bioelectronics
- Microanalytical Systems

Hemorrhagic Trauma and Allotransplantation

ElectOMICS

Polymers, Fields, and Genes

Biomedical Problems of Interest

Hemorrhagic Trauma

Physiologically informed patient resuscitation and reanimation.

Golden hour ~ 45 min

VCA Score of 0, 1, 2, or 3

Allotransplantation

Physiologically informed allograft stratification.

National Trauma Institute. (2018). Trauma Statistics & Facts

https://www.nattrauma.org/what-is-trauma/trauma-statistics-facts/

Kauvar D.S. et al. (2006) Journal of Trauma and Acute Care Surgery, 60(6), S3-S11.

Traumatic defects in electrical tissue from cardiac infar or axomy. Ischemic damage Electrobiology

Wound Healing

Exogenous and endogenous electric fields in biology.

Cao et al. "Electrical and mechanical strategies to enable cardiac repair and regeneration." IEEE Reviews in Biomedical Engineering (2015)

Drug Delivery

Bio-responsive drug delivery to address homeostasis.

Q.-X. A. Sang et al. Biochem. Biophys. Res. Commun. (2000), 274, 780. Wilson and Guiseppi-Elie Int. J. of Pharmaceutics (2014) 461(1-2) 214-222. Chu, David S., et al., Biomat. Sci. (2015) 3.1: 41-45.

Biomedical Solutions Under Development

Hemorrhagic Trauma
Allograft Stratification

Minimally invasive Physiological Status Monitoring **(PSM) Biochip** – Five metabolite biomarkers.

Aggas et al. (**2023**) *Bioengineering MDPI* 2023, 10(4), 434. Bhat et al. (**2020**) *Journal of Translational Medicine* **18**, 348. Kotanen, et al. (**2012**) *Biosensors and Bioelectronics* 35(1), pp. 14-26. Guiseppi-Elie, et al. (**2011**) *Analytical and Bioanalytical Chemistry*, *399*(1), 403-419.

Wound Healing

Electrobiology

Micro and nano- fabrication (electrospinning, 3D printing, microlithography) of **electroconductive polymers**:

fibers, films and microforms.

Mancino et al. (**2022**), *Nanomedicine* 44, 102567. Abasi et al. (**2019**) *IEEE Xplore* 875-878. Abasi et al. (**2019**) *Mat. Sci. and Eng.: C* 99 1304-1312. Aggas et al. (**2018**) *Bioengineering* 5(4) 87. Li Yao, et al. (**2003**) *Chem. Mater.* 15(9) 1860 – 1864. **Drug Delivery**

Sensing, Measuring, and Actively Responding Technical (**SMART**) Hydrogels.

Whitney et al. (2024) Adv. Sensor Res. (Accepted)
Bhat et al. (2020) ACS Sensors 5, 2, 500–509.
Wilson and Guiseppi-Elie (2013) Adv. Healthcare Mat. 2(4) 520-532.
Wilson et al. (2012) Journal of Controlled Release 160.1: 41-47.
Guiseppi-Elie et al., J. Bioact. Compat. Polym., (2010), 25(2) 121-140.

Impact of hemorrhage on trauma

> Hemorrhage is the primar

- Leading cause of death
- Accounts for 62% of
- High contribution to

nlication of trauma

) USA es 15-24 ie first 24 h

Golden hour period ~ 45 minutes

National Trauma Institute. (12/2018). Trauma Statistics & Facts <u>https://www.nattrauma.org/what-is-trauma/trauma-statistics-facts/</u> Kauvar D.S. et al. (2006) *Journal of Trauma and Acute Care Surgery , 60*(6), S3-S11.

Pathophysiology of Hemorrhage and Hemorrhagic Shock

- Vasoconstriction
- Reduced peripheral blood flow
- High oxygen demand

Peripheral muscles are most systemically affected during hemorrhage

Patent – Indwell a biochip within a major muscle

A. Guiseppi-Elie, (2012) US Patent Application US 13/317,236

Design of a penta-analyte biosensor – PSM Biochip

Pathophysiological Intravascular Ranges: Metabolic Indicators

Analytes	F	Pathophysiological r	ange
	LOW	NORMAL	HIGH
Glucose	Hypoglycemia <3.88 mM <70 mg/dL	Euglycemia 3.88 – 5.5 mM 70-99 mg/dL	Hyperglycemia >5.5 – 10 mM 99 Liu et al. <i>Cell Metabolism</i> , 32(4) 2020, 619-628.e21
Lactate	Hypolactatemia < 0.5 mM	Eulactatemia 0.5 – 2.0 mM	Hy Cother TCA
Potassium	$\begin{array}{c c} Hy \\ (<3 \end{array} [K^+]_i = randor \\ Provel$	$n([K^+]_{normal}) + (7.3)$	5 - pH[i]) * 6 Glucose \rightarrow Lactate
рН	Ac	7.35 - 7.45	All Plasma Glucose Lactate
pO ₂	Hypoxia <5.18 mM <100 mmHg	5.18 - 6.22 mM While breathing in, 160 mmHg, gradient 100-120 mmHg	Hy >1 Liver Input TCA

Glucose: Hirshberg, Eliotte et al. (2008), *Pediatric Critical Care Medicine*, *9*(4), 361-366 Potassium: Viera, Anthony J., (2015) *American family physician*, *58*(4), 777-782 Lactate and pH: Andersen, Lars W., et al, (2013) *Mayo Clinic Proceedings*, Vol. 88, No. 10, pp. 1127-1140 pO₂: de Jonge, Evert, et al.(2008), *Critical care*, 12(6), R156

Physiologically relevant analytes and the electrochemical techniques and device structures used in their measurement

Analyte	Motivation	Method	Technique	Transducer	
Glucose	Levels fall during trauma-associated hemorrhage	Glucose Oxidase Biosensor	Amperometry (Apply voltage measure current)	Microdisc Electrode Array (MDEA) φ = 25 μm	
Lactate	Levels rise during trauma trauma- associated hemorrhage	Lactate Oxidase Biosensor	Amperometry (Apply voltage measure current)	Microdisc Electrode Array (MDEA) φ = 25 μm	
Potassium	Hyperkalemia	Ion Specific Electrode (ISE)	Potentiometry (Measure voltage vs. REF)	Microdisc Electrode (MDE) φ = 10 μm	•
рН	Lactate in the tissues causes acidosis	pH Responsive Hydrogel	Impedimetry (Apply V sin(wt) Measure I sin(wt+θ)	Interdigitated Microelectrodes (IME) φ = 1 μm	
pO ₂	Hypoxia in the muscle bed	Electrocatalytic Layer	Voltammetry (Sweep voltage measure peak current)	Microdisc Electrode (MDE) φ = 10 μm	

Electroconductive Hydrogels

Full Paper Available online at www.sciencedirect.com Electroconductive Hydrogels: Electrical and Electro SCIENCE DIRECT **Biomaterials Properties of Polypyrrole-Poly(HEMA) Composites** ELSEVIE Biomaterials 26 (2005) 4767-4778 www.elsevier.com/locate/biomaterials Sean Brahim,^a Anthony Guiseppi-Elie^{a,b*} ^a The Center for Bioelectronics, Biosensors and Biochips (C3B), Virginia Commonwealth University, § Molecularly engineered p(HEMA)-based hydrogels for Box 843038, 601 West Main Street, Richmond, Virginia 22284 2028 LIS ^b Departments of Chan Box 843038, 601 Elie^{a,b,c,*} *e-mail: guiseppi@ **Biosensors and Bioelectronics** Street, Richmond Volume 176, 15 March 2021, 112889 3-8656, Japan **Hydrogels:** The Effects On the intersection of molecular arge Density on the Storage bioelectronics and biosensors: 20 Years of d Biosensor C₃B John R. Aggas^{abl}⊠, Brandon K. Walther^{acl}⊠, Sara Abasi^{abl}⊠, Christian N. Kotanen^{abd}, Olukayode Karunwi^{ae}, Ann M. Wilson^{afg}, Anthony Guiseppi-Elie a b c g 🙎 🖂 Amperometric glucose bid Christian N. Kotanen^{a,b}, Chaker Tlili^{a,c}, Anthony Guiseppi-Elie^{a,b,c,c} Received: 11 September 2011 / Accepted: 29 November 2011 / ^a Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Teci Published online: 3 January 2012 ^b Department of Bioengineering, Clemson University, Clemson, South Carolina, SC 29634, USA ^c Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, SC 29634, © Springer Science+Business Media, LLC 2011

556

^d Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina, SC 29634, USA ^e ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia, VA 23219, USA
p(HEMA)-based Electroconductive Hydrogel

Gusphyl Justin and Anthony Guiseppi-Elie^{*}, "An Electroconductive Blend of p(HEMA-co-PEGMA-co-HMMA-co-SPMA) Hydrogels and p(Py-co-PyBA): In Vitro Biocompatibility" Journal of Bioactive and Compatible Polymers (2010), 25(2) 121-140.

Hydrogels on solid surfaces

The role of the ω -functionality in attachment <u>vs</u> adhesion

Elastic modulus measured by nano-indentation of Au*|hydrogel-PPy (electropolymerization charge densities)

PC12 cell densities post-incubation (4 days) on Au*, Au* | hydrogel, Au* | PPy, Au* | hydrogel-PPy (5, 25 and 50s electropolymerization times)

PC12 cell viability and elastic modulus of Au*|hydrogel-PPy (electropolymerization times)

Anthony Guiseppi-Elie, Chenbo Dong and Cerasela Zoica Dinu "Crosslink Density of a Biomimetic Poly(HEMA)-based Hydrogel Influences Growth and Proliferation of Attachment Dependent RMS 13 Cells" J. Mater. Chem. (2012) 22 (37), 19529 – 19539

Bioactive Electroconductive Hydrogels Electropolymerization to entrap GOx

Fabrication of the electrochemical Glucose and Lactate GEN I biotransducers

Experimental Approach II - Enzyme Engineering

Glucose biotransducer sensitivity as a function of enzyme conjugation ratio

Design of a penta-analyte biosensor – PSM Biochip

In vivo amperometric performance of the implanted PSM BioChip during hemorrhage – *Sprauge Dawley* - rat model.

Amperometric response of an intramuscularly implanted lactate biosensor during hemorrhage, the mean arterial pressure (MAP) and the systemic blood lactate obtained using a YSI Biostat Bioanalyzer.

In vivo amperometric performance of the implanted PSMBioChip during hemorrhage – *Sus scrofa* – pig model.

Sus scrofa

Patient stratification for improving hemorrhagic trauma outcomes

PSM Biochip Data To Hemorrhage Intensive Severity and Survivability (HISS) Score

Pathophysiological Intravascular Ranges: Metabolic Indicators

Analytes	F	Pathophysiological r	ange
	LOW	NORMAL	HIGH
Glucose	Hypoglycemia <3.88 mM <70 mg/dL	Euglycemia 3.88 – 5.5 mM 70-99 mg/dL	Hyperglycemia >5.5 – 10 mM 99 Liu et al. <i>Cell Metabolism</i> , 32(4) 2020, 619-628.e21
Lactate	Hypolactatemia < 0.5 mM	Eulactatemia 0.5 – 2.0 mM	Hy Cother TCA
Potassium	$\begin{array}{c c} Hy \\ (<3 \end{array} [K^+]_i = randor \\ Provella$	$n([K^+]_{normal}) + (7.3)$	5 - pH[i]) * 6 Glucose \rightarrow Lactate
рН	Ac	7.35 - 7.45	All Plasma Glucose Lactate
pO ₂	Hypoxia <5.18 mM <100 mmHg	5.18 - 6.22 mM While breathing in, 160 mmHg, gradient 100-120 mmHg	Hy >1 Liver Input TCA

Glucose: Hirshberg, Eliotte et al. (2008), *Pediatric Critical Care Medicine*, *9*(4), 361-366 Potassium: Viera, Anthony J., (2015) *American family physician*, *58*(4), 777-782 Lactate and pH: Andersen, Lars W., et al, (2013) *Mayo Clinic Proceedings*, Vol. 88, No. 10, pp. 1127-1140 pO₂: de Jonge, Evert, et al.(2008), *Critical care*, 12(6), R156

Patient Data Sets for Key Metabolites

1. Sensibly Rationalized Fictitious Patient (SRFP) Data for deep learning model

- Unavailability of adequate clinical **stat** data
- Unavailability of adequate clinical **temporal** data
- Need to establish proof of concept for the approach
- Low-cost digital equivalent of large patient data sets
- Possibility for data engineering

Flowchart for classification, pattern recognition and possibility analysis to produce accuracy from the confusion matrix (CM).

Sensibly Rationalized Fictitious Patient (SRFP) Data to Hemorrhage Intensive Severity and Survivability (**HISS**) Score

Ei etitione	Sensibly	Rationalized	Fictitic	HISS Score						
Patient	Glucose Lactate (mg/dL) (mmol/L)		рН	Potassium (mmol/L)	pO ₂ (mmHg)	D1	D2	D3	D4	D5
	LOW	(0) GUARDI	ED (1)	ELEVATED (2)	HIGH (3)	SEVE	RE (4)	1	1	1

Total patient data set size is 100

http://people.tamu.edu/~guiseppi/resources-HISS.html

Questions addressed

- Which classification algorithm is best suited to the challenge of fusion scoring?
- What is the minimum data set needed to achieve 99% and 99.9% accuracy in patient stratification

Support Vector Machine - Linear

Decision Tree: Ensemble Bagged

Artificial Neural Network with Bayesian Regularization (ANN:BR)

Mean Test and Training Accuracy

	Class	Frequency [%]								
	Class	[100]D1	[100]D2	[100]D3	[100]D4	[100]D5				
	LOW (0) 0	56	43	37	43	53				
GUA	RDED (1) 1	14	20	27	18	17				
ELE\	/ATED (2) 2	5	18	7	15	13				
	HIGH (3) 3	19	17	11	24	17				
S	EVERE (4) 4	6	2	18	0*	0*				
	SVM-L accuracy [%]	78.3±0.5	92.7±0.5	78.3±2.4	88.3±0.5	86.7±0.9				
	EBDT accuracy [%]	83.3±1.2	96.3±0.9	72.3±0.9	90.0±0.0	87.7±1.2				
	Class with the highest confusion (TPR – sensitivity for EBDT)	4 (17%)	4 (0%)	2 (14%)	2 (60%)	2 (77%)				

Summary

<u>Bhat, A.</u>, Podstawczyk, D., Walther B. K., Aggas J.R., Machado-Aranda D., Ward K.R., & Guiseppi-Elie, A.). **Toward a hemorrhagic** trauma severity score: fusing five physiological biomarkers *Journal of Translational Medicine* (2020) 18(1)384.

Collaborators

Collaborative program established with Tripler Army Medical Center – Catherine Uyehara, Ph.D., Chief, Dept. Clinical Investigation: Implantation In Piglet Trauma Model

PACIFIC REGIONAL MEDICAL COMMAND

TRIPLER ARMY MEDICAL CENTER

Collaborative program established with University of Michigan – Lt. Col. Kevin R. Ward, M.D., Professor, Emergency Medicine and Exec. Director, Michigan Center for Integrative Research in Critical Care: PSM Biochip and HISS Score

Collaborative program established with Medical University of South Carolina – Edward C. Jauch, M.D. M.S., FACEP, FAHA, Former Director, Division of Emergency Medicine: Role of First Responders

Stratification of Vascularized Composite Allografts

The next slide contains surgically graphic images

Vascularized Composite Allografts

Allotransplantation ...the transfer of anatomical structures containing multiple tissue types including skin, bone, fat, muscle, and connective tissue from one individual to another.

Face Transplant

Hand Transplant

Edema (swelling due to fluid retention) is the main clinical Indicator of acute rejection in VCA

Edema may be measured and monitored by Bioimpedance Spectroscopy (BIS)

Abasi, Aggas, Garayar-Leyva, Walther and Guiseppi-Elie^{*} "Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review" *ACS Measurement Science Au* (**2022**) 2, 6, 495–516.

Extracorporeal System used in VCA ex-vivo Perfusion

Kruit et al. (2021), Transpl Int, 34: 365-375

Banff classification of acute rejection in skincontaining allografts

Grade	Classification	Comments
Grade 0	None	No or rare inflammatory infiltrates.
Grade I	Mild	Mild perivascular infiltration. No involvement of the overlying epidermis.
Grade II	Moderate	Moderate-to-severe perivascular inflammation with or without mild epidermal and/or adnexal involvement (limited to spongiosis and exocytosis. No epidermal dyskeratosis or apoptosis.
Grade III	Severe	Dense inflammation and epidermal involvement with epithelial apoptosis, dyskeratosis, and/or keratinolysis.
Grade IV	Necrotizing acute rejection	Frank necrosis of epidermal or other skin structures.

Multielectrode Multiplexed Bioimpedance Spectroscopy (MMBIS) for Monitoring of Edema in VCA

Al-enabled Predictive Analytics

Diagnostic Monitoring and Prognostics for Vascularized Allographs

- A) Inkjet-printed gold electrode array for impedimetric analysis of surfaces with imprinted insulation, from Khan et al. 2016.
- B) Electrode array used to generate tomographical impedance map of collapsed tissue, from Swisher et al. 2015.
- C) Application of multiplexed electrode arrays to abdominal wall VCA graft and subsequent data analysis from Guiseppi-Elie et al. 2020.

Pathophysiological Intravascular Ranges: MMBIS Profiles

Multielectrode Multiplexed Bioimpedance Spectroscopy (MMBIS)

		Pathophysiological Range									
Tissue Under Test	LOW	NORMAL (L)	NORMAL (H)	HIGH							
Tissue Type:	Blood Plasma	Muscle	Bone (Cancellous)	Fat							
Permittivity, ε _{100MHz} (S/m)	????	6.60E+1	2.76E+1	1.27E+1							
Conductivity Av±SD (S/m)	1.41E+0 ±2.14E-1	4.61E-1 ±2.44E-1	8.05E-2 ±9.42E-2	7.76E-2 ±9.31E-2							
Time Constant (τ) (ms) $\tau = [(R_0 - R_\infty)C]^{1/\alpha}$	2.30E-4	9.84E-4	3.19E-3	2.23E-1							

https://itis.swiss/virtual-population/tissue-properties/database/

Pathophysiological Intravascular Ranges: Cytokine Profiles

Analyte	Pathophysiological range							
	LOW	NORMAL	HIGH					
IL-1α	< 5 pg/mL (1)	5-50 pg/mL (1)	> 50 pg/mL (1)					
IL-6	< 5 pg/mL (1) <4.3 pg/mL (7)	5-30 pg/mL (1) 1.2+/-0.6 pg/mL (2) 0-43.5 pg/mL (6) 0-1.8 pg/mL (8) <5 pg/mL (9) <14.8 pg/mL (11) 5-15 pg/mL (13)	> 30 pg/mL (1) >35 pg/mL (12)					
IL-10	< 1 pg/mL (1) <10 pg/mL	1-10 pg/mL(1) 1.9+/- 1.1 pg/mL (2) <2 pg/mL (11)	> 10 pg/mL (1) >10 pg/mL (7)					
TNF-α	< 5 pg/mL (1) <0.55 pg/mL (5)	5-20 pg/mL (1) 5.11-7.23 pg/mL (3) 0.55 – 1.65 pg/mL (5) <5.6 pg/mL (11) 0-16 pg/mL (13)	> 20 pg/mL (1) > 7.79 pg/mL (3) > 8.1 pg/mL (4) >1.65 pg/mL (5)					
IFN-γ	< 5 pg/mL (1)	5-50 pg/mL (1) <2.2 pg/mL (11)	> 50 pg/mL (1) >19.5 pg/mL (10)					

Patient Data Sets for Key Metabolites, Cytokines, and MMBIS

2. Sensibly Rationalized Fictitious Patient (SRFP) Data for deep learning model

- Unavailability of adequate clinical stat data
- Unavailability of adequate clinical **temporal** data
- Need to establish proof of concept for the approach
- Low-cost digital equivalent of large patient data sets
- Possibility for data engineering

Clinical Expert Data

	Sensibly Rationalized Fictitious Patient (SRFP) Data											VCA Score (0,1,2,3)		
DP	Glucose (mg/dL)	Lactate (mmol/L)	рН	K⁺ (mmol/L)	pO ₂ (mmHg)	IL-1α	IL-6	IL-10	TNF-α	IFN-γ	MMBIS	CE-1		CE-N
1	70	2.7	7.42	5.10	78	22	28	4	22	40	2.219E-3	1	0	1
2	160	6.0	7.11	6.14	44	45	22	15	40	32	4.521E-4	2	0	3
n	41	9.7	7.26	4.84	97									
		••	••	••	••									
<i>n</i> +1	123	3.3	7.41	5.00	86									
<u>n+2</u>	49	8.7	7.13	5.92	53									
			••	••	••									
<i>n</i> +25	220	8.6	7.23	4.52	92									

0 = NO ISCHEMIC DAMAGE (no edema) 1 = MILD ISCHEMIC DAMAGE (mild edema, no erythema) 2 = MODERATE ISCHEMIC DAMAGE (edema and erythema) 3 = SEVERE ISCHEMIC DAMAGE (epidermolysis and/or necrosis)

Accessing and/or Building Data Sets

Aggas et al. *Bioengineering* (**2023**) Mar 29;10(4):434.

Collaborators

Gerald Brandacher, MD Professor of Plastic and Reconstructive Surgery Scientific Director, Composite Tissue Allotransplantation Program

Warren L Grayson, PhD Professor and Vice-Chair **Department of Biomedical Engineering Transplantation Tissue Engineering Center**

OHNS HOPKINS

BIOMEDICAL ENGINEERING

bioengineering

Real-Time Monitoring Using Multiplexed Multi-Electrode Bioelectrical Impedance Spectroscopy for the Stratification of Vascularized Composite Allografts: A Perspective on **Predictive Analytics**

John R. Aggas 1,2,10, Sara Abasi 1,3,1, Carolyn Ton 4,5, Sara Salehi 4,5, Renee Liu 4,5, Gerald Brandacher 5,60, Warren L. Grayson 4,5,7,8,9,* and Anthony Guiseppi-Elie 1,10,11,*()

MEASUREMENT A

SCIENCE

JOHNS HOPKINS

🔤 😳 💽

MDPI

Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review

Sara Abasi,[¶] John R. Aggas,[¶] Guillermo G. Garayar-Leyva, Brandon K. Walther, and Anthony Guiseppi-Elie*

BMC Part of Springer Nature

Journal of Translational Medicine

Methods of ex vivo analysis of tissue status in vascularized composite allografts

Carolyn Ton, Sara Salehi, Sara Abasi, John R. Aggas, Renee Liu, Gerald Brandacher 🖾, Anthony Guiseppi-Elie 🖾 & Warren L. Grayson 🖾

W81XWH-17-1-0630 (Grayson) W81XWH-16-RTRP-IIRA (Grayson) W81XWH-13-0409 (Guiseppi-Elie)

Texas A&M Engineering TEES-246413 (Guiseppi-Elie) **Experiment Station**

Aggas[§] and Abasi[§], et al. Bioengineering MDPI 2023, 10(4), 434. https://doi.org/10.3390/bioe ngineering10040434

Abasi[§] and Aggas[§], et al. ACS Measurement Science Au (2022) 2, 6, 495-516. https://doi.org/10.1021/ acsmeasuresciau.2c00033.

Ton and Salehi et al. BMC J. Transl. Med. (2023) 21, 609. https://doi.org/10.1186/s1296 7-023-04379-x

Electomics

Gene Expression Under an Exogenous Electric Field

- Cellular gene expression and cell proliferation are known to be affected by electric fields (EF)¹.
- An apparatus (ECSARA) has been fashioned for concomitant application of EFs and multiplexed multi-frequency bioelectrical impedance spectroscopy (MMBIS) for isolating the effects of EF on cell biology².
- Trans Endothelial Electrical Resistance (TEER), cell proliferation and gene expression were examined under EF stimulation, with specific attention to a uniquely physically responsive yes-associate protein: YAP.

Electric Cell Stimulation And Recording Apparatus (ECSARA)

Computer with LabVIEW software

Sara Abasi et al. *Biosensors and Bioelectronics* (**2020**) 147, 111793 Sara Abasi et al. *Electroanalysis* (**2020**) 32(12), 2589-3188
Electric Cell Stimulation And Recording Apparatus (ECSARA)

Typical Experiment Timeline

← – – – – – – – – – Total Experiment Run Time (days) -

Selected E-Field signal
applied to selected
wells.Multiplexed, serial Z-Interrogation of
selected cells

Effect of cell culture insert pore size on trans-membrane impedance

Human Umbilical Vein Endothelial Cells (HUVEC) - TEER

Electrical Stimulation

Three EF stimulation conditions were explored:

- T1 : Amp: 0.6V Freq.: 1.2 Hz Pulse Width: 2mS 81 mV/mm
- T2: Amp: 1.2V Freq.: 1.2 Hz Pulse Width: 2mS 162 mV/mm
- T3: Amp: 1.2V Freq.: 0.6 Hz Pulse Width: 2mS 162 mV/mm
- CTRL: No stimulation

Sara Abasi and Brandon Walter et al. BMES 2020 (2020) abstract on-line

Growth: Viability and Impedance Monitoring

• Viability Assay:

- 10% Alamarblue[®] was added to the cells at predefined times and the absorbance of the supernatant was measured.
- Impedance Spectroscopy:
 - At predefined time, ES was stopped and MMBIS was performed using an interrogation voltage of 20mV p-t-p over freq. range of 0.01 Hz – 1.0 MHz.

Immunostaining and RT-PCR

Confocal Microscopy:

• YAP + VE-Cadherin stain – analysis of nuclear to total YAP ratio: Nuclear YAP $YAP \ Partition = \frac{1}{Total \ YAP}$

- This value is between 0 and 1, normalizing relative YAP activity across conditions and cell morphology
- Maximum Z projection used for all analysis

Gene Expression:

 Downstream YAP targets (CTGF and ANKRD1) and junctional marker (VE-Cadherin/CD144) using RTqPCR

Gene Expression

- Strong gene expression increase evident in CD144 (VE-Cadherin)
- CTGF and ANKRD1 have little evident modulation
- Electrical stimulation expedites junctional formation

Control 12 h		Control 24 h	
T 1	12 h	🗾 T1	24 h
T 2	12 h	🔳 T2	24 h
T 3	12 h	📕 ТЗ	24 h

Yes-Associated Protein-1 (YAP) Localization

- 12-hour general upward trend of YAP nuclear partitioning with electrical stimulation (activation **RED**)
- General downward trend of YAP partitioning at 24 • hours with electrical stimulation (deactivation **BLUE**)

OVERALL:

Inactive YAP

Active

YAP

Biological Target

Electrical stimulation activates YAP, accelerating HUVEC proliferation

Key Findings

- Mild electrical stimulation can be used to turn on/ off genes expressed by endothelial cells.
- Electrical stimulation has a proliferative effect, evidenced by accelerated junctional formation and increased YAP partitioning.
- EF seems a promising external stimulus where vasculogenesis and formation of endothelial cell monolayer are sought such as in tissue and regenerative engineering.

The 1st International Online Conference on Bioengineering

Indexed in:

PubMed

CITESCORE

4.2

16-18 October 2024 | Online

Conference Chairs

bioengineering

Bioengineering in a Generative AI World

Prof. Dr. Anthony Guiseppi-Elie Founding Editor-in-Chief, *Bioengineering*, President and Sr. Fellow, AIIMSEI

Dr. Rossana Madrid Bioengineering Department, National University of Tucumán, Argentina

Plenary Speakers

Prof. Dr. Luke Pyung-Se Lee Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, USA.

Prof. Dr. Molly Shoichet Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.

Prof. Dr. Wai Yee Yeong School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore.

Prof. Dr. Kristala L. Jones Prather Head of the Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, USA.

Prof. Dr. Chuanbin Mao Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.

Thank you!

Danke