

Organic LEDs as neuronal interfaces

Caroline Murawski

Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V.

Chair of Nanotechnology, TU Dresden

21 Jan 2021

Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg

Main technologies:

- Electrochemical sensing
- Solid state electrolyte sensing
- Biophysical sensing
- Organic electronics

Applications:

- Environmental sensing (water pollutants, agriculture)
- Gas sensors for biogas plants, hydrogen storage
- DNA origami for measurement of antigen/antibody binding
- Sensing of drugs in waste water
- Neural interfaces, functional implants

Chair of Nanotechnology seminar

Chair of Nanotechnology seminar

CLEDs for Biophotonics Applications

No treatmen

LED

OLED

Photodynamic therapy

C. Lian, ... I. D. W. Samuel, *npj Flex. Electron.* **2019**, *3*, 18. S. K. Attili, ... J. Ferguson, *Br. J. Dermatol.* **2009**, *161*, 170.

Pulse oximetry

C. M. Lochner, ... A. C. Arias, *Nat. Commun.* 2014, *5*, 5745.
T. Yokota, ... T. Someya, *Sci. Adv.* 2016, *2*, e1501856.
H. Lee, ... S. Yoo, *Sci. Adv.* 2018, *4*, eaas9530.

Photobiomodulation

S. Mo, ... J. C. Ahn, *Curr. Opt. Photonics* **2019**, *3*, 485. Y. Jeon, ... K. C. Choi, *Adv. Mater. Technol.* **2018**, *3*, 1.

On-skin applications

Flexible, wearable displays

T. Yokota, ... T. Someya, Sci. Adv. 2016, 2, e1501856.

Chair of Nanotechnology seminar

Neurological Diseases

- More than 1 billion people affected world wide (WHO, 2006)
- Alzheimer's disease, epilepsy, migraine, ...

How to control nerves?

- Pharmacology \rightarrow not timely, not well targeted, many side effects
- Electrical stimulation \rightarrow does not target specific cell type, no precise silencing

Epilepsy recognition and treatment device

NeuroPace, Inc.

KS Controlling Cells with Light

Optogenetics - artificial, genetically introduced light sensitivity

E. Pastrana, Nat. Methods 8, 24 (2011)

Medical applications:

© Gensight Biologics: Towards curing blindness (retinitis pigmentosa)

Chair of Nanotechnology seminar

OLEDs for Optogenetics

Advantages of organic LEDs

- Structuring to high-density arrays with cell-scale dimensions
- High spectral control
- Biocompatibility/ Flexibility

COMEDD Fraunhofer

C.-M. Keum, C. Murawski *et al., Nat. Comm.* **11**, 6250 (2020)

Requirements of OLEDs for optogenetics

- Good spectral overlap of ChR activation and OLED emission
- Low temperature spreading onto cells
- High durability in aqueous environment
- High brightness necessary (≈ 0.1 10 mW/mm²)

MEINSBERG **High-Brightness Performance** K

ChR2 H134R Blue OLED

- Current microdisplays provide 0.001 0.01 mW/mm² ۲
- For high-brightness illumination used fluorescent *pin*-OLEDs ۲
- Low voltages required

AI

BPhen:Cs

BAIq₂

MADN:TBPe

1.5 wt%

Spiro-TAD

Spiro-TTB:F6-TCNNQ

4%

ITO

Glass

- Low temperature spreading
- High stability over millions of pulses

1.2

100 nm

30 nm

10 nm

20 nm

10 nm

30 nm

90 nm

Used *Drosophila* line expressing ChR2(H134R) in motor neurons (OK371-GAL4 driver)

• Firing of action potentials immobilizes the larva

Response upon Global Stimulation

Activation of sensory neurons (Chrimson)

• Causes a full-body muscle contraction

Inhibition of sensory neurons (GtACR2)

 Causes slow-down of muscle contraction waves

at 0.015 mW/mm²

C. Murawski et al., Nat. Comm. 11, 6248 (2020)

Chair of Nanotechnology seminar

- Structured bottom electrodes with photolithography to 1D array with 10 100 μm pixel width
- Top-emitting OLED fabrication
- Encapsulated with 30 µm flexible glass sheet

Segment-Specific Response

• Stimulation of individual segments \rightarrow study behavioural response

C. Murawski et al., Nat. Comm. 11, 6248 (2020)

Inhibition

Activation

C. Murawski et al., Nat. Comm. 11, 6248 (2020)

C. Murawski et al., Nat. Comm. 11, 6248 (2020)

Smartphone Optogenetics

- Control behaviour or Drosophila larvae using smartphone display
- Observed significant light-response depending on colour and intensity of stimulation

Ilenia Meloni

Andreas Thum, Robert Kittel

I. Meloni, ..., C. Murawski, Sci. Rep. 10, 17614 (2020)

Drosophila larvae in a maze

Guiding larvae on the display

Ilenia Meloni

I. Meloni, ..., C. Murawski, Sci. Rep. 10, 17614 (2020)

UNIVERSITÄT LEIPZIG

Andreas Thum, Robert Kittel

- Simple, high-resolution optogenetics to improve understanding of neuronal circuits
- Can be used to study learning and memory behaviour
- Suitable for teaching and outreach activities

Optogenetics is more than only stimulation...

University of St Andrews

- ... it also enables sensing neural activity with light
- Genetically encoded Calcium indicators
- Light intensity depends on Ca²⁺ concentration

Device Design and Performance

Chair of Nanotechnology seminar

Caroline Murawski

University of St Andrews

- Stained mouse kidney section
- Glomeruli labelled with Alexa Fluor[®] 488 wheat germ agglutinin

Mercury light source in epi-illumination

OLED illumination from below

Dissected CNS of *Drosophila melanogaster* larva with GCaMP6s in all neurons

R. Ghaemi et al., Lab Chip 15, 1116 (2015)

C. Murawski et al., Adv. Mater. 31, 1903599 (2019)

 \rightarrow Waveform activity observed resulting from fictive locomotion

C. Murawski et al., Adv. Mater. 31, 1903599 (2019)

Co-Located Stimulation and Sensing

- Cultured primary mouse
 hippocampal neurons
- rAAV-transfection with ChR and Ca-indicator → co-located stimulation and sensing

A. Morton, C. Murawski et al., Adv. Biosyst. 3, 1800290 (2019)

MEINSBERG **Co-Located Stimulation and Sensing** KSI

A. Morton, C. Murawski et al., Adv. Biosyst. 3, 1800290 (2019)

Chair of Nanotechnology seminar

Caroline Murawski

No CheRiff ==

Flexible, water-resistant OLEDs

Chair of Nanotechnology seminar

Caroline Murawski

10-2 VOQ

10-3 5

Optogenetic stimulation and sensing

... towards a high-resolution all-optical system for neuronal stimulation and readout!

10-3

0

2

3

voltage [V]

www.murawskilab.com caroline.murawski@ksi-meinsberg.de

Chair of Nanotechnology seminar