

nanoSeminar at the Chair of Materials Science and Nanotechnology

Innovation Application Architecture

Dr.-Ing. Xiaoping Xie Institute of Building and Design Faculty of Architecture

18 November 2021

ABOUT ME

EDUCATION BACKGROUND

- Bachelor: Civil Engineering
- Master: Architecture
- PhD: Urban Planning

RESEARCH INTERESTS

- Social impact assessment of technological innovations
- Working environment in the digital-urban-era
- Urbanisation and metropolitanisation
- Urban and regional shrinkage
- Comparative study on development patterns of the Global North and the Global South

nanoSeminar at the Chair of Materials Science and Nanotechnology

THE AECHITECT'S TASKS

Vorplanung und Abnahme der Entwürfe vom Bauherrn

Vary ac. S.

2 210 12

373.

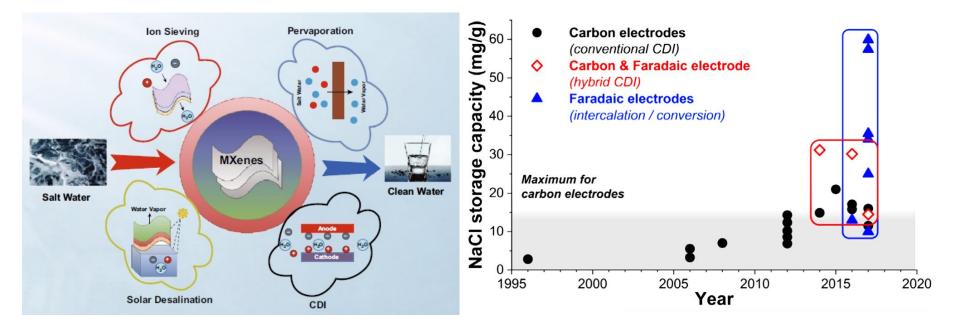
1/

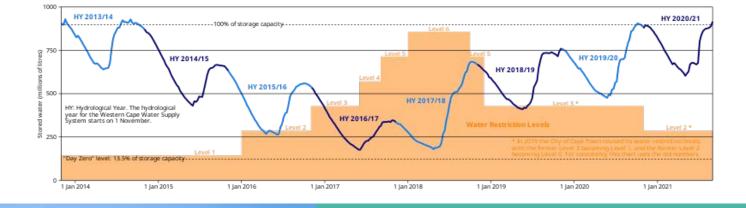
Genehmigungsplanung und Absprache mit Behörden

Ausführungsplanung und Absprache mit Gewerken

Gespräche mit dem Bauherrn

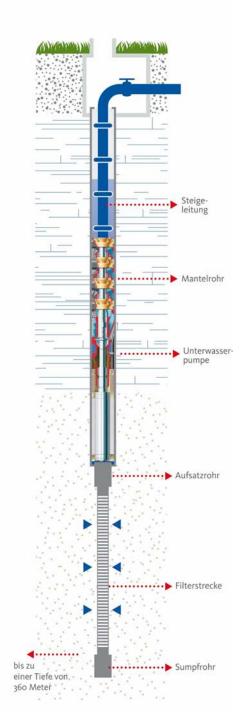
Bauüberwachung und finale Bauabnahme


Application Architecture for Water Purification Technologies using Mxene-based Nanomaterials



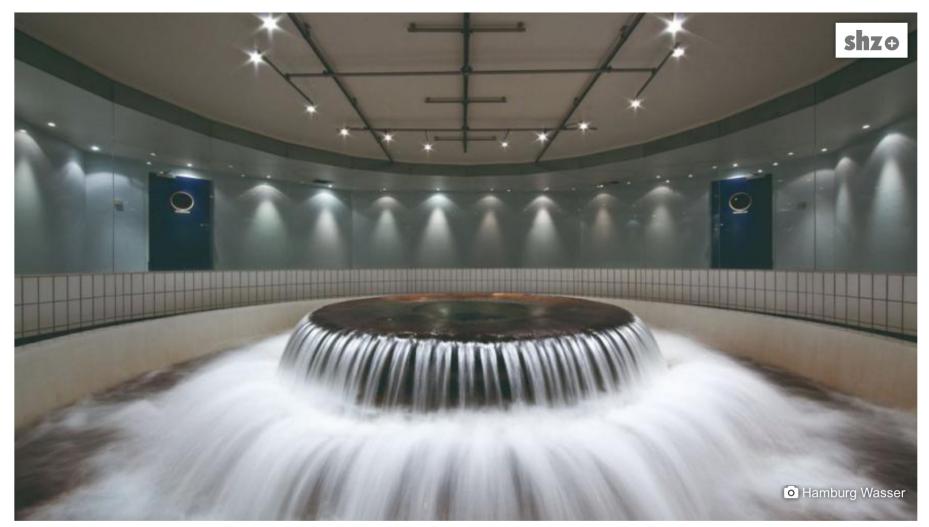
"If we could produce fresh water from salt water at a low cost, that would indeed be a great service to humanity, and would dwarf any other scientific accomplishment." - John F. Kennedy, 1962

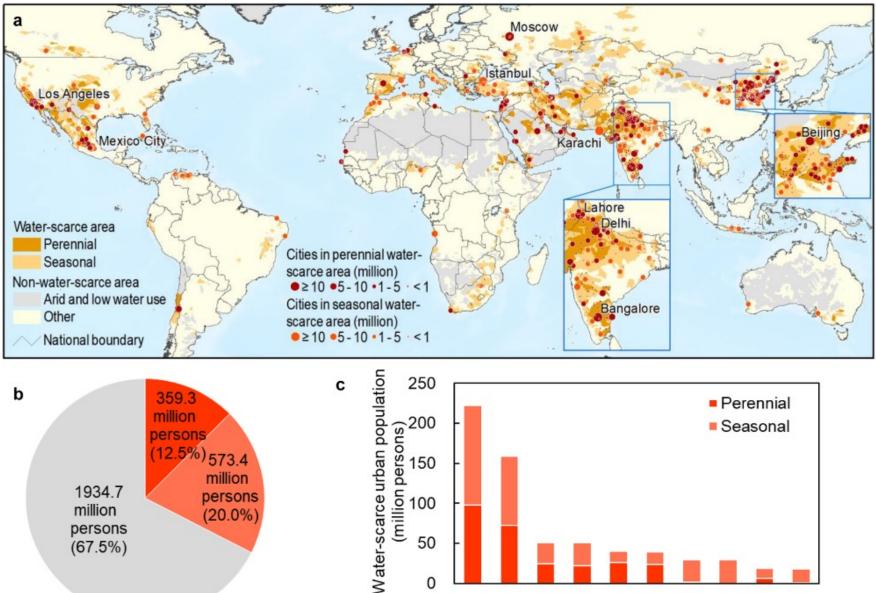
Capacitive Deionization (CDI) is a green, economical, and highly promising water desalination technique mainly because of its low operating costs and energy consumption, absence of secondary pollution, easy regeneration and maintenance. This technology has its roots in supercapacitor technology. Traditional porous carbon-based CDI systems have salt adsorption capacities (SAC) around 0.1-10 mg/g; whereas, $Ti_3C_2T_x$ MXenes, the outstanding Faradic 2D materials largely-used in supercapacitors, have shown superior salt adsorption capacities (68 mg/g of NaCl 585 mg/L) with very low energy consumption of 0.24 kWh/kg.

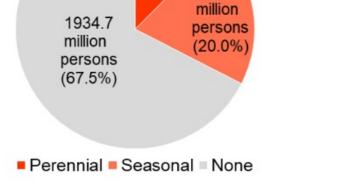

Cape Twon declared a national emergency in 2018 due to water crisis. It faced becoming the first major city in the world to run out of drinkable water as it dealt with serious water scarcity. Between 2015 and 2018, a decline in rainfall resulted in Cape Town's

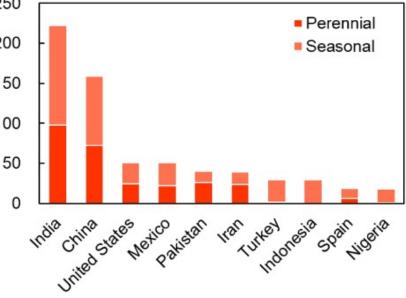
worst droughts on record. These droughts saw the city on the brink of Day Zero, the point at which the municipal water supply would be shut off.

Hamburg's drinking water is obtained exclusively from groundwater. After at least 50 days of flow, the water has reached the groundwater layer. It is now free of pathogenic microorganisms as well as dirt and pollutants, has enriched itself with numerous minerals and collects above impermeable layers of clay. From there it is pumped through one of the 446 (461 with Haseldorfer Marsch) wells in Hamburg.


Source: https://www.hamburgwasser.de


KLIMAWANDEL UND TROCKENHEIT


Hamburg appelliert an seine Bürger: Spart Wasser

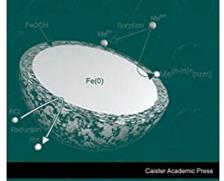

von Markus Lorenz 06. Mai 2021, 17:10 Uhr

Belüftungspilz im Wasserwerk Hamburg-Walddörfer.

Nanotechnology in the Life Sciences

Ram Prasad · Vivek Kumar Manoj Kumar Devendra Choudhary *Editors*

Nanobiotechnology in Bioformulations


Nanomaterials for Water Treatment and Remediation

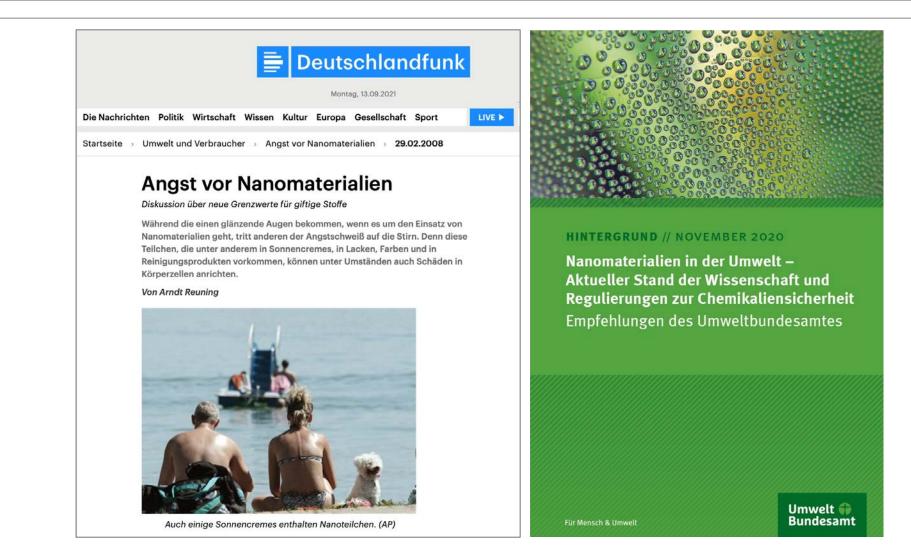
Edited by Srabanti Ghosh • Aziz Habibi-Yangjeh Swati Sharma • Ashok Kumar Nadda

CRC Press

Edited by T. Eugene Cloete, Michele de Kwaadsteniet, Marelize Botes and J. Manuel López-Romero

AQUANANOTECHNOLOGY

Applications of Nenomaterials for Water Purilidation


Eductly Kamel A. Abd Elsalan Muhammad Zehid

1/1/2

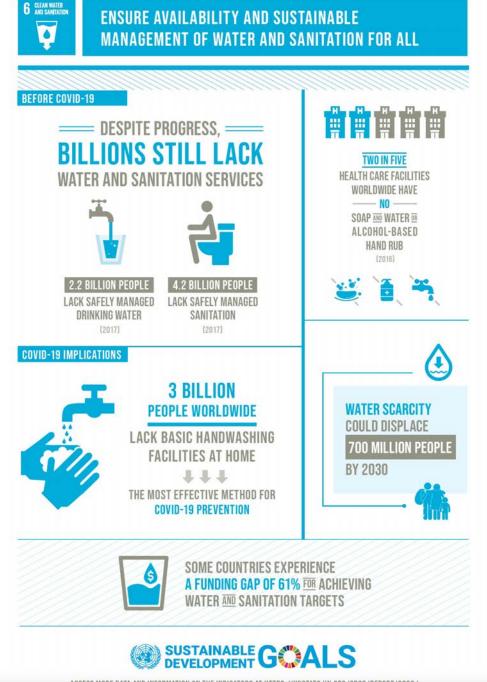
🖄 Springer

nanoSeminar at the Chair of Materials Science and Nanotechnology

Source: German Institute for Standardization

nanoSeminar at the Chair of Materials Science and Nanotechnology

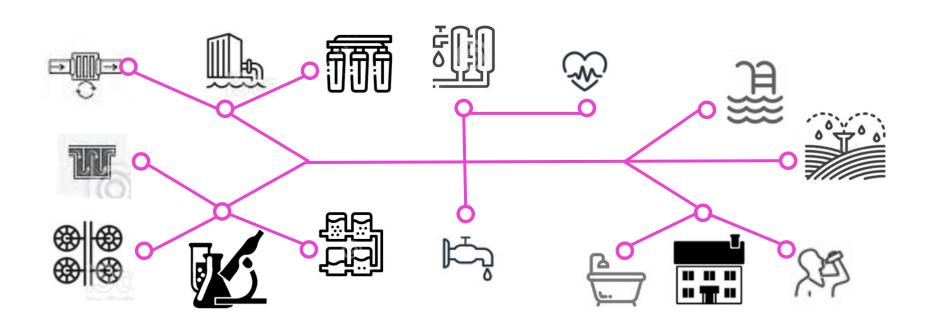
nanoSeminar at the Chair of Materials Science and Nanotechnology


	Guideline value*			
Chemical	μg/l	mg/l	Remarks	
Disinfectants				
Chlorine	5 000 (C)	5 (C)	For effective disinfection, there should be a residual concentration of free chlorine of \geq 0.5 mg/l after at least 30 min contact time at pH < 8.0. A chlorine residual should be maintained throughout the distribution system. At the point of delivery, the minimum residual concentration of free chlorine should be 0.2 mg/l.	
Monochloramine	3 000	3		
Sodium	50 000	50	As sodium dichloroisocyanurate	
dichloroisocyanurate	40 000	40	As cyanuric acid	
Disinfection by-products				
Bromate	10° (A, T)	0.01ª (A, T)		
Bromodichloromethane	60*	0.06*		
Bromoform	100	0.1		
Chlorate	700 (D)	0.7 (D)		
Chlorite	700 (D)	0.7 (D)		
Chloroform	300	0.3		
Dibromoacetonitrile	70	0.07		
Dibromochloromethane	100	0.1		
Dichloroacetate	50* (D)	0.05* (D)		
Dichloroacetonitrile	20 (P)	0.02 (P)		
N-Nitrosodimethylamine	0.1	0.0001		
Trichloroacetate	200	0.2		
2,4,6-Trichlorophenol	200ª (C)	0.2ª (C)		
Trihalomethanes			The sum of the ratio of the concentration of each to its respective guideline value should not exceed 1	
Contaminants from treatm	nent chemicals			
Acrylamide	0.5*	0.0005*		
Epichlorohydrin	0.4 (P)	0.0004 (P)		
Contaminants from pipes	and fittings			
Antimony	20	0.02		
Benzo[a]pyrene	0.7ª	0.0007*		
Copper	2000	2	Staining of laundry and sanitary ware may occur below guideline value	
Lead	10 (A, T)	0.01 (A, T)		
Nickel	70	0.07		
Vinyl chloride	0.3*	0.0003*		

INDIAN STANDARD SPECIFICATIONS FOR DRINKING WATER IS. 10500

S.NO.	Parameter	Requirement desirable Limit	Remarks
1.	Colour	5	May be extended up to 50 if toxic
			substances are suspected
2.	Turbidity	10	May be relaxed up to 25 in the
			absence of alternate
3.	pH	6.5 to 8.5	May be relaxed up to 9.2 in the
			absence
4.	Total Hardness	300	May be extended up to 600
5.	Calcium as Ca	75	May be extended up to 200
6.	Magnesium as Mg	30	May be extended up to 100
7.	Copper as Cu	0.05	May be relaxed up to 1.5
8.	Iron	0.3	May be extended up to 1
9.	Manganese	0.1	May be extended up to 0.5
10.	Chlorides	250	May be extended up to 1000
11.	Sulphates	150	May be extended up to 400
12.	Nitrates	45	No relaxation
13.	Fluoride	0.6 to 1.2	If the limit is below 0.6 water should
			be rejected, Max. Limit is extended to 1.5
14.	Phenols	0.001	
14.	Mercury	0.001	May be relaxed up to 0.002 No relaxation
16.	Cadmium	0.01	No relaxation
17.	Selenium	0.01	No relaxation
18.	Arsenic	0.05	No relaxation
19.	Cyanide	0.05	No relaxation
20.	Lead	0.1	No relaxation
21.	Zinc	5.0	May be extended up to 10.0
22.	Anionic detergents	0.2	May be relaxed up to 1
	(MBAS)		
23.	Chromium as Cr+6	0.05	No relaxation
24.	Poly nuclear aromatic		
	Hydrocarbons		
25.	Mineral Oil	0.01	May be relaxed up to 0.03
26.	Residual free Chlorine	0.2	Applicable only when water is
			chlorinated
27.	Pesticides	Absent	
28.	Radio active		

WHO guideline values


Indian standard

ACCESS MORE DATA AND INFORMATION ON THE INDICATORS AT HTTPS://UNSTATS.UN.ORG/SDGS/REPORT/2020/

nanoSeminar at the Chair of Materials Science and Nanotechnology

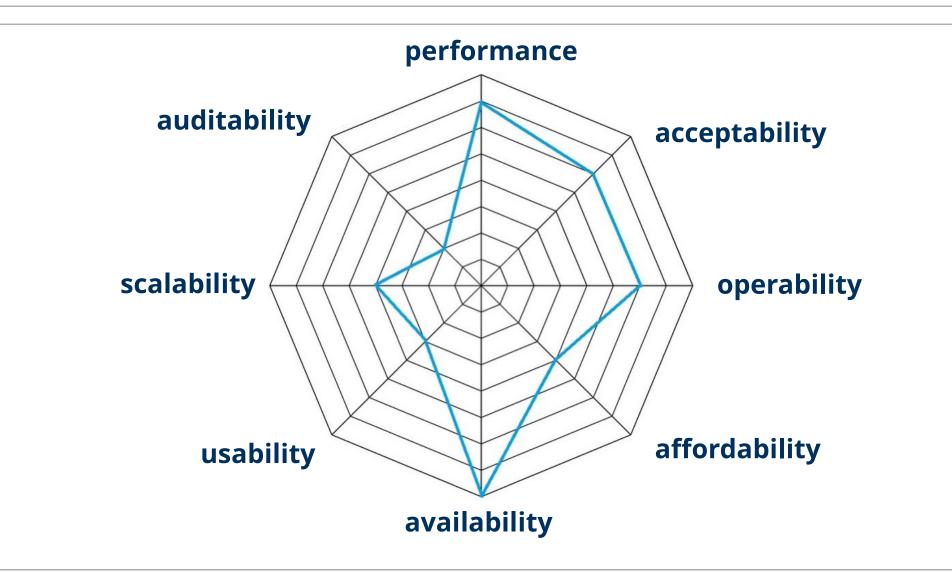
ISO

Search ISO 24512:2007(en) ×

ISO 24512:2007(en) Activities relating to drinking water and wastewater services - Guidelines for the management of drinking water utilities a

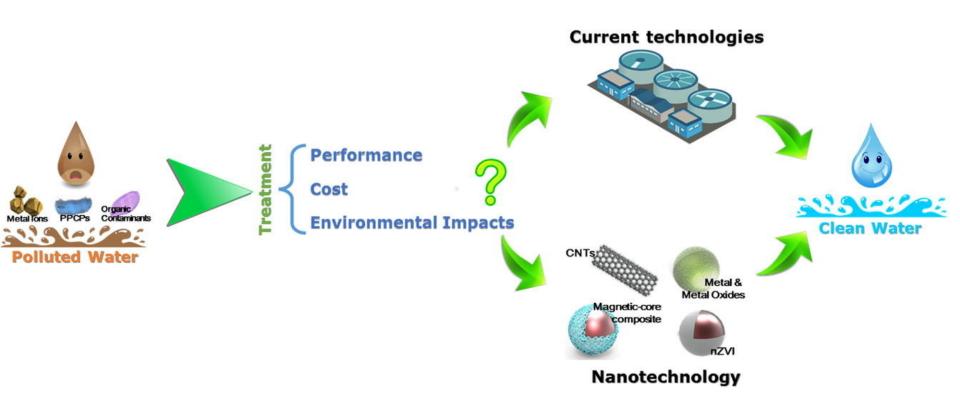
E Table of contents	Available in: EN FR ES					
Foreword	2 Terms and definitions					
 Introduction 						
0.1 Water issues: global context and p	For the purposes of this document, the following terms and definitions apply.					
0.2 Water utilities: general objectives	2.1					
0.3 Objectives, content and implement						
0.4 Drinking water supply services	accuracy					
1 Scope	closeness of agreement between a measure and the accepted reference value					
2 Terms and definitions	Note 1 to entry: The term "accuracy", when applied to a set of measures, involves a combination of random components and a common					
✤ 3 Components of drinking water supply s	systematic error or bias component.					
3.1 General	Note 2 to entry: Adapted from ISO 5725-1:1994.					
3.2 Types of drinking water supply syst						
3.3 Water source	2.2					
3.4 Intake and transport	affordability					
3.5 Treatment	ability to be economically bearable for the users (2.50)					
3.6 Storage, transport and distribution	Note 1 to entry: The affordability can be estimated through the degree to which charges for services (2.44) can be paid by targeted social					
3.7 Disposal of residues	route it to entry. The another submit can be submitted intrough the degree to thinking into account allowances for subside and by targeted social groups of users without significant adverse economic or social impact, taking into account allowances for subside and payment					
 4 Objectives for the drinking water utility 	assistance programmes for low-income users.					
4.1 General						
4.2 Protection of public health	2.3					
4.3 Meeting users' needs and expectal	assessment					
4.4 Provision of services under normal	process (2.31), or result of this process, comparing a specified subject matter to relevant references					
4.5 Sustainability of the water utility						
4.6 Promotion of sustainable developr	2.4					
4.7 Protection of the environment	asset					
 5 Management components of a drinking 	capital-forming goods used for the provision of the service (2.44)					
5.1 General	Note 1 to entry: Assets can be tangible or intangible. Examples of tangible assets are: land, buildings, pipes, wells, tanks, treatment plants,					
5.2 Activities and process managemen	equipment, hardware. Examples of intangible assets are: software, databases.					
5.3 Resources management	Note 2 to entry: Contrary to consumables, assets can be depreciated in accounting systems.					
5.4 Asset management						
5.5 Customer relations management 5.6 Information management	2.5					
5.7 Environmental management	asset management					
5.8 Risk management	processes (2.31) that enable a water utility (2.53) to direct, control and optimize the provision, maintenance (2.19) and disposal of					
✓ 6 Guidelines for the management of drini	infrastructure (2.17), assets (2.4), including the necessary costs for specified performances (2.24), over their life-cycle					
6.1 General	2.6					
 6.2 Organization 						
6.3 Planning and construction	availability					
 6.4 Operations and maintenance 	extent to which the infrastructure (2.17), assets (2.4), resources and employees of a water utility (2.53) enable effective provision of services (2.44) to users (2.50) according to specified performances (2.24)					
 7 Assessment of water services 	services (2.44) to users (2.50) according to specified performances (2.24)					
7.1 General	2.7					
7.2 Assessment policy	community					
7.3 Goal and scope of the assessment	one or more natural or legal persons and, in accordance with national legislation or practice, their associations, organizations or groups,					
7.4 Parties involved in the assessment	having interests in the area where the service (2.44) is provided					
7.5 Methodology of assessment						
7.6 Service assessment criteria	2.8					
7.7 Resources to conduct the assessm	confidence grade					
7.8 The production of output and recor	assessment (2.3) of the quality (2.32) in terms of accuracy (2.1) and reliability (2.37)					
· 8 Performance indicators	2.9					
ente cape del transmissione en annalis d'Aleña						

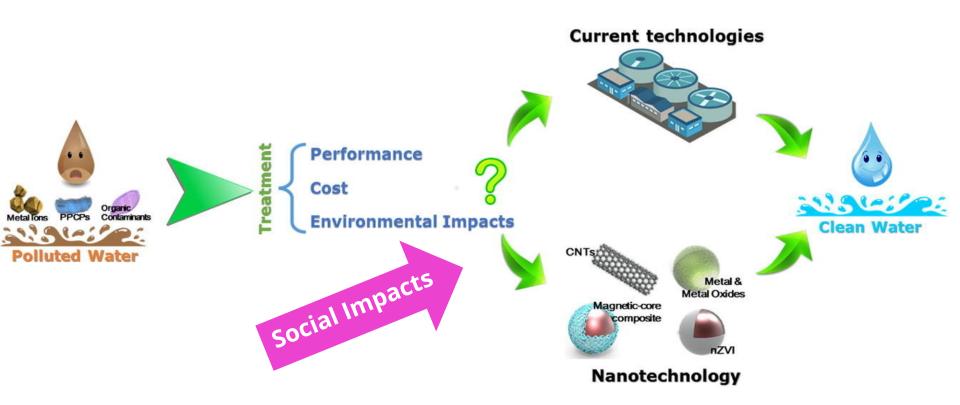
connection


Figures

Tables

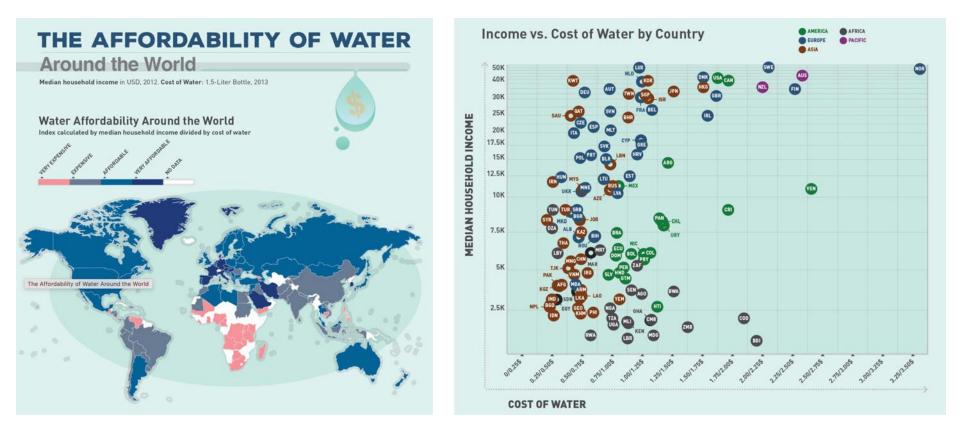
set of physical components ensuring the link between a **point-of-delivery** (2.26) and the local water main or the **point-of-collection** (2.25) and the source





Source: Adeyemi S. Adeleye, Jon R. Conway, Kendra Garner, Yuxiong Huang, Yiming Su, Arturo A. Keller, **Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability**, Chemical Engineering Journal, Volume 286, 2016, Pages 640-662, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2015.10.105.

nanoSeminar at the Chair of Materials Science and Nanotechnology



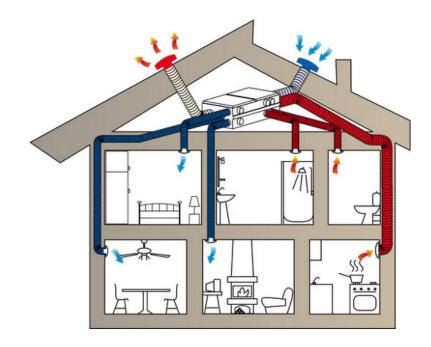
Source: Adeyemi S. Adeleye, Jon R. Conway, Kendra Garner, Yuxiong Huang, Yiming Su, Arturo A. Keller, Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability, Chemical Engineering Journal, Volume 286, 2016, Pages 640-662, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2015.10.105.

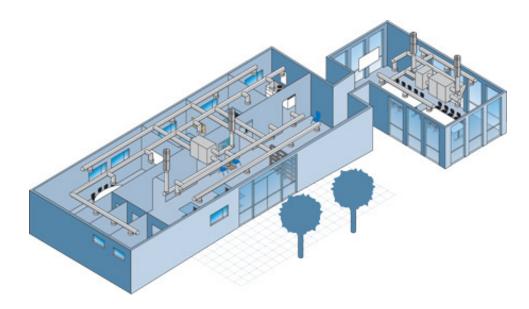
nanoSeminar at the Chair of Materials Science and Nanotechnology

Sources:

http://news.gallup.com/poll/166211/worldwide-median-household-income-000.aspx http://www.nationmaster.com/country-info/stats/Cost-of-living/Prices-at-markets/Water/1.5-litre-bottle https://www.numbeo.com/cost-of-living/rankings_by_country.jsp

nanoSeminar at the Chair of Materials Science and Nanotechnology


Chemical	Reason for not establishing a guideline value	Remarks		
Bromide	Occurs in drinking-water at concentrations well below those of health concern			
Chloride	Not of health concern at levels found in drinking-water	May affect acceptability of drinking- water (see chapter 10)		
Hardness	Not of health concern at levels found in drinking-water	May affect acceptability of drinking- water (see chapter 10)		
Hydrogen sulfide	Not of health concern at levels found in drinking-water	May affect acceptability of drinking- water (see chapter 10)		
Iron	Not of health concern at levels causing acceptability problems in drinking-water	May affect acceptability of drinking- water (see chapter 10)		
Manganese	Not of health concern at levels normally causing acceptability problems in drinking- water. However, there are circumstances where manganese may remain in solution at higher concentrations in some acidic or anaerobic waters, particularly groundwater	May affect acceptability of drinking- water (see chapter 10)		
Molybdenum	Occurs in drinking-water at concentrations well below those of health concern			
рН	Not of health concern at levels found in drinking-water	An important operational water quality parameter		
Potassium	Occurs in drinking-water at concentrations well below those of health concern			
Sodium	Not of health concern at levels found in drinking-water	May affect acceptability of drinking- water (see chapter 10)	Source: WHO Guidelines for	
Sulfate	Not of health concern at levels found in drinking-water	May affect acceptability of drinking- water (see chapter 10)	Drinking-water Quality	
Total dissolved solids	Not of health concern at levels found in drinking-water	May affect acceptability of drinking- water (see chapter 10)		


Table 8.7 Naturally occurring chemicals for which guideline values have not been established

Application Architecture for ventilation systems with selfcleaning graphene-based air filters

Guidance on improving ventilation and indoor air quality in buildings amid the COVID-19 situation

For enclosed air-conditioned spaces without mechanical ventilation provision (e.g. retail shops with split-unit air-conditioners)

doors/windows frequently

Open Consider window mounted fan systems

Keep toilet Ensure intact exhaust fan water seal in sanitary system running

For naturally ventilated premises (e.g. coffee shops, markets, dormitories)

Install outward Keep toilet facing fans at exhaust fans windows to increase ventilation

Ensure intact water seal in sanitary system

Keep windows and/or doors open

running; consider windowmounted fans

Building and Construction

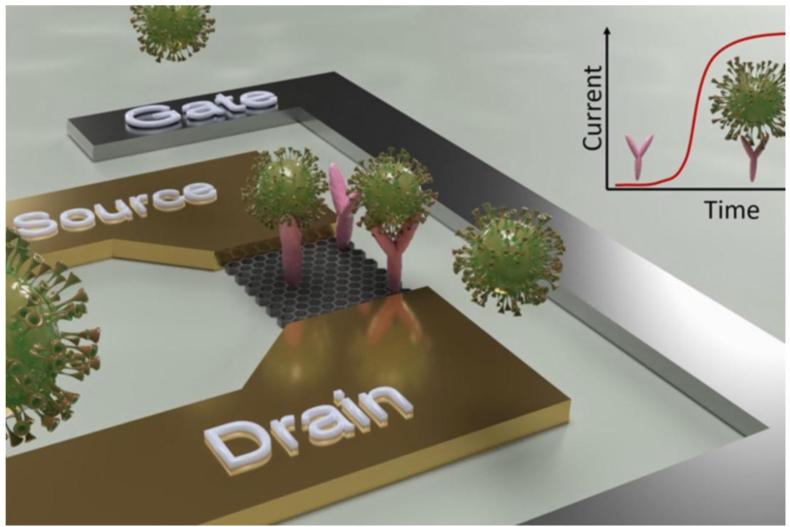
AEROGrAFT Spearhead Project

Making graphene-based self-cleaning filters for the aerospace indu

The *AEROGrAFT* Spearhead Project, announced by the Graphene Flagship, is set to produce heatable aero-graphene foams, to reduce the cleaning time of aero-material filters in the aerospace industry, saving businesses huge sums of maintenance costs and downtime.

Developed in collaboration with Naturality Research & Development, Spain and <u>Lufthansa Technik</u>, <u>Phi-Stone</u>, and <u>Sixonia</u> <u>Tech</u> in Germany, the *AEROGrAFT* Spearhead Project is on a mission to develop prototype self-cleaning air filters that use aerographene foam.

Developed with graphene's homogenous heat distribution properties in mind, the graphene-enabled foam will ensure even heat throughout the air filter, to elicit a consistent cleaning across all air filter surfaces. What's more, the self-cleaning air filters can use the same graphene foam repeatedly, for recurrent cleaning cycles, without losing stability.


Kiel University Christian-Albrechts-Universität zu Kiel

NATURALITY ® MICRO/NANO-EMULSION TECHNOLOGIES

Startschuss für neues Corona-Forschungsprojekt an der TU Dresden

03.08.2020, 12:47 Uhr — Erstveröffentlichung (aktuell)

Konstruktionsprinzips eines Sensors zum Direktnachweis von SARS-CoV-2-Viren Schematische Darstellung des Konstruktionsprinzips eines Sensors zum Direktnachweis von SARS-CoV-2-Viren

THANKS for your attention!

nanoSeminar at the Chair of Materials Science and Nanotechnology