A historic Condensed Matter Problem brought to Life in novel 2D Materials: Hofstadter's Butterfly in 2D COFs

David Bodesheim, Robert Biele, Gianaurelio Cuniberti TU Dresden

Nano Seminar | 05.08.21

Electrons in a magnetic field

Electron in a magnetic field

$$r_c \propto \frac{1}{B}$$
$$A_c \propto \frac{1}{B}$$

Electrons in a crystal/lattice in a magnetic field

A_c vs lattice

Electrons in a lattice in a magnetic field

- Applying B results in a cyclotron area A_c
- In lattice: Electrons move from lattice-site to lattice-site

Electron in a lattice

Electrons in a lattice in a magnetic field

- Only specific values of A_c (and hence B) are allowed because of lattice
- Magnetic field competing with lattice
- Certain number of allowed energy levels for a specific magnetic field

From Pen and Paper to Computational Physics

Douglas Hofstadter 1975 at Uni Regensburg

Magnetic Field

HP 9820A "Rumpelstilzchen"

From Pen and Paper to Computational Physics

Douglas Hofstadter 1975 at Uni Regensburg

Hofstadter's Butterfly (HSBF)

Self-similar, fractal pattern

HP 9820A "Rumpelstilzchen"

Phys. Rev. B 14, 2239 (1976)

HSBF – A periodic pattern

HSBF- Can it be measured?

 \rightarrow We need big lattices to measure HSBF!

Experimental Validation?

HSBF in Covalent-Organic Frameworks (COFs)?

to crystalline **porous** organic polymers

Stacked 2D COFs

Porous nature makes COFs ideal candidates Big pores \rightarrow Small magnetic fields

Chem. Soc. Rev., 2012, 41, 6010-6022

2D COFs with big pores

2D COFs – Can we find a HSBF in them?

Calculating HSBF in COFs – Methods

- Tight-Binding model
- On-Site energies E_n and hopping parameters t_{nm} from Slater-Koster files
- Only pp^π interactions
- Nearest-Neighbor approximation
- t_{nm} modified by magnetic field via Peierls Subsitution
- Calculating DOS for different magnetic fields
- Using python package *Pybinding*

Phthalocyanine-COF (square lattice)

COF-5 (hexagonal lattice)

Starphene Molecules

\rightarrow 2D COF based on Starphene Molecules?

Angew. Chem. Int. Ed. 2021, 60, 7752

Starphene-COF (hexagonal lattice)

17

Summary

- Hofstadter's Butterfly has been a purely theoretical matter for a long time
- Validation so far **only in artificial lattices** possible
- 2D COFs as promising candidates for measuring HSBF
- Calculations show the similarity between simple lattices

and their COF-counterparts

Thanks for your attention!

Prof. Gianaurelio Cuniberti

Dr. Robert Biele

David Bodesheim

Appendix

Electrons in a magnetic field

Electron in a magnetic field

$$r_c = \frac{mv}{qB}$$
$$\Phi = A_c B$$

Electrons in a crystal/lattice in a magnetic field

A_c vs lattice

Electrons in a lattice in a magnetic field

 $\Phi/\Phi_0 = p/q$ (rational) : Φ flux through unit cell p,q: coprimes q: bloch band breaks up into q distinct energy bands

 $B_{critical} = \frac{\Phi_0}{A_{min}}$

Example: $\Phi/\Phi_0 = 1/4$: $\frac{1}{4} \Phi_0$ per lattice cell -> 4 lattice cells=magnetic cell Shape of the magnetic cell is gauge dependent

Aidelsburger M. (2016) Square Lattice with Magnetic Field. In: Artificial Gauge Fields with Ultracold Atoms in Optical Lattices. Springer, Cham.

Electrons in a lattice in a magnetic field

arXiv:1802.04585

https://nano.tu-dresden.de/

23

Sketch of derivation of HSBF

- 1. Tight-Binding Bloch energy function
- 2. Introducing Peierls Substitution
- 3. Choose Gauge
- 4. Make nearest neighbor approximation
- 5. Make use of lattice geometry and some substitutions to get a one-dimensional Schrödinger equation (Harper's equation)

Peierls Substitution

$$t_{nm} \rightarrow t_{nm} e^{i\frac{2\pi}{\Phi_0} \int_n^m \overrightarrow{A_{nm}} d\vec{l}}$$

Measuring HSBF

Via transport measurements with Hall Bars

Nature 497, 598-602 (2013)

Butterfly in different lattices

