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materials in silico,[19–22] high computa-
tional costs and poor scaling still limit 
their effectiveness in exploring uncon-
strained chemical spaces and/or complex 
real-world materials. For instance, high-
throughput DFT screening works typi-
cally limit the search space to hundreds 
or, at best, thousands of materials, while 
DFT simulations of materials are mostly 
limited to typically less than 1000 atoms, 
i.e., bulk crystals and isolated molecules. 
ML therefore offers a solution to the mate-
rials exploration problem, making predic-
tions of new materials or properties from 
existing data, which in turn can drive the 
generation of more data that can be used 
to further refine the ML models.

Here, we will provide an in-depth, critical review of ML-
guided design and discovery of energy materials, a field where 
a novel material with superior performance (e.g., higher 
energy density, higher energy conversion efficiency, etc.) can 
have a transformative impact on the urgent global problem of 
climate change. This review is structured along the steps in a 
typical workflow for materials ML model building, as shown in 
Figure 1. The next four sections will provide a concise overview 
of ML concepts designed to give the reader an appreciation of 
state-of-the-art techniques as well as resources for building ML 
models for materials. Section 6 reviews the actual application of 
ML techniques to the discovery and design of various classes of 
energy materials, from energy storage (e.g., batteries, fuel cells, 
etc.) to energy conversion (e.g., thermoelectrics, catalysis, etc.). 
The final section outlines our perspectives on various chal-
lenges and opportunities in ML for energy materials design.

2. Goal/Target Identification

The first step in any ML project is to identify the goals and 
prediction targets of the ML models, typically relying on the 
domain knowledge of experts. This step is arguably the most 
important as the choice of target must be potentially learn-
able from available information, e.g., crystal/molecule struc-
ture and composition, elemental information, experimentally 
measured quantities or images, etc., and is unambiguously 
defined. The wrong choice of prediction target can lead to 
models that are either nongeneralizable or have spuriously 
high errors. Experimental and computational sources of mate-
rials data often have well-known uncertainties or errors. For 
example, stability is a practical criterion that cannot be ignored 
in most materials design problems.[23–26] Computationally, the 
thermodynamic stability is typically estimated using either 
the 0 K DFT formation energy Ef or the energy above convex 
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1. Introduction

Machine learning (ML) is the branch of artificial intelligence 
that deals with the development of algorithms and models that 
can automatically learn patterns from data and perform tasks 
without explicit instructions. While ML models and algorithms 
have been known since the 1950s, it is only in the recent decade 
that the systematic generation and curation of data on unprec-
edented scales—coupled with exponential increases in com-
puting power—that ML has begun to break new frontiers across 
many fields, including biology,[1] physics,[2,3] and chemistry.[4,5] 
ML is especially suited for exploratory tasks that feature combi-
natorially or exponentially complex solutions. This is exempli-
fied by the recent triumph of AlphaGo in solving the problem 
of Go, which has an estimated 10170 potential outcomes.[6]

This ability of ML to generalize from a set of training data 
to explore unknown spaces makes it a tantalizing panacea to 
many challenges in materials science.[7,8] Take, for example, the 
problem of novel materials discovery. To date, there are about 
106 crystalline materials and 109 molecules explored either com-
putationally or experimentally,[9–16] a minuscule fraction of the 
universe of possible crystals and molecules (e.g., it is estimated 
that there are 1060 possible small organic molecules alone). 
While accurate first-principles computational techniques such 
as density functional theory (DFT)[17,18] have brought about a 
revolutionary leap in our ability to predict properties and design 
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hull Ehull.[23] The Ehull is generally a difficult target property for 
ML.[27] It is highly sensitive to competing phases in the phase 
diagram; incompleteness of the phase diagram or the presence 
of artificially stabilized phases due to DFT errors can lead to 
large errors in Ehull. Furthermore, the Ehull is lower bounded at 
zero. Ef is a better regression target, though the choice of the 
reference states is also important. Often, the elemental ground 
states are used as the reference states for computing Ef. Unfor-
tunately, this quantity is plagued by well-known DFT errors 
associated with incomplete cancellation of errors especially 
when redox reactions are involved.[28] By choosing reference 
states that have the same oxidation state as the final com-
pound, e.g., binary oxides, such errors can be minimized.[27] 
It should be noted that Ehull can always be obtained from Ef 
with the existence of a predictive Ef model, and stability clas-
sification can then be obtained with the application of a suit-
able threshold, e.g., a strict threshold of 0 to identify phases 
on the hull, or more commonly, some positive threshold to 
account for potential metastability and uncertainty in DFT and 
ML predictions.

The nature of the materials problem can also influence the 
choice of model (see Section 5). For example, one key consid-
eration is whether the target problem is one of classification or 
regression. A classification task aims at learning the mapping 
between inputs and categorical targets. In materials science, 
many properties can be seen as categorical, for example, metal 
versus nonmetals, superconductor versus non-superconduc-
tors, relative stability between polymorphs (e.g., the cubic, 
tetragonal, and orthorhombic forms of perovskites), etc. A 
regression task, on the other hand, aims to learn the mapping 
between inputs and numerical target values, e.g., formation 
energies, bandgaps, conductivity, etc. It should be noted that 
with the use of proper thresholds, regression tasks can be con-
verted to classification tasks.[29,30]

3. Data Collection

In the second step, training data—experimental, or more com-
monly, computed—is collected. Data can come from publicly 
available sources or be self-generated, e.g., by carrying out 
experiments or high-throughput computations using various 
software platforms. It is critical that the data be of both suffi-
cient quantity and high quality. The required quantity of data 
depends on the choice of ML model (see Section 5), but a gen-
eral rule of thumb is that at least 50 data points are necessary 
for a reasonable ML model, with certain models, e.g., neural 
networks, requiring much larger quantities. The quality of the 
data is determined by its coverage of the chemical-property 
space of interest as well as the uncertainty associated with the 
data. For example, if the goal of ML models is to predict mate-
rials properties across the periodic table, then the collected 
data with a limited number of elements is unlikely to form 
good data distribution for this purpose. In general, the col-
lected data should represent future unseen data and have the 
same distributions if possible. Data uncertainty, on the other 
hand, can come from many sources, including experimental 
errors from measurements or computational errors from 
unsatisfactory approximations.

Data quantity and quality is perhaps the central challenge 
in the application of ML in materials science.[31] Experimental 
crystal/molecular structure databases, such as the Pauling File 
Database,[14] Inorganic Crystal Structure Database (ICSD),[32] 
Pearson Crystal Data,[33] Cambridge Structural Database,[16] 
Crystal Open Database,[34] CRYSTMET,[15] Protein Data Bank 
(PDB),[35] ZINC database,[36] GDB databases,[37–40] PubChem,[41] 
etc., have been steadily built up over the past few decades. For 
a comprehensive review of crystallographic databases, please 
see ref. [42]. Similarly, there are several well-established com-
pilations of measured thermodynamic properties and general 
materials physical chemistry data.[43–46] However, many existing 
experimental data repositories are still either too small or too 
heterogeneous (e.g., different experimental conditions or meas-
urement techniques) for high quality ML models. Human bias 
can also affect data diversity.[47] Furthermore, the vast majority 
of databases are commercial products requiring a license, and 
programmatic application programming interfaces (APIs) for 
large-scale data access are rarely implemented. A large frac-
tion of experimental data are only available in journal publica-
tions, though recent successes in text mining offer a potential 
solution to this conundrum.[48–53] Finally, major efforts are 
underway in high-throughput/combinatorial experiments that 
can generate large experimental materials database with diverse 
properties.[31]
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It is therefore not surprising that many ML works have 
turned to computed data sources. Computations, particularly 
those based on DFT and other ab initio techniques, are more 
easily scaled across diverse chemical spaces than experiments. 
Moreover, recent efforts under the Materials Genome Initia-
tive have led to the proliferation of large, public databases of 
computed materials properties. Examples of general-purpose 
databases with high chemical diversity (typically based on 
large experimental databases of all known inorganic materials 
such as the ICSD as well as a subset of generated hypothetical 
structures) and property diversity (relaxed structures, ener-
gies, electronic structure properties, etc.) include the Mate-
rials Project,[10] AFLOWLIB,[54] the computational materials 
repository,[55] open quantum materials data (OQMD),[56] novel 
materials discovery (NOMAD) repository,[57] AiiDA,[58] JAVIS-
DFT,[59] CatApp,[60] etc. For example, the Materials Project,[10] 
one of the most popular computed data sources for ML works, 
currently hosts ≈133 000 DFT-relaxed crystal structures, at the 
time of writing, with energies and electronic structure proper-
ties such as the bandgap available for the majority of materials 
and other properties such as elastic constants, piezoelectric 
coefficients, etc., available for a subset of materials. Figure 2 
shows the historical trend in the number of crystals with 
various properties computed. Several of these databases, e.g., 
Materials Project and AFLOWLIB, also have well-defined APIs 
for rapid data access—a key requirement for efficient ML con-
struction.[61,62] In addition, there are many useful specialized 

databases such as the Harvard Clean Energy Project (CEP)[63] 
and the NREL materials database[64] that focus on energy appli-
cations that have been used for several ML works. For a more 
complete list of materials database and the corresponding 
tools, please see refs. [65,66].

While existing computed databases serve as excellent 
starting points for ML model building, augmenting the data 
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Figure 1. A workflow for constructing ML models. Five major steps are involved in this workflow, starting from identification of purpose, to data col-
lection, featurization, model building, and eventually application. Various open source databases and model packages have enabled a much easier 
experience of model construction.

Figure 2. Number of crystal structures with various properties computed 
in the Materials Project since inception.
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through additional computations is unavoidable in many 
instances, e.g., when there is insufficient data in a particular 
property of interest or poor coverage in a particular chemistry 
or when extremely high consistency in data is required. Fortu-
nately, many of the large open databases also have open-source 
software platforms to facilitate the conduct of high-throughput 
computations. Examples include the Materials Project’s  
software suite comprising the Python Materials Genomics 
(pymatgen) materials analysis library,[67] FireWorks[68] and Ato-
mate scientific workflow packages,[69] AFLOW,[9] and AiiDA.[58]

4. Featurization

Featurization refers to the process in which the training data 
is transformed into numerical values (typically in the form of 
vectors or tensors) that distinguishes between different mate-
rials. These numerical values have been referred to as features, 
descriptors, or fingerprints in the literature. In this review, we 
will use the general term “features.” The choice of features 
depends on the goals of the ML model (see Section 2) and is 
frequently the step that involves the most human intervention 
and has a major impact on model performance.

Good feature sets provide just sufficient resolution for the 
prediction space. While this definition is clearly problem-
dependent, a typical requirement in many materials ML prob-
lems is that the feature set needs to provide a unique, i.e., 
one-to-one, correspondence with the crystal/molecular compo-
sition and/or structure. At the same time, feature sets should 
also not be excessive in size for efficient training and predic-
tions and to avoid overfitting, especially in materials science 
where data sets tend to be small. In particular, redundant and/
or highly correlated features should be avoided where possible. 
For example, the atomic number of an element together with 
its group and period numbers in the periodic table would con-
stitute redundant information and a choice should be made 
between them, while many elemental properties are highly cor-
related, e.g., melting/boiling points with elastic constants, both 
being related to the cohesive energy. Related to feature set size 
is the requirement that the feature set can be efficiently con-
structed from available data and/or computed ones. ML models 
trained on relaxed crystal/molecular structures and/or elec-
tronic structure[29,70,71] from first-principles computations are 
limited in this aspect unless the target property is so expensive 
that the initial first-principles computation is a negligible part 
of the cost and/or the property is not highly sensitive to errors 
between first-principles and experimental structures.

It is not possible to comprehensively enumerate the feature 
sets used in materials ML models. Here, we will limit our dis-
cussion to the description of crystals/molecules, which is the 
input for a large proportion of materials ML problems from sur-
rogate property prediction to interatomic potentials (IAPs). One 
possible classification of crystal/molecular features is whether 
the crystal or molecular structure, i.e., the positions of the indi-
vidual atoms and the bonds between them, are included. Com-
position-based features, which excludes structural information, 
has been extensively used in materials science even prior to the 
current resurgence of interest in ML. Typically, such features are 
derived from the known properties of the constituent elements, 

e.g., the atomic number, electronegativity, atomic radii, elec-
tronic structure, etc. For example, Ward et al.[72] has shown that 
using elemental physical properties as descriptors for structure 
yields reasonably good performance in predicting various prop-
erties, including glass-forming ability and bandgaps. However, 
composition-based features by definition are unable to distin-
guish between crystal polymorphs and molecular isomers/
conformers. For example, diamond and graphite, which have 
very different physical and chemical properties, would be indis-
tinguishable in a composition-based ML model. As such, com-
position-based featurization should be used only in instances 
where the structural degrees of freedom are constrained, e.g., 
in problems where only a particular structural prototype, such 
as perovskite or garnets, is of interest,[27,73] or an assumption is 
made that only the ground state polymorph is of interest.[74,75]

For most problems, a feature set that describes the full 
crystal/molecular structure is desired. The development of 
crystal/molecular structural features remains an active area of 
research. Nevertheless, there are well-established guidelines. 
For example, crystal/molecular structural features must be 
invariant to translation, rotation, and permutation of homo-
nuclear atoms,[76,77] unless these invariances are imposed 
within the ML model itself (e.g., convolutional neural net-
works (CNNs) are frequently used to address translational 
invariance in images.[78]) In addition, certain applications may 
impose additional constraints, e.g., differentiability of features 
is a typical requirement for ML-IAPs. The Coulomb matrix, 
which encodes the Coulomb interactions between all pairs of 
atoms,[79] is an example of a molecular structure featurization. 
Other distance-based features include London matrix,[80] histo-
grams of distance, angle, dihedral (HDAD),[81] and molecular 
atomic radial angular distribution (MARAD).[81] For molecules, 
intermediate representations exist that encode connectivity 
between molecular fragments, such as the commonly used 
simplified molecular-input line-entry system (SMILES),[82] 
extended-connectivity fingerprint (ECFP),[83] bag-of-bonds,[84] 
bonding angular ML (BAML),[80] etc. These representations 
can distinguish between isomers, but not conformers. Another 
common strategy is a bottom-up approach, whereby features 
are constructed from the local environment of each atom and 
combined at the crystal level. Such descriptors include atom-
centered symmetry functions (ACSF),[85] bispectrum coef-
ficients,[86] smooth overlap of atomic positions (SOAP),[76] 
moment tensors,[87] classical force-field-inspired descriptors 
(CFID),[88] etc. They benefit from the locality of target prop-
erties, e.g., energy can be divided into atomic energy. Such 
assumptions can still be valid in molecules and thus these 
descriptors have also been applied to molecular structures.[89] 
Less obvious structure-based features may take existing proper-
ties or extract computational results using full structural infor-
mation for the investigated materials. For example, the d-band 
center descriptor[70,90] for metals, as well as the related oxygen 
p-band center descriptor for oxides,[71] has been used exten-
sively to describe catalytic activities.

Finally, graph-based featurization has gained substantial 
interest in recent years. Graphs, which are natural representa-
tions for atoms (nodes) and the bonds between them (edges), 
have been used for molecules for many decades[91] and have 
recently been applied to ML in crystals, achieving state-of-the-art 

Adv. Energy Mater. 2020, 1903242

Robert B



www.advenergymat.de

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1903242 (5 of 36)

www.advancedsciencenews.com

performance in predicting the formation energies, bandgaps, 
as well as metal/insulator classification.[92–94]

As noted at the beginning of this section, proper feature 
selection is critical to the performance and generalizability 
of the ML model. The selection of features can be domain-
knowledge-driven or data-driven. The former relies on the 
application of physical and chemical intuition to select appro-
priate features for the ML problem. For example, the electron-
egativity and atomic radii are commonly used features in many 
ML models[27,95,96] due to their prominence in well-established 
rules such as the Pauling’s five rules[97] and the Goldschmidt 
tolerance factor.[98] While undoubtedly more efficient features 
can generally lead to more interpretable models, the domain-
knowledge-driven approach introduces bias into the feature 
selection process, which may result in nonoptimal performance 
and blind spots to new insights. In contrast, the data-driven 
approach starts from an initial large set of candidate features 
and down-selects a subset of features. This down-selection pro-
cess can be automatic, e.g., using L1 or L0 regularization (least 
absolute shrinkage and selection operator, LASSO),[99–101] fea-
ture importance,[102,103] genetic algorithms,[104] etc. However, a 
drawback of data-driven feature selection is that the selected 
features do not imply causality with respect to the target and 
will be highly dependent on the chosen hyperparameters of the 
model.[105] Yet another approach is to use dimension reduction 
algorithms to “synthesize” new and low-dimensional features 
from the original features. The principal component analysis 
(PCA)[106] is widely used in this context.[92,107,108] It works well 
if the data in high dimension is intrinsically low-dimensional, 
e.g., a plane in 3D. While PCA works on linear projection, the 
manifold learning is able to capture nonlinear relationships. 
For example, the t-distributed stochastic neighbor embedding 
(t-SNE)[109] method learns low-dimensional representations 
such that the local distance between data points is roughly 
preserved and has been applied in visualizing the elemental 
embedding vector trained from materials property prediction 
models,[94] structural similarity of perovskites,[110] word embed-
dings in text mining,[52] electronic fingerprints,[111] etc.

Owing to the explosion in interest in materials ML, there 
has been a proliferation of open-source software tools to facili-
tate featurization of crystals/molecules. A noncomprehensive 
list includes RDKit,[112] Dscribe,[113] Matminer,[114] Materials 
Agnostic Platform for Informatics and Exploration (Magpie),[72] 
MatErials Graph Network (MEGNet),[94] etc. Interested readers 
may wish to explore these tools for their ML projects.

5. Model Selection and Training

5.1. Model Categories

There are three main categories of ML—supervised learning, 
unsupervised learning and reinforcement learning. By far 
the most common type of ML in materials science is super-
vised learning, where a model learns the functional mapping 
between input features (e.g., crystal/molecular structure and 
composition) and output labels/values (e.g., properties such 
as energies, bandgaps, etc.) using example input–output 
pairs.[7,66,115,116] The goal of such ML models is typically to 

bypass expensive and time-consuming experiments or first-
principles computations. They have been used to provide guid-
ance to experimental design, i.e., the next areas to explore for 
a potential “blockbuster” material for an application[117–121] 
as well as rapid computational screening of chemical 
spaces.[30,122–125] ML-IAPs are also a subcategory of supervised 
materials ML models where the target is to predict the ener-
gies, forces and stresses, i.e., the potential energy surface, for a 
given atomic configuration.

In unsupervised learning, the goal is to identify patterns 
from data without input labels. In materials science, it has 
been applied to study the collective diffusion of ions[126–128] and 
visualize complex high-dimensional data.[129] Lastly, reinforce-
ment learning mimics how humans learn by interacting with 
environments; the algorithm improves in its ability to perform 
certain tasks through feedback in the form of rewards or pun-
ishments. Although reinforcement learning is new to the field, 
related approaches such as active learning and Bayesian optimi-
zations have already been used to train systematically improv-
able IAPs[130,131] or optimize the composition within a chemical 
space to achieve better performance.[132]

Here, we will provide a noncomprehensive enumeration and 
summary of common ML models necessary to understand their 
application in various energy materials problems; readers inter-
ested in a more comprehensive treatise on the topic are pointed 
to several excellent textbooks and recent reviews.[66,133–135]

5.1.1. Linear Models and Generalized Linear Models

The multilinear regression model is the simplest and arguably 
the most widely used model in materials science. Indeed, many 
single-variable-descriptor approaches such as the d-band[70,90] 
and p-band center descriptor[71] are essentially linear models. 
In a linear model, the importance of each variable is directly 
related to the model prediction, as follows

ββ=yy XX  (1)

where X is the feature matrix or design matrix with each row 
being a data point, y is the target property column vector, and 
β is the column linear coefficients vector. β is usually estimated 
using a least squares approach, whereby

argmin
2

2
ββ ββ= −

ββ
yy XX

 
(2)

with ‖ · ‖2 indicating L2 norm. Linear regression models typi-
cally assume that the errors follow a Gaussian distribution. 
In particular, this condition is violated if the target property is 
bounded in some way, e.g., the bandgap of a material is always 
non-negative. Generalized linear models attempt to address 
this issue by using a link function of the target. For example, 
the logistic regression model (a binary classification model 
despite the name) is a generalized linear model that uses the 
logit function log( /( ))= −uu yy 11 yy  as the link function

log ββ
−

=yy
11 yy

XX
 

(3)
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As discussed in Section 4, selecting the right features is nec-
essary to improve model generalizability and interpretability. 
Regularization is frequently carried out with linear models to 
perform feature selection. In these techniques, a penalty term 
based on the magnitude of the coefficients is added during 
model training. For example, in least squares estimation, the 
optimized coefficients satisfy the following

argmin
2

2
1 1

2
2 2

2
ββ ββ ββ ββα α( )= − + +

ββ
yy XX

 
(4)

where ‖.‖1 and ‖.‖2 denote the L1 and L2 norms, respectively, 
and α1 and α2 are tunable hyperparameters. α1 = 0 yields 
the ridge regression model, and α2 = 0 yields the LASSO 
model. When both α1 and α2 are nonzero, the elastic net 
model is obtained. The ridge and LASSO regression models 
have found wide applications in materials ML to solve the 
small-data problem,[136] compute phonons using compres-
sive sensing,[137] perform feature selection,[99] and avoid 
overfitting.[138]

5.1.2. Kernel-Based Models

In reality, most relationships between inputs and outputs 
are nonlinear. One straightforward way to extend the linear 
model is to use higher order polynomial expansion of the 
input features. For example, instead of using y = β0 + β1x, 
one may use y ( )Txφφ ββ= , with the polynomial expansion basis 

x x x m( ) [1, , , , ]2 ( 1) Txφφ = … − , where m is the feature dimension. 
It can be easily shown that the optimized coefficient vector β 
can be expressed as a linear combination of the basis function 
valued at data features Equation (5), and the prediction of new 
inputs only requires the combination coefficients λ instead of 
the original linear coefficients β, Equation (6).

( )( )

1

∑ββ φφλ=
=

xi
i

i

n

 
(5)

* ( ) ( ), ( )* T

1

* ( )∑φφ ββ φφ φφλ= = 〈 〉
=

y x x xi

i

n
i

 
(6)

where n is the data size, λi is the combination coefficients, and 
the <·, · > is the inner product. The inner product can be gen-
eralized to other functions that compute the similarity between 
two inputs, i.e., the kernel. In the original model, m coefficients 
(β) need to be solved from n data points, and using the kernel 
trick, only n coefficients (λ) are needed. When the polynomial 
feature dimension m goes to infinite, the inner product kernel is 
equivalent to Gaussian kernel k(x, x′) = exp (− |x − x′|2/2σ2).[139] 
The Gaussian kernel has been routinely applied in other 
kernel-based methods, including Bayesian linear regression, 
support vector machine/regression/classification (SVM/SVR/
SVC), kernel ridge regression (KRR), Gaussian process regres-
sion (GPR),[139] etc. Kernel-based models have been widely 
used in materials ML, for example, in constructing Gaussian 
approximation potential (GAP),[86] predicting molecular proper-
ties,[81] adsorption of gases on alloy nanoparticles,[140] lithium 

conductivity in LISCON,[141] thermal conductivity in solids,[142] 
potential energy surfaces,[86] etc.

5.1.3. Tree-Based Models

The decision tree model is a rule-based model that classi-
fies the target label by asking a series of yes or no questions 
on the input features. The decision tree model has been used 
to predict faults in steel,[143] predict the defect types in B2 
intermetallics,[144] select dopants for ceria working as water 
splitting catalysts,[145] etc. To further enhance the prediction 
accuracy and robustness, the random forest (RF) model uses 
an ensemble of decision trees (forming a “forest”) and then 
computes the average or majority votes as the final prediction 
result. The RF model has been shown to be extremely robust in 
predicting materials properties, such as bulk modulus[146] and 
thermal conductivity,[147] and in compound classification.[148]

5.1.4. Cluster Analysis

Cluster analysis is used for finding intrinsic data relationships 
and grouping objects that are similar within the group but 
not so across different groups. The cluster analysis in fact is 
similar to kernel-based methods, because the data similarity 
or kernel is key to their success. For example, the k-nearest 
neighbors (kNN) algorithm uses similarity or distance between 
input features and obtains the prediction results of new input 
using averaging or voting based on the target results of its k 
nearest neighbor data points. Cluster analysis excels when data 
insights are extracted from unlabeled data. For example, Chen 
et al.[126,127] have used a k-means clustering algorithm in the 
analysis of oxygen diffusion patterns, hopping statistics, and 
site occupancies in crystals. Such algorithms however require 
prior knowledge of the number of clusters, i.e., the k. To solve 
this issue, the same authors[128] developed a parameter-free 
density-based clustering approach for studying the fast lithium 
diffusion with a relatively flat potential energy surface. In a 
different study, Meredig and Wolverton[149] have used cluster 
analysis to group defect energies in the periodic table by a 
x-means method.

5.1.5. Deep Learning

Deep learning[150] is a class of methods that are gaining popu-
larity recently due to its revolutionary performance in various 
tasks including speech recognition, object detection, drug 
discovery, and chemistry.[151] It is defined in terms of mul-
tiple layers of neurons that progressively extract features and 
multiple levels of abstractions from the inputs. Deep learning 
is flexible in the choice of the number of parameters. It can 
handle problems with different levels of complexity and is par-
ticularly suited for big data problems.[152–154] The other key use 
of deep learning is to learn the feature representations from the 
data instead of feature engineering the input data. The learned 
representations can often be transferred to other similar tasks 
and greatly enhance the performance of the model.[155]

Adv. Energy Mater. 2020, 1903242
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The most conceptually simple and often-used deep learning 
model is the multilayer perceptron (MLP), otherwise known as 
the artificial neural network (Figure 3a). MLPs loosely model 
a biological brain where the computing units work as arti-
ficial neurons. An MLP is a layered architecture and in each 
layer the inputs undergo an affine transformation followed by 
a nonlinear activation function. Their ability to be universal 
function approximators[156] makes them extremely useful for 
materials property predictions,[27,157] if sufficient training data 
exist. MLPs have also been used in combination with local envi-
ronment features to develop interatomic potentials.[85,158–160] 
CNNs (Figure 3b)[161] are rapidly gaining interest due to their 
recent feat of outperforming other ML algorithms by a con-
siderable margin in image recognition.[162] In CNN, the same 
convolution filters are applied on all image patches that have 
the same size and eventually the filters output different feature 
maps. The locality of the convolution filters in fact share the 
same principal of locality of interactions in many materials. 
One naive approach of using CNN in materials science is there-
fore converting a material structure into an image, followed by 
training the CNN models on the converted data. However, this 
naive approach is not practical since CNN does not satisfy the 
requisite rotational and permutational invariances. Neverthe-
less, the model robustness can be improved by rotational data 
augmentation.[163,164] Instead of constraining the operation 
spatially as in CNN, the recurrent neural network (RNN) con-
nects computing nodes in temporal sequence and all the steps 

share the same weights (Figure 3c). RNN works on sequential 
data and has been the model-of-choice for text and speech rec-
ognition. However, RNN is less common in materials science 
due to the lack of sequential data, except for molecules where 
the SMILES string-like representations can be readily fed into 
the RNN model.[165]

Deep learning models can be used with graph representation 
of molecules or crystals. In early graph CNN (GCNN) models 
(Figure 3d), information exchange is carried out between 
bonded atoms using deep learning models (typically MLPs) as 
function approximators. With more graph convolutional layers, 
one atom is able to “see” longer distances.[166–169] Modified 
graph models can also update bond information using informa-
tion from atoms that form the bond.[167] More recently, graph 
networks further generalize the GCNN by introducing global 
attributes in addition to atom and bond attributes, and allowing 
information flow among all three levels of quantities.[94,170] 
Graph-based deep learning models have shown remarkable 
performance in molecular and crystal property predictions 
compared to other ML models.[81,92–94,171]

In addition to ML models, heuristics and advanced artificial 
intelligent algorithms can be particularly useful. Ensemble 
models combine prediction results from different models via, 
for example, majority voting in classification or averaging in 
regression. The aforementioned RF model belongs to this 
category, where many decision trees with different input fea-
tures and model sizes are combined. A key assumption in 
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Figure 3. a) Deep learning architectures for multilayer perceptron model, b) convolutional neural networks, c) recurrent neural networks with example 
of processing SMILES representation of Vanillin, and d) graph representation of a molecule and the graph convolutional neural networks on the mol-
ecule graph.
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ensemble models is that individual models or weak learners 
are independent and can capture different aspects of the 
data. Most importantly, all of them should be better than 
random guesses, e.g., binary classification accuracy greater 
than 50%. These models are generally more accurate and 
have low model variances. The ensemble methods have been 
applied in the construction of accurate ML models for pre-
dicting atomic local environment from K-edge X-ray near-
edge structure (XANES).[172] or in various tree-based ensemble 
methods.[146–148]

Evolutionary models borrow the concepts from biological 
evolution. An evolutionary algorithm typically starts with a 
randomly generated population and then the fitness of each 
individual is evaluated. In each subsequent generation, the indi-
viduals with the highest fitness will be chosen to give offspring 
via crossover or mutation, until the best candidates are found. 
Evolutionary methods have been applied in automatically 
searching for new crystal structures[173] using the USPEX[174] 
and XtalOpt[175] codes. The CALYPSO software shares the same 
aim with USPEX but uses a different global optimization algo-
rithm named particle swarm optimization.[176]

5.2. Model Loss, Metrics, and Training

During training, the weights/parameters of the model are 
adjusted iteratively to minimize the model loss, in response to 
training data.

For regression models, common model loss or prediction 
error metric are the mean absolute error (MAE), mean square 
error (MSE), and root mean square error (RMSE), defined as 
follows
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where N is the number of data points, and yi and ŷi are the 
actual and model-predicted values, respectively. The MSE/
RMSE tends to give more weight to larger errors (Figure 4a) 
and therefore is more appropriate when larger errors are 
especially undesirable, e.g., in an interatomic potential. One 
common confusion is that MAE and MSE/RMSE are not 
monotonic with each other, and it is possible that one increases 
at the decrease of the other. Normally the loss function needs to 
be differentiable.

For classification models, a surrogate loss function to the 
accuracy metric is typically applied. For example, the cross-
entropy loss is defined as
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In a binary classification problem, the predicted labels 
and ground truth labels form a 2 × 2 confusion matrix (see 
Table 1), where a true positive (TP) refers to the correct report 
of the presence of a condition (e.g., predicted superionic con-
ductor that turns out to be one) and a false positive (FP) is the 
incorrect report of the presence of a condition (e.g., predicted 

Adv. Energy Mater. 2020, 1903242

Figure 4. a) Regression metrics mean absolute error (MAE) and root mean squared error (RMSE). The RMSE value is always larger than MAE (top), 
but is more sensitive to large error data as seen by larger increase in RMSE when high error data points are added (middle). However, it is possible 
to increase RMSE and reduce MAE at the same time by proper error distribution comparing the top and bottom subplots. b) Binary classification with 
true negative, false negative, true positive, and false positive definition. A classifier predicts a probability (p) for each sample and a threshold value in 
the range (0, 1) is applied to the probability to determine confusion matrix. The false positive rate (FPR) and true positive rate (TPR) decreases with 
increasing threshold value.

Table 1. Confusion matrix for binary classifier.

Predicted true Predicted false

Actual true True positive (TP) False negative (FN)

Actual false False positive (FP) True negative (TN)
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superionic conductor is actually a poor conductor). Similar defi-
nitions can be reached for false negative (FN) and true negative 
(TN). Common metrics for model performance include

Precision
TP

TP FP
=

+  
(11)

False positive rate (FPR)
FP

FP TN
=

+  
(12)

Recall, true positive rate (TPR)
TP

TP FN
=

+  
(13)

Specificity or selectivity
TN

TN FP
=

+  
(14)

Accuracy
TP TN

TP TN FP FN
= +

+ + +  
(15)

The direct prediction from a classifier is a continuous prob-
ability from 0 to 1. To predict a true/false label, a threshold in 
the range (0, 1) needs to be applied to the final probability and 
the threshold value impacts the distributions of the true/false 
labels (Figure 4b). Ideally, the model shall have a high preci-
sion and a high recall (small FN and FP). In reality, FN and FP 
compete with each other under different threshold values. To 
make a single metric from the confusion metric, the F1 score is 
defined as the harmonic mean between precision and recall, i.e.

2 Precision Recall
Precision Recall

1 = × ×
+

F
 

(16)

With different thresholds, the FPR and TPR will also change. 
The relationship between FPR and TPR forms the receiver 
operating characteristic (ROC) curve and its area under curve 
(AUC) is typically used as a performance measure for binary 
classifiers. A classifier that performs no better than random 
guessing has an AUC of 0.5, while a perfect classifier has an 
AUC = 1. The Jaccard coefficient[177] is also frequently used as a 
metric and is defined as the intersection over union for the pre-
dicted and true classes set. For example, the Jaccard coefficient 
for the true label is (TP/(TP + FP + FN)). The average Jaccard 
coefficient for the binary problem is therefore (TP/(TP + FP + 
FN) + TN/(TN + FP + FN))/2.

In general classification problems, the model output can be 
a single label, or several labels simultaneously in a multilabel 
classifier (e.g., predicting the formability probability and the 
electronic insulating probability at the same time). Sometimes 
training a model with multitasks can simultaneously facilitate 
information exchange between tasks and thus enhance the 
model performance in individual task.[178] For each label, the 
possible categories (classes) can be more than two, in which 
the classifier becomes a multiclass classifier. Using conven-
tional classification algorithms, such as logistic regression and 
linear SVC, the multiclass output can be achieved by training 
one model for each class using one-versus-all approaches. In 
a n-class classification problem, the confusion matrix becomes 

n × n and metrics such as accuracy, precision, recall, and Jaccard 
coefficients can still be defined similarly to the binary problem.

5.3. Model Selection

The “no free lunch” theorem[179] states that no learning algo-
rithms are better than others if the model performance is aver-
aged uniformly on all problems. This suggests that there is 
no single “best” ML approach for all materials problems, and 
in practice, the selection of the model has to fit the data and 
the prior knowledge and assumptions of a particular problem. 
Therefore, an exploratory data analysis step is suggested before 
model selection to map out the feature space and the feature 
correlation with the target values. During this step, unsuper-
vised learning algorithms, for example, PCA, cluster analysis, 
and manifold learning, may further help the visualization. This 
step will be vital in helping understand the data distribution 
and intrinsic feature properties.

In practice, striking a good balance between model predictive 
power and simplicity can be challenging. The learning curve 
analysis is particularly useful in this context where training data 
is gradually increased and the model training errors and the 
hold-out validation errors are recorded. In common settings, 
the training errors will gradually increase with training data 
size, while it is the opposite for the validation errors. Ideally, 
we expect these two errors to converge to a relatively low error 
(low bias) and the differences between training and validation 
errors to be small (low variance). Underfitting occurs when the 
training errors converge to a relatively high value, suggesting 
a large bias and increasing model complexity may solve the 
problem. On the other hand, overfitting occurs when the model 
contains too many trainable parameters relative to the amount 
of training data, e.g., a polynomial function of power n can 
always fit n data points perfectly, but would generalize poorly 
with unseen data. Typical symptoms of overfitting are a large 
gap between training and validation errors and high model var-
iance, i.e., different splits of the training data give models with 
very different prediction results. In particular, the data limita-
tions in many materials domains make materials ML models 
susceptible to overfitting. Cross-validation (CV), where the data 
is split several times and the performance of the model is aver-
aged across splits, is therefore important to ensure that any con-
structed ML models are reasonably general. One common CV 
strategy is the K-fold CV where the data are split equally into 
K non-overlapping folds and each time K − 1 folds are used as 
train set and the remaining fold works as validation. It should 
be noted, however, that CV can also lead to overconfidence in 
the predictive power of ML models. Many materials problems 
involve the search for materials that possess rare combinations 
of properties or extraordinary properties, while such materials 
may not exist in the available data space. Hence a highly accu-
rate ML model model trained on K-fold CV may not generalize 
well to novel material classes.[180]

In addition to the learnable parameters in the model, another 
set of parameters that are set before the model training is called 
the hyperparameters. The hyperparameters define model con-
figuration and architecture. A typical model building practice 
is to split the data into training, validation and test data set.  

Adv. Energy Mater. 2020, 1903242
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The training data set is used in the learning process to optimize 
the model parameters. A grid search is often performed on the 
hyperparameters. Out of the available models, the one with the 
lowest errors on the validation set is chosen. Then the chosen 
model is evaluated on the test data set to obtain the true model 
performance. To make the maximum use of the data, the 
model with optimized hyperparameters may be refitted on the 
train-validation combined data and then evaluated on the test 
data set.[181]

The absolute performance of an ML model in terms of 
accuracy metrics is not the only or even the predominant 
consideration. In materials science, like in other scientific 
disciplines, substantial value is placed on the interpret-
ability and simplicity of the ML models. Simpler, interpret-
able models provide insights that can guide future materials 
design. They are also less prone to overfitting and can be 
computationally less expensive (important in certain appli-
cations such as ML-IAPs).The ease and process in which 
insights can be extracted depends on the choice of ML 
models. For example, the coefficients in simple linear regres-
sion model as well as the logistic regression can provide an 
indication of the relative importance of different features. 
Feature importance analysis in tree-based models has been 
routinely used to assess the important physical parameters 
that are related to the predictive targets.[102,182–184] For deep 
learning-based models, visualizing the hidden layer activa-
tions has been found to give interpretable chemical intuition 
and accurate mapping of structural space.[107,185] While these 
methods are dependent on the specific choice of models, one 
can choose to measure the feature importance by assessing 
the model performance degradation upon removing certain 
features.[153]

5.4. Software Libraries

Fortunately, there are already many tools and software pack-
ages to aid in the development of ML models for materials sci-
ence. Besides general purpose ML tools such as scikit-learn,[186] 
tensorflow,[187] and Pytorch,[188] there has been an explosion 
of customized open-source ML software libraries for mate-
rials science. A nonexhaustive list includes AutoMatminer,[189] 
PROPhet[190] for general materials ML; amp,[191] ænet,[192] and 
ANI[158] for developing neural network potentials; CGCNN,[93] 
MEGNet,[94] and SchnetPack[193] are graph-based deep 
learning model packages for accurate crystal and/or molecule 
property modeling.

6. Application

In this section, we will critically review recent applications of 
ML models to the design and discovery of energy materials. 
Before delving into the specific application domains, it is useful 
to provide a broad overview of the capabilities that ML models 
enable. A fundamental goal of all ML models is to provide 
cheap and reasonably accurate predictions that substitute for 
more expensive computational, experimental, or human-driven 
techniques. In doing so, ML models enable:

1. Accelerated discovery of novel materials by providing rapid pre-
dictions of properties and novel materials. As we shall see in 
the subsequent sections, a large number of materials ML works 
have prediction of materials stability (formation energies, en-
ergy above hull) as the primary goal or at least, a subgoal, along 
with key application-specific metrics (e.g., battery voltages and 
ionic conductivity, catalytic adsorption energies and activities, 
bandgaps, etc.). Also of interest are ML models that attempt to 
predict properties that are highly expensive to obtain via DFT 
calculations or experiments, i.e., elastic properties, phonons, 
etc. ML can even yield novel chemical insights that enable the 
development of improved structure prediction algorithms that 
generate better “guesses” for novel structures/compositions.

2. Accurate simulations of complex materials at larger length/
time scales. Most real-world materials are not perfect bulk 
crystals or isolated molecules. Linear-scaling ML-IAPs have 
greatly enhanced our ability to perform dynamical simula-
tions of complex materials systems—polycrystals, liquids, 
interfaces, etc.—while retaining close to DFT accuracy. Be-
sides accuracy and scaling, arguably the greatest advantage of 
ML-IAPs is their potential for automated reproduction across 
different systems and can even be learned on-the-fly coupling 
with ab-initio molecular dynamics (AIMD).[194]

3. Enhanced characterization and interpretation. Finally, an  
application of ML models that has received far less attention 
in other reviews is their potential to enhance experimental 
characterization. The interpretation and labeling of experi-
mental images (e.g., scanning transmission electron micros-
copy (STEM)[195]) and spectra (e.g., X-ray diffraction (XRD),[196] 
X-ray absorption near-edge structure (XANES),[172,197] nuclear 
magnetic resonance (NMR),[198] etc.) are today still mostly 
painstakingly carried out by humans. Adaptions of ML 
advances in computer vision and speech recognition can pro-
vide invaluable tools to accelerate this process.

6.1. Rechargeable Alkali-Ion Batteries

The rechargeable lithium-ion battery (LIB)[199–203] has proved to 
be a disruptive energy storage technology that powers our cur-
rent digital age and is a leading candidate to power our electri-
fied transportation. It is therefore no surprise that LIBs, as well 
as its analogues based on Na and other alkali ions, have been 
the subject of intense research, especially ML-driven design 
and discovery of materials.

6.1.1. Diffusion Properties

A rechargeable alkali-ion battery is an electrochemical device 
that operates by reversibly shuttling alkali ions between two elec-
trodes through an electrolyte. Facile alkali ion conduction across 
all components and their interfaces is therefore a requirement 
for batteries that can achieve high rate capability and power.[204] 
However, this property is among the most difficult and expen-
sive to determine via standard DFT-based approaches. Nudged 
elastic band (NEB) calculations of the alkali migration bar-
riers are notoriously difficult and expensive to converge, while 
AIMD simulations are too expensive to extract reliable diffusion 
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statistics except for extremely high ionic conductivity superionic 
conductors.[205] While this limitation of first-principles methods 
presents significant opportunities for ML-driven acceleration, 
we shall see that it also presents substantial challenges in terms 
of the availability of training data.

Using high-throughput computations and ML, Jalem 
et al. have studied vacancy-mediated Li ion migration and 
the Li hopping energies in olivine LiMXO4 (main group 
M2+–X5+, M3+–X4+)[206] and tavorite LiMTO4F (M3+–T5+,  
M2+–T6+)[123] cathodes. In olivine LiMXO4, the authors revealed 
that the degree of M octahedron distortion increases with 
ionic size of the M cation, which in turn results in an energy-
penalizing local lattice distortion around the migration pathway 
and a higher migration barrier (see Figure 5a). Based on these 
observations, the authors extracted 42 structural descriptors 
including structural parameters, Born effective charges of cat-
ions and intra/interpolyhedron parameters from DFT-relaxed 
structures and developed a partial least-squares (PLS) model 
to correlate the structural descriptors and NEB Li+ hopping 
energies for 15 M–X pairs. The difference between DFT and 
PLS-predicted results was within 35 meV (see Figure 5b). In 
addition, the three most important descriptors identified via 
variable importance in the projection (VIP)[207] were associated 
with topology of M octahedron, namely, quadratic elongation 
of M octahedron, bond angle variance of M octahedron, and 
Li–O–M angle at edge sharing, respectively. Similar results and 

insights have been obtained by the same authors using neural 
networks and a causal index (CI) approach to extract impor-
tant features[208] for tavorite LiMTO4F (M3+–T5+, M2+–T6+)[123] 
(Figure 5c,d).

In recent years, all-solid-state alkali-ion batteries (SSABs) 
have experienced a resurgence of interest as a potentially safer 
and more energy dense alternative to traditional LIBs. The 
enabling component in SSABs is the superionic conductor 
solid electrolyte, which must have very high ionic conduc-
tivity and ideally, electrochemical stability against the elec-
trodes. Fujimura et al.[141] has used SVR models to predict the 
ionic conductivity at 373 K σ373 of the LISICON-type superi-
onic conductors with formula γ-Li8−cAaBbO4 (A = Zn, Mg, Al, 
Ga, P, As; B = Si, Ge). The training data comprises the diffu-
sivity from AIMD simulations at 1600 K, D1600, as well as the  
order-disorder phase transition temperature, Tpc, estimated by 
determining the temperature at which the DFT energies of the 
ordered and disordered phases are equal. Unsurprisingly, the 
model predicts that systems with high D1600 and low Tpc tend 
to have high σ373. More recently, Sendek et al.[124] has devel-
oped a logistic regression model to predict superionic conduc-
tive behavior (0.1 mS cm−1 as threshold) in materials, utilizing 
features such as the average number of Li–Li neighbors for 
each Li, the average sublattice bond ionicity, the average anion 
coordination number in the framework, the average shortest 
Li-anion distances, and the average shortest Li–Li distances. 
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Figure 5. a) Local lattice distortion along migration pathway represented by volume difference ΔV of quasi path volumes between the transition state 
and initial state for M = Al, Ga, and In and X = Ge in M–X pairs. The quasi path volume is defined as the sum of the volumes of polyhedron Poly1, 
Poly2, and Poly3. b) Calculated hopping energies via NEB method versus predicted hopping energies via PLS model for different M–X pairs of olivine 
compositions. The blue data points represent experimental data in ICSD. Reproduced with permission.[206] Copyright 2012, American Chemical Society. 
c) Demonstration of structural features with high importance along the Li bottleneck pathway of tavorite structure. inter9: distance between the end 
member M cations of a MO4F2 chain; pv1: polyhedral volume of Li ion cage; bav2: bond angle variance of Li octahedron, indicating the degree of 
local lattice distortion. d) Neural network predicted migration energies versus bav2 for different covalent T cations. Reproduced with permission.[123] 
Copyright 2015, American Chemical Society. Reproduced with permission.[123,206] Copyright 2012 American Chemical Society and 2015 American  
Chemical Society.
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This model was trained on 40 data points and then used in a 
screening workflow to screen an initial candidate list of 12 831 
materials to 21 possible superionic conductors.

While the above examples show potentially interesting appli-
cations of ML to battery materials design, it is clear that data 
availability is a major limitation. None of the above works have 
more than 50 training data points (from DFT calculations), and 
in some instances, the small data sets are used in neural net-
work models[122,123] that are notoriously data hungry. As such, 
it is difficult to establish confidence in the generalizability 
of these models to unseen data points. Moreover, a number 
of the models were developed for restricted structure types, 
e.g., olivine, tavorite, or LISICON, which substantially nar-
rows the scope of their application. In fact, the total number 
of enumerated crystals in these structure types is sufficiently 
small that they are well-within capabilities of DFT calculations 
today, which limits the value of ML as a means for predictive 
exploration. Nevertheless, useful insights have been gained by 
identifying the key features contributing to diffusivity,[122,123] 
and these insights are more likely to be transferable to other 
structure types.

Using less expensive computational techniques allows the 
generation of a larger quantity of training data. For example, 
Nakayama et al.[209] trained PLS and GBR models on the Li 
migration energy in 400 Li-containing compounds com-
puted using bond-valence force fields (BVFFs). While statis-
tically more robust, it is unclear whether the source of the 
training data—BVFF calculations—are sufficiently accurate 
to yield useful predictions, i.e., data quantity may be suffi-
cient, but data quality is in question. Furthermore, the value 
of such ML models in screening is not evident given that 
BVFFs are sufficiently inexpensive to run over thousands of 
potential candidates and indeed, have been applied in such a 
manner.[210]

Yet another alternative is to use adaptive learning approaches. 
In a recent extension to their previous work, Jalem et al.[211] 
have developed a Bayesian-driven approach to efficiently screen 
for fast-conducting Li- and Na-containing tavorites. The search 
space of 318 AMXO4Z tavorite covered all possible ionic sub-
stitutions of A, M, X, and Z sites. The initial sampled data set 
containing five randomly chosen compositions were used to 
train the surrogate Gaussian process model. The model poste-
rior provided the predicted mean and standard deviation, which 
were then used in the acquisition function to find the next 
candidate for calculations. The maximization of acquisition 
function sets the balance between the exploitation and explo-
ration and determines the next sampling composition in the 
search space for evaluation. The authors further incorporated 
an additive structure into the representation of feature space, 
decomposing the objection function into a sum of subsidiary 
functions with fewer dimensionally disjoint features because 
of the poor performance of Gaussian process caused by the 
high-dimensionality of feature space. In general, the additive 
Bayesian optimization showed the best performance and the 
ordinary Bayesian optimization surpassed the random search 
when the number of DFT evaluations larger than 20. In terms 
of finding the optimal composition, both additive Bayesian opti-
mization and ordinary Bayesian optimization outperformed 
random search significantly.

Finally, another possible area to circumvent the need for 
expensive data generation is to use unsupervised learning or 
related techniques that do not require excessive amount of 
target data. Recently, Zhang et al.[212] have developed a modified 
XRD (mXRD) feature to describe the anion lattice of Li-con-
taining compounds. Their results have shown that compounds 
that have similar conductivity tend to be close in mXRD feature 
space. The developed methods are able to identify 16 com-
pounds with conductivities of 10−4 to 10−1 S cm−1.

6.1.2. Mechanical Properties

Unlike diffusion properties, predicting elastic properties pre-
sents a more tractable problem given the availability of precom-
puted DFT data (≈13 000 elastic tensors at the time of writing) 
in the Materials Project.[213] Furthermore, substantial successes 
have already been demonstrated in the prediction of elastic 
moduli using graph-based deep learning methods.[93,94] Ahmad 
et al.[214] have leveraged on the CGCNN framework,[93] gradient 
boosting regression (GBR), and KRR to screen desirable solid 
electrolytes and interfaces for suppressing dendrite initiation in 
contact with Li metal anode. To achieve stable electrodeposition 
(i.e., suppression of dendrite formation), the interface needs to 
be stabilized with suitable solid electrolyte as well as particular 
orientations of Li metal and electrolyte forming the interface. 
Hence, the screening task was composed of two parts: iso-
tropic screening for candidate solid electrolytes and anisotropic 
screening for candidate orientations of both Li metal and elec-
trolytes. The authors used stability parameter χ, a quantified rep-
resentation of dendrite initiation, as the criteria for screening. 
χ is a function of shear modulus Gs, Poisson’s ratio νs,  
and molar volume ratio VM of a solid electrolyte. By training 
CGCNN models using 2041 structures with moduli from the 
Materials Project,[10] the authors predicted the shear moduli 
and stability parameters for 12 950 Li-containing compounds. 
The screening results however indicated that none of the mate-
rials could be stabilized without the aid of surface tension but 
some candidates had desirably low stability parameters and 
high critical wavelength of roughening λcrit. For anisotropic 
contact, an interface was characterized by the directions of Li 
metal normal to it and the low-index facets of the solid elec-
trolyte. During the screening process, the authors trained GBR 
and KRR using the DFT elastic tensors for 2401 unique sur-
faces of 482 electrolyte materials obtained by applying rotating 
axes and transformation rules[215] to full elastic tensors from 
Materials Project,[10,213] and then predicted the elastic tensors of 
548 cubic crystal structures with each having 3 unique surfaces 
as well as the stability parameters corresponding to 4 distinct 
directions of Li metal for each surface. The models predicted 
twenty dendrite-suppressing interfaces formed by four solid 
electrolytes (Li2WS4- 42P m, LiBH4- 1P , LiOH-P4/nmm, and 
Li2WS4- 42I m) and Li.

6.1.3. Machine Learning Interatomic Potentials

Finally, ML has been used to developed ML-IAPs for dynamical 
simulations of battery materials. One of the earliest ML-IAPs is 
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the neural network potentials (NNPs) of Behler and Parrinello[85] 
which expresses the potential energy surface as a function of 
atom-centered symmetry functions (ACSFs) representing radial 
and angular terms. Li et al.[216] has developed an NNP for amor-
phous Li3PO4, a prototypical solid electrolyte material for LIBs, 
using 38 592 DFT-calculated reference configurations. The 
Arrhenius plots of Li diffusion coefficients obtained from both 
kinetic Monte Carlo and molecular dynamics (MD) simulations 
with the NNP are in excellent agreement with those obtained 
from DFT simulations (Figure 6a). The authors have also 
applied the NNP to large-scale MD simulations of Li diffusion 
in 1006-atom amorphous Li3PO4 and showed that the predicted 
activation barriers and diffusivities are in excellent agreement 
with experimental measurements (Figure 6b).

The neural network model used in the NNP generally 
requires large data sets for optimal performance.[152] Artrith 
et al.[217] have proposed an iterative optimization strategy com-
bining genetic algorithm and an NNP (schematic provided in 
Figure 6c), which only required ≈1000 DFT reference data. At 
each step, the NNP was used to identify the energetics of dif-
ferent configurations at specific composition of delithiated 
amorphous Li15−xSi4, based on the assumption that it was able 
to sample the near-ground-state Li/vacancy arrangements, and 
the genetic algorithm was applied in finding the optimal con-
figuration. For every delithiation step, the 30 most promising 
configurations predicted by genetic algorithm were optimized 
by DFT method and the most stable configuration was used 
as the starting structure in the next delithiation step. The sam-
pled structures by genetic algorithm were within the range of 
100 meV per atom above the lowest energy structure for each 
composition, indicating its success in the determination of 

low-energy metastable amorphous structures of LixSi, which 
then allowed the phase diagram for amorphous LixSi to be 
constructed. The same authors have also developed NNP-type 
models incorporating compositional descriptors that are able to 
predict the energies of eleven-species cation-disordered lithium 
transition-metal (TM) oxides LiMO2 (M = Sc, Ti, V, Cr, Mn, Fe, 
Co, Ni, Cu) to within 3 meV per atom.[159]

The alternatives to the ACSF features are those based on a 
direct featurization of the local atomic neighbor density func-
tion.[76,218] The spectral neighbor analysis potential (SNAP) fits 
the potential energy surface to a linear or quadratic model of 
the coefficients of the bispectrum of local atomic density func-
tions.[107,131,218–220] A particular challenge in IAP development 
for battery materials—many of which are ionic compounds—
is the treatment of long-range electrostatics. Recently, Deng 
et al.[131] has augmented the linear SNAP approach with an 
electrostatic term and developed an eSNAP model for Li3N, 
one of the earliest discovered lithium solid electrolytes with 
anisotropic Li diffusion mechanism in different crystallography 
orientations. The authors have demonstrated that the eSNAP 
model far outperforms the traditional Buckingham potential in 
predicting several key properties of Li3N. Applying the eSNAP 
in large-scale simulations, the authors were able to compute the 
Haven ratio for Li3N to excellent agreement with NMR experi-
ments and show that the twist grain boundaries of Li3N exhibit 
rapid Li diffusion even at room temperature (Figure 6d,e).

In addition to the studies on Li compounds, the mod-
eling of dynamical intercalation of Li atoms into the electrodes  
(i.e., guest atoms in host frameworks) is also of great interest. 
Fujikake et al.[221] recently have introduced a newly developed 
GAP model by fitting the energy and force differences induced 
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Figure 6. a) The Arrhenius plot of Li diffusion coefficients obtained from KMC and MD simulations with NNP and DFT, respectively. b) The Arrhenius 
plot of Li diffusion coefficients in amorphous Li3PO4 from large-scale MD simulations.[216] c) Schematic workflow of sampling strategy combining GA 
and specialized NNP. At each delithiation step, GA was used to identify the most stable Li/vacancy arrangement of that composition, with specialized 
NNP determining the energetics of different arrangements.[217] d) The predicted Haven ratio and e) the Arrhenius plot of Li diffusion diffusivity in α-Li3N 
from eSNAP MD simulations.[131] Reproduced with permission.[216,217] Copyright 2017 American Institute of Physics and 2018 American Institute of 
Physics. d,e) Reprinted under the terms of the CC-BY license.[131] Copyright 2019, The Authors.
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by Li intercalation in the graphitic and amorphous carbon struc-
tures, one of the most commonly used anode in LIBs. The inter-
calation energy and force were used to construct the Li–C inter-
actions in the addition to the GAP-modeled PES of pure element 
carbon[222] and an effective Li–Li interaction term was extracted 
separately to fit a two-body GAP pair potential, which accounts 
for long-range behavior. The authors have demonstrated that the 
GAP model is able to reproduce the energy profiles of the adsorp-
tion of a Li atom on high-symmetry sites of a graphene sheet and 
qualitatively identify the diffusion pathways of a Li atom through 
pristine graphite. They also showed that the radial distribu-
tion function and vibrational densities of states from GAP-MD 
simulations correspond well with DFT-MD results, albeit with a 
notably high Li intercalation energy MAE of 0.29 eV per atom.

6.1.4. Summary

From the above, it is evident that the majority of ML efforts in 
rechargeable lithium-ion batteries have been focused on alkali 
diffusion, e.g., ionic conductivity or migration barriers. While a 
critically important property for this application, diffusion pro-
perties are difficult to obtain reliably in large quantities—ab initio  
computation-based approaches such as AIMD and NEB are too 
computationally expensive and are applied mainly on small ide-
alized cells, while experimental measurements are highly sensi-
tive to synthesis and measurement conditions. Other important 
properties, such as voltages, elastic moduli, etc., are easier to 
obtain reliably via high-throughput computations. To date, 
there are relatively few ML works that target these[214,223] and 
other properties for the purposes of screening, which presents 
major opportunities for further exploration. More promisingly,  
ML-IAPs are emerging as a powerful new tool that enable long-
time scale simulations of large systems at near-DFT accuracy, 
providing critical atomistic scale insights into the phase transfor-
mation pathways and diffusion processes in battery materials.

6.2. Photovoltaics

Solar energy is the most abundant clean energy source. Photo-
voltaics (PVs), which convert sunlight directly to electricity using 
semiconducting materials, is the most direct way of utilizing 
solar energy. The key performance metrics of a PV are its long-
term stability and solar conversion efficiency (SCE), i.e., the per-
centage of energy in the form of sunlight that is converted into 
electricity, together with practical cost considerations. Although 
solar panels based on traditional semiconductors such as Si and 
GaAs have taken off commercially, there remains much interest 
in discovering new PV materials that are cheaper and have 
higher efficiencies. In particular, perovskite-based materials, 
hybrid organic–inorganic as well as inorganic, are being studied 
intensely at the present moment due to their high efficiencies 
and low fabrication and materials cost.[224] The SCEs of hybrid 
organic–inorganic perovskites (HOIPs) have risen rapidly from 
3.8% in 2009[225] to over 22% in 2019.[226] The major limitation 
of current HOIPs is their instability, especially when exposed to 
moisture, light or heat.[227] Most ML studies of perovskites have 
therefore focused on predicting stability and the SCE.

6.2.1. Perovskite Stability

Perovskites with general formula ABX3 where A and B are cat-
ions and X is the anion (usually oxide or halides), are among the 
most well-known crystal structures. Historically, the formability  
of perovskites is predicted using simple atomic radii arguments 

and descriptors such as the tolerance factor 
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have begun to revisit these well-known descriptors in light 
of the availability of more experimental as well as computed 
data on perovskites. For example, Sun and Yin[230] have shown 
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where nA is the oxidation state of A. Using the criteria of  
τ < 4.18 for stable perovskites, this new tolerance factor can 
separate perovskites versus nonperovskite in an experimental 
data set of 576 ABX3 with an accuracy of 92%.

Most ML works on halide perovskites have thus far focused 
on inorganic perovskites, due to the difficulty in modeling rota-
tional disorder in organic cations such as methylammonium. 
Im et al.[103] have used DFT to compute the heat of formation 
and bandgaps of 540 Pb-free halide double perovskites (A2B(I)
B(III)X6) and subsequently used the data to develop gradient 
boosting regression trees (GBRT) models. The best achieved 
RMSE on heat of formation is 21 meV per atom, and that of GGA 
bandgap is 0.223 eV. Li et al.[231] have worked on the same type 
of perovskites. The authors generated DFT-calculated decompo-
sition energies of 354 halide double perovskites, and the data 
was used to train KRR models. The best model achieved RMSE  
of 34 meV per atom on test set using the ionic radii of constit-
uent elements as descriptors, which is about 10 meV per atom 
lower than the RMSE achieved by only using tolerance factor τ[98]  
or revised tolerance factor (μ + τ)η proposed by Sun and Yin.[230] 
Using data of 185 experimentally known ABX3 halide perov-
skites, Pilania et al.[232] have also developed SVC classifiers for 
perovskite formability using 11 structural features. The authors 
found that the best performing model with >92% accuracy in 
classifying perovskite formability requires only four of the fea-
tures, namely the Shannon’s ionic radii of A-, B-site atoms, tol-
erance factor, and the octahedral factor, indicating that the steric 
and geometric packing played a dominant role in deciding the 
stability of halide perovskites.

6.2.2. Solar Conversion Efficiency

The Shockley-Queisser limit states that single-junction solar 
cells with an optimal bandgap of 1.34 eV have a maximum SCE 
of 33%.[233,234] Therefore, the bandgap prediction or screening 
is often an initial step for the computational design of solar 
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cell materials. While DFT calculations based on standard semi-
local exchange–correlation functionals such as the Perdew–
Burke–Ernzerhof (PBE) functional[235] are well-known to 
underestimate the bandgap substantially,[236,237] the errors are 
relatively systematic and computed PBE bandgaps often form 
the training data for ML models.

Allam et al.[238] have calculated the PBE bandgaps for 14 
halide/oxides perovskite systems in layered Ruddlesden–
Popper phase with the number of layers ranging from 2 to 5 
and developed a neural network model to predict the bandgap. 
The selected descriptors included the inverse of the number of 
layers, ionic radii and oxidation state of atoms on each site. The 
results showed that the correlation, slope, and intercept between 
the neural network predicted bandgap and DFT PBE gap were 
0.999, 0.993, and 0.0089 eV, respectively. Prediction of PBE 
bandgaps has also been attempted attempted by Lu et al.[121] for 
hybrid perovskites. Bandgaps of 212 hybrid perovskites were 
used to train a GBR model with selected 14 material features 
including structural factors (tolerance factor and octahedral 
factor) and elemental properties. The best model achieved an 
MSE of 0.085 eV. The model also pointed out that the tolerance 
factor was the biggest affecting factor on the bandgap and that B 
site properties played a bigger role than those of A and X sites. 
Using the trained model, the authors predicted 5158 unexplored 
possible hybrid perovskites and identified six orthorhombic 
lead-free hybrid perovskites as potential candidates for 
solar cell applications, including C2H5OInBr3, C2H6NInBr3,  
NH3NH2InBr3, C2H5OSnBr3, NH4InBr3, and C2H5NSnBr3.

More accurate bandgaps can be obtained computationally 
using more expensive methods such as hybrid functionals 
(HSE06)[239,240] or GW calculations.[241] Agiorgousis et al.[242] 
have calculated 220 double chalcogenide perovskites (A2BB′X6) 
with the screened hybrid HSE06 functional, followed by 
training RF and SVM classifiers using this data set. The per-
centage error of classifying whether the bandgap of given 
perovskite falls between 0.7 to 2.0 eV was 13.80 % for RF, and 
31.63% for SVM. The error could be further reduced to 13.28% 

and 16.7% for RF and SVM, respectively, by excluding A cation 
features. The authors explained that the bandgap variation 
range was only 0.05–0.3 eV when altering A site cation, which 
was much smaller compared to altering B and X site elements. 
This is due to the fact that the valence band maximum states 
are dominated by chalcogenide p states (X site) and conduc-
tion band minimum states are predominantly metal d states 
(B/B’ site). The authors then identified Ba2AlNbS6, Ba2GaNbS6, 
Ca2GaNbS6, Sr2InNbS6, and Ba2SnHfS6 as potential solar cell 
materials. A cheaper alternative to hybrid functionals is the 
GLLB-SC functional,[243,244] which allows larger data sets to be 
generated. Pilania et al.[245] have computed the GLLB-SC band-
gaps for 1306 unique double perovskite oxides. A KRR model 
was trained on this data set with 16 selected features that 
included elemental properties and the best achieved RMSE was 
0.36 eV. The same group[246] have more recently improved this 
model using an innovative data fusion approach using multi-
fidelity modeling, where the HSE06 and PBE bandgaps are 
treated as high-fidelity and low-fidelity estimates, respectively. 
Using a two-level co-kriging model, the authors approximated 
the high-fidelity results by multiplying the low-fidelity results 
with a scaling factor plus an independent Gaussian process. 
The data set was comprised of 599 inorganic halide double 
perovskites with PBE bandgaps, and 250 of which were cal-
culated with HSE06 as well. The authors found that MAE of 
HSE06 predictions can be reduced from 0.45 to 0.10 eV by var-
ying the portion of low and high fidelity data in the training set 
(Figure 7).

The Shockley–Queisser relationship between bandgap and 
SCE[233] leads to many false positives (poor PVs with optimal 
bandgaps) and false negatives (good PVs with nonoptimal 
bandgaps). Yu and Zunger[247] have proposed a metric known 
as the “spectroscopic limited maximum efficiency” (SLME) to 
help initially screen potential PV materials. This metric con-
sidered several factors, including i) the existence of various 
energetic sequences of dipole-allowed, dipole-forbidden and 
indirect bandgaps, ii) the absorption shape near the threshold, 
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Figure 7. a) Contours of validation MAE of the multifidelity ML model as a function of number of low- (nc) and high-fidelity (ne) data points. b) Parity 
plots of predicted versus DFT-computed HSE06 bandgaps for selected combinations of nc and ne. Reproduced with permission.[246] Copyright 2017 
Elsevier.
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and iii) the dependence of radiative recombination losses on 
the energy separation between the minimum gap and dipole-
allowed gap. Using 256 GW calculations, the authors were able 
to identify in this group high-SLME materials including almost 
all contemporary PV absorber materials. Choudhary et al.[120] 
have performed meta-GGA calculations of bandgaps using the 
Tran–Blaha-modified Becke–Johnson (TBmBJ) potential[248] for 
12 881 out of ≈30 000 materials in the JAVIS-DFT database.[59] 
The SLME metric was calculated on 5097 nonmetallic mate-
rials and the elemental distribution for high-SLME materials 
is shown in Figure 8a. The distribution indicates that Pd is the 
most common element for high-SLME materials. The SLMEs 
with direct bandgap values are shown in Figure 8b, where a 
consistent volcano shape as original SLME results using GW[247] 
is obtained. A threshold of 10% was chosen to label high-SMLE 
materials versus low-SMLE materials, and the binarized data 
formed the training data set for ML modeling.[120] The authors 
then used CFID as structure features and compared various 
classification models in terms of the classification AUC. The 
AUC for decision tree models, RF, kNN, MLP, and gradient 
boosting decision trees (GBDT) are 0.67, 0.79, 0.77, 0.80, and 
0.87, respectively. After hyperparameter tuning, the AUC for 
GBDT reached 0.90, as shown in Figure 8c. Using this classifica-
tion model, the authors narrowed down target candidates from 
an initial pool of 1 193 972 structures from Aflow,[54] Materials 
Project,[10] OQMD,[56] and crystal open database,[34] to only 6342 
with unique compositions. Future studies are necessary to con-
firm some of the predictions by experimental measurements.

6.2.3. Organic Photovoltaics

Organic PVs (OPVs) have also garnered much scientific 
and economic interest in the last decade. An OPV cell uses 
π-conjugated semiconducting organic molecules, oligomers, or 
polymers for light absorption and charge transport. Compared 
to their crystalline inorganic counterparts, OPVs have the advan-
tages of light weight, low cost, flexibility, and facile fabrication. 
However, the biggest limitation of OPVs is the SCE, which is 
normally less than 10%, and the highest efficiency of 17.3% has 
been reached only recently.[249] The SCE of OPVs is heavily dic-
tated by the optical gap of the acceptor, the energetic alignment 
of the lowest unoccupied molecular orbital (LUMO) of the 
acceptor and the highest occupied molecular orbital (HOMO) 
of the donor. The Scharber model[250] for calculating SCE from 
the frontier orbital energies has been widely used in the OPV 
field and has been optimized for [6,6]-phenyl-C61-butyric acid 
methyl ester (PCBM) acceptors. Large data sources for the fron-
tier orbital energies exist from prior high-throughput databases, 
such as the Harvard Clean Energy Project Database[63] and the 
Harvard OPV data set (HOPV15).[251]

Pyzer-Knapp et al.[252] have developed MLP models to predict 
HOMOs, LUMOs, and SCE of molecules. The authors explored 
the possibility of replacing steps in a high-throughput virtual 
screening workflow with ML surrogate model predictions. 
Using 1024-bit Morgan circular fingerprints,[83] the surrogate 
MLP models were trained on calculations of 200 000 mole-
cules from Harvard Clean Energy Project[63] and validated on 
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Figure 8. a) Element distribution for high-SLME materials, b) the SLME distribution with direct bandgap values, and c) ROC curves for a GBDT model. 
Adapted with permission.[120] Copyright 2019 American Chemical Society.
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50 000 other molecules. The error on SCE was 0.28%, and the 
errors on HOMO and LUMO were 0.028 and 0.032 eV, respec-
tively, well within chemical accuracy of 0.043 eV (1 kcal mol−1), 
and were substantially lower than previously ML models using 
randomized Coulomb matrix features.[253] Only 0.8% of mole-
cules were found to be promising OPVs with predicted SCE 
above 8%. A recent work by Padula et al.[254] further explored the 
factors that affect the SCE of molecules using linear and non-
linear ML. The authors found that using structural or electronic 
features alone yielded similar predictive results, while using 
them both with a KRR model led to increased performance.

While the Scharber model is widely used for computing 
SCE, Sahu et al.[182] have realized, from a data set of 280 small 
mole cule OPV systems, that for all high-performance devices, 
frontier orbitals of donor molecules are nearly degenerated and 
therefore orbitals other than just HOMO and LUMO should be 
considered. The authors considered 13 quantum-mechanical 
descriptors including 1) number of unsaturated atoms in the 
main conjugation path of donor molecules( atom

DN ), 2) polar-
izability of donor molecules, 3) the energetic differences of 
LUMO and LUMO+1 of donor molecules (ΔL), 4) the energetic 
differences of HOMO and HOMO−1 of donor molecules(ΔH), 
5) vertical ionization potential of donor molecules (IP(ν)),  
6) reorganization energy for holes in donor molecules (λh),  
7) hole–electron binding energy in donor molecules(Ebind), 8) the 
energetic difference of LUMO of donor and LUMO of acceptor 
( LL

DAE ), 9) the energetic difference of HOMO of donor and 
LUMO of acceptor( HL

DAE ), 10) energy of the electronic transition 
to a singlet excited state with the largest oscillator strength(Eg), 
11) change in dipole moment in going from the ground state 
to the first excited state for donor molecules(Δge), 12) energy of 
the electronic transition to the lowest-lying triplet state( T1E ), and  

13) the energetic difference of LUMO and LUMO+1 of accep-
tors ( L

AΔ ). They generated a data set of 280 experimental systems 
and trained several models including linear regression, kNN, 
artificial neural networks, RF, and gradient boosting (GB). The 
GB model was shown to outperform others with Pearson cor-
relation coefficient r of 0.79 and RMSE of SCE being 1.07% on 
the test set. The feature importance analysis of the GB and RF 
models indicates that ΔH is among one of the highly ranked 
features, indicating the necessity to consider more than just 
frontier orbitals (Figure 9). However, some of the descriptors 
can be expensive to obtain. Subsequently, Sahu et al.[255] have 
developed reduced-cost ML models that utilize the number of 
heteroatoms in place of the polarizability. Using GB and NN 
models trained using 300 newly reported small-molecule OPVs, 
126 with predicted efficiencies larger than 8% were proposed 
out of 10 170 candidate molecules.

As noted earlier, a fundamental data limitation in the appli-
cation of ML to PV materials (inorganic or organic) is the well-
known underestimation of the bandgap with semilocal DFT 
functionals. Several ML efforts have therefore sought to close 
the gap between computational and experimental values. For 
example, Pyzer-Knapp et al.[256] have used a Bayesian approach 
with Morgan circular fingerprint (512-bit) features to eliminate 
the functional dependence of orbital energies. Similarly, Lopez 
et al.[257] have developed a GPR model to calibrate HOMO 
and LUMO between calculated and experimental values for 
51 000 potential nonfullerene acceptors. The RMSE against 
experimental values of uncalibrated HOMO calculations was 
0.28 eV and reduced to 0.17 eV after ML model calibration, and 
LUMO RMSE reduced from 0.45 to 0.26 eV, almost a factor of 
two in error reduction. The calibrated HOMO and LUMO were 
then used to calculate Scharber SCEs of potential molecules 
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Figure 9. Prediction versus experimental SCE on a) test set (30 molecules) and b) all data points using leave-one-out CV technique. Inset shows the 
distribution of errors. c,d) The feature importance of GB and RF model, respectively. Adapted with permission.[182] Copyright 2018 Wiley-VCH Verlag 
GmbH & Co. KGaA, Weinheim.
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and new nonfullerene acceptors diketopyrrolo-pyrroles and qui-
noidal thiophene derivatives were identified to be better than 
fullerene. Finally, Paul et al.[258] have used a transfer learning 
approach to improve agreement between predictions and exper-
iments. In this approach, the weights of a customized ensemble 
deep neural network architecture trained on the computed  
Harvard CEP database were transferred to an experimental 
data set of only 243 molecules, substantially reducing the mean 
absolute percentage error (MAPE) from 2.782% to 1.513%.

6.2.4. Summary

Predicting stability, bandgaps, and SCE has been the main 
focus for ML in PV applications. For realistic energy materials 
applications, the stability and materials synthesizability should 
always be the first concern. Oddly, stability predictions in the 
PV field has been carried out mainly in target space groups 
or crystal families (e.g., perovskites), which enables the use of 
elemental/compositional features as descriptors. The use of ele-
mental/compositional features has the advantage of simplicity, 
but ultimately, the synthesizability of a particular phase (struc-
ture and composition) is related to the energies of competing 
phases in the phase diagram. There has been no application of 
general purpose formation energy prediction models[93,94,259] 
that have already demonstrated relatively high accuracies across 
diverse chemical spaces for stability predictions in PV.

Ultimately, the current bandgap, and consequently, SCE, 
models in PV are constrained by well-known limitations of 
semilocal DFT. While more accurate methods such as the HSE 
functional[239,240] and the GW method[241] exist, they are compu-
tationally much more expensive. One possible future direction 
is to combine various sources of computational data by data 
fusion and multifidelity modeling. On the experimental side, 
high-throughput measurements of materials optical properties 
are providing a large quantity of data that may be used for ML 
purposes.[260] We are likely to see more efforts on experimental 
automation and high-throughput works in the near future.[261]

In addition to the bandgap, the prediction of full band struc-
tures has only been attempted on a limited set of materials, 
e.g., Si.[262] The full band structure provides much richer infor-
mation for the material and will be a key quantity for future ML 
predictions. Other related properties, such as the carrier effec-
tive mass and dielectric response, are also to be explored using 
ML predictions to complement existing works.

6.3. Catalysts

Finding efficient and economically viable catalysts are key to 
furthering the adoption of many renewable energy technolo-
gies, including fuel cells and conversion of CO2 to liquid fuels. 
Catalyst design generally follows the Sabatier principle, which 
states that the interaction between the reactant and the catalyst 
should be neither too strong nor too weak for optimal activity. 
This qualitative rule is typically represented as a “volcano” 
plot of activity as a function of binding energy between the 
reactant and catalyst[70,71,90,263] Despite significant progress in 
recent years, current catalysts are still either too expensive, e.g., 

precious metals, or need a high overpotential to drive the reac-
tion. Finding a catalyst with low overpotential and cost becomes 
essential in catalyst materials design. ML methods have been 
used in catalyst design since the 1990s,[264–266] and are now 
a resurgence of interest and being applied more broadly to a 
large number of systems.[267–271]

6.3.1. Absorption Energies

One of the main computational tools for studying catalysis is 
the d-band model, which relates the d-band center of metal 
surfaces to the bonding formation and reactivity of transi-
tion metals;[70,90] a higher d state energy corresponds to more 
empty antibonding states and thus stronger bonding between 
the adsorbents and the surface.[272] However, obtaining the 
d-band center still requires performing the time-consuming 
DFT calculations, limiting its capability for large-scale mate-
rials screening. Takigawa et al.[183] have attempted to predict 
the d-band center using ML model on a data set containing 
11 metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) 
and 110 metal pairs for secondary metals as surface impurity 
and overlay layer respectively. The d-band centers were obtained 
from the most close-packed surfaces of the corresponding 
metals ((111) for fcc, (001) for hcp, and (110) for bcc).[70] The 
authors used a set of nine elemental properties to represent 
each element type, including group number, bulk Wigner–Seitz 
radius, atomic number, atomic mass, period, electronegativity, 
ionization energy, enthalpy of fusion, and density at 25 °C. 
The feature vectors for structures were a simple concatenation 
of two types of elemental vectors. Such features were used in 
a GBR model that showed an RMSE of <0.5 eV in predicting 
the d-band center on the test data (75% of the whole data size). 
Based on the feature importance, the authors further reduced 
the 18 descriptors to just 6. While the achieved errors were 
around 10% of the d-band center range, it should be noted that 
these models cannot distinguish between surface types given 
that the descriptors contain no structural/surface information. 
Similarly, Meyer et al.[273] have predicted the energy of oxida-
tive addition process between a transition metal complex and a 
substrate for C–C cross-coupling reactions and used this energy 
as a descriptor to estimate the activity of transition-metal 
complexes as homogeneous catalysts via a molecular volcano 
plot. With this descriptor and model, the authors performed 
screening of 18 062 homogeneous catalysts and identified 37 
promising low-cost complexes that were derived from palla-
dium and copper.

Catalysis is fundamentally a surface-driven phenomenon, 
and the type of surface termination and active sites have a 
large effect on catalytic activity. Ma et al.[274] have used artifi-
cial neural networks combined with atom projected electronic 
properties to predict the adsorption energies of CO on metal 
alloys. The authors noted that the d-band theory-based two-
level models had a large error of 0.33 eV, which is not accurate 
enough for screening optimal catalysts. They went on to use 
electronic properties of clean surfaces, including filling, center, 
width, and kurtosis of d-states distributions and local Pauling 
electronegativity as primary features and host metal-depending 
physical constants as secondary features for the ML neural 
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network model, yielding an error of 0.12 eV. This low error is 
within the screening energy range of potential catalysts. Sim-
ilar features have been used in the prediction of CO and OH 
adsorption on bimetallic surfaces to identify several transition 
metal alloys and local environments with theoretical perfor-
mance better than Pt in direct methanol fuel cells.[275] Similarly, 
Gasper et al.[276] have studied the CO adsorption on the Pt nano-
particles using a ML approach. One of the obstacles of studying 
the Pt nanoparticles is that the low symmetry nanoclusters tend 
to be more energetically stable. The authors adopted a genetic 
algorithm using a bond-order potential to automatically find 
such low energy structures, which were then confirmed by DFT 
calculations. A GBR ML model was used for predicting the 
CO adsorption energy on Pt nanoclusters using three types of 
descriptors, including the electronic structure descriptors cal-
culated from DFT (averaged d-band center), structural informa-
tion (average nearest-neighbor bond length, generalized coor-
dination number, cluster radius of gyration, etc.), and the CO-
frozen adsorption energy. The authors showed that with adding 
all features, the prediction error could be reduced to 0.12 eV 
compared to 0.23 eV when only the d-band center was used. 
All presented work have shown that site descriptors with ML 
models predict the adsorption energy better than the d-band 
theory alone. However, these accurate models require descrip-
tors calculated from DFT, slowing down the screening process 
substantially. To further accelerate the catalyst discovery and to 
circumvent DFT calculations, Noh et al.[277] have used d-band 
width of the muffin-tin orbital theory and the electronegativity 
as alternative descriptors combined with neural networks and 
KRR models to predict CO adsorption on alloys. These models 
achieved a very low MAE of 0.05 eV after a training process 
involving active learning. Using this model, the authors found 
Cu3Y@Cu* as an effective CO2 reduction catalyst lowering the 
overpotential by 1 eV compared to the precious metal Au.

ML models can also provide useful catalyst design insights. 
Wexler et al.[102] have predicted the hydrogen evolution reac-
tion (HER) activity on nonmetal doped Ni3P2 termination of 
Ni2P(0001) surfaces. The H binding energy on the pristine sur-
faces was too strong for catalysis and the authors found that 
by doping the surface with nonmetal elements (As, B, C, N, 

O, S, Se, Si, and Te) the binding energy of H can be tuned. 
A list of descriptors from DFT-relaxed structures was compiled 
including Ni–Ni bond lengths, Ni–Ni–Ni bond angles, Löwdin 
charges, elemental data, and their summary statistics, and 
other geometric parameters. These descriptors were used as 
features in a regularized random forests (RRF) model for pre-
dicting the H adsorption free energy ΔGH. The model RMSE 
was only 0.09 eV using threefold CV on 55 observations and 29 
descriptors (Figure 10a). The model-derived feature importance 
pointed out that the top two descriptors were a particular Ni–Ni 
bond length and the average Ni–Ni bond length (Figure 10b,c). 
In addition, seven out of the top ten were related to the geom-
etry of the adsorption Ni3-hollow site. These results suggested 
that the chemical pressure plays a critical rule in altering 
the catalytic activity. On this basis, a Ni–Ni bond length of  
2.97 to 3.07 Å should produce thermoneutral H adsorption 
and optimal intrinsic activity for HER in an electrocatalyst with 
Ni3 motif (Figure 10d). Such findings have provided a useful 
descriptor for high-throughput screening of Ni-nonmetal cata-
lysts for HER. O’Connor et al.[278] has also used LASSO regres-
sion to understand the factors governing the interactions 
between single metal atoms and the oxide supports in single-
atom catalysts. The authors discovered that in addition to the 
known relationships between binding energy and the oxide 
formation enthalpy of the metal adatoms (ΔHf, ox), the binding 
energy was also correlated with the oxygen vacancy formation 
energy (ΔEvac) of the oxide support. The authors devised a series 
of descriptors that included the atomic properties of the adatom 
and the support. All those features were further mathematically 
transformed, producing a feature space with 333 932 descrip-
tors. After the LASSO feature selection in a repeated random 
shuffle CV with 10% test data, the top five 1D descriptor always 
contained ΔHf, ox and ΔEvac. In addition, the ratio of them, i.e., 
|ΔHf, ox/ΔEvac|, always appeared in the 1D descriptor multiplied 
by a second term. The descriptor and model can be potentially 
used for screening metal/support combinations as catalysts.

An interesting application of active learning aims not to 
replace DFT calculations, but rather to guide DFT-based 
searches for ideal intermetallic catalysts for CO2 reduction and 
H2 evolution.[119] Tran and Ulissi[119] obtained 1499 intermetallic 
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Figure 10. a) Parity plot of H binding free energy by RRF and DFT. b) Top 10 feature importance of descriptors obtained from RRF models. c) Geometry 
of Ni3-hollow site and the descriptor visualization. d) The correlation between average Ni–Ni bond distance and the H binding free energy induced by 
chemical and mechanical pressure. Reproduced with permission.[102] Copyright 2018 American Chemical Society.
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crystals from the Materials Project[10] covering 31 elements 
(50% d-block and 33% p-block). From a total of 1 684 908 
unique adsorption sites as the candidate pool, an iterative active 
learning approach and the ML models only worked as guides 
for finding the next candidates to perform DFT calculations of 
the adsorption energy of CO and H. In each iteration, an ML 
model was fitted using previous data and the model predicted 
candidates with the strongest binding energies close to the 
optimal value (−0.67 eV for CO and −0.27 eV for H) for DFT cal-
culations. Figure 11 shows the resulting CO2 reduction activity 
map of bimetallic surfaces from ML and DFT. While the ML 
models were able to provide results consistent with DFT, their 
large errors (MAE of 0.29 eV for CO2 reduction and 0.24 eV for 
H2 evolution) render them unsuitable for direct prediction. The 
main reason lies in the fact that the absorption energy strongly 
depends on atomic positions, which is not known prior to per-
forming a structural relaxation.

Structural relaxations and their effect on absorption ener-
gies and other properties pose a particular challenge in catal-
ysis problems. The model structures in catalysis typically  

comprise slabs or nanoparticles comprising many more atoms 
and lower symmetry than bulk crystals, which renders DFT 
relaxations much more expensive. This has prompted sev-
eral innovative approaches to circumvent the need to perform 
structural relaxations in building ML models. For example, 
Jinnouchi et al.[140,279] have used local environment simi-
larity as features to prediction absorption energies of N, O, 
and NO on Rh1−xAux nanoparticles, with the assumption that 
similar local environments lead to similar binding energies. 
The authors used the SOAP local environment descriptor 
on unrelaxed structures and combined with Bayesian linear 
regression to predict the binding energy and formation energy 
(Figure 12a). The formation energy ML model was used to 
predict the stable metal element distribution in the nanopar-
ticles via Monte Carlo simulations. The predicted MAEs for 
the binding energies of species and formation energies of 
alloys were about 100 meV and 20 meV per atom, respectively. 
The reaction turnover frequency (TOF) from predicted ener-
gies results showed a volcano-like shape with Au fraction x in 
Rh1−xAux Figure 12b, and with decreasing nanoparticle size, 
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Figure 11. Predicted CO2 reduction activity map for two-component intermetallics from ML and DFT. The elements are sorted according to the binding 
energy of CO on elemental surfaces, where the adsorption energy on monometallic Cu is nearest to the optimal value of −0.67 eV. The elements above 
Cu show relatively weak binding and the ones below it show strong binding. The near optimal ΔECO is defined as the ±0.1 eV range of the optimal 
value, i.e., (−0.77, −0.57) eV. Reproduced with permission.[119] Copyright 2018 Nature Publishing Group.
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the reactivity increased. The mechanism was probed by map-
ping the reactivity on the nanoparticle surfaces. It was found 
that Au segregated to the corners and edges at low Au frac-
tion in the nanoparticles which roughly corresponded to the 
reaction activity map (Figure 12c). With decreasing particle 
size, the atom fractions at the corners and edges increased. 
All these calculations and analyses were enabled with fast 
ML surrogate models. Similarly, Ulissi and co-workers[280–282] 
have used a modified CGCNN model[93] whereby the crystal 
graph is constructed using Voronoi tessellation to determine 
the edges, obviating the need for specific bond lengths. The 
model showed an error of only 0.15 eV in the prediction of 
CO and H2 adsorption energies after training on 12 000 data 
for each molecule. Back et al.[280] further studied the oxygen 
evolution reaction (OER) on the IrO2 and IrO3 surfaces using 
the modified model. The authors discovered from DFT that 
the less stable low-index surfaces such as (100), two unique 
terminations of (111), and all active sites of (121) were more 
active than the most stable rutile (110) surfaces in IrO2. The 
calculated data were subsequently fed into training GCNN 
models[281] using unrelaxed structures as inputs and DFT 
adsorption energies as the targets. Test MAEs of 0.07 eV (300 
training data points) and 0.18 eV (500 training data points) 
were achieved for coverage and OER calculations, respectively. 
The same methodology has also been used in predicting inter-
metallic surface energies.[281]

Another way of circumventing DFT calculations is to relax 
the structures using ML-IAPs. For example, an NNP has been 
applied in the study of oxygen coverage on Pd (111) surface.[283] 
Ulissi et al.[284] have studied CO2 reduction on nickel gallium 

bimetallic facets. The authors fitted an NNP to relax struc-
tures to a local minimum as well as predict the adsorption 
energy. They showed that with only 10% of the total required 
DFT calculations in a conventional study, the NNP can pre-
dict the binding energy of CO on Ni–Ga surfaces with RMSE 
approaching DFT accuracy of 0.2 eV. Recently, Chen et al.[285] 
have adopted a similar ML-IAP approach to accelerate the dis-
covery of active sites for CO2 reduction on Au nanoparticles and 
dealloyed Au3Fe core–shell surfaces. The CO adsorption energy 
and HOCO transition state formation energy trained using 
1100 data points reach an error level of 0.05 and 0.06 eV, respec-
tively, on the test set. The trained models were subsequently 
applied to 11 537 surface sites, which represents a factor of ten 
in computational time reduction.

6.3.2. Reaction Pathways

Besides the binding energies, the energetics of the reaction 
pathway fundamentally determine the rate of the catalyzed 
reaction. An understanding of the reaction pathway is key to 
identifying the critical intermediates and the mechanism, 
leading to insights for the development of new catalysts. Ulissi 
et al.[286] have applied GPR to the study of syngas reaction 
on Rh(111). Although the reaction has more than two thou-
sand possible pathways, a GPR model was able to start from 
a few DFT calculations and iteratively predict all intermedi-
ates. The most probable reaction network was identified with 
acetaldehyde and CO2 as the reaction products for H2 and 
CO2 reactants.
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Figure 12. a) Bayesian linear regression scheme with kernel computed between unrelaxed structures and model targets being binding energies from 
DFT-relaxed structures. b) TOF as a function of x in Rh1−xAux and nanoparticle size. c) Activity map on atoms with different Au concentration. Adapted 
with permission.[140] Copyright 2017 American Chemical Society.
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6.3.3. Morphology

The surface/nanoparticle morphology can have a significant 
impact on the efficiency of a catalyst. In traditional approaches, 
a brute force computational search is typically used to deter-
mine the shape with the lowest energy as well as the orien-
tation of nonatomic reactants with respect to the substrate. 
Genetic algorithms have been the common choice to assist pre-
dicting metal nanocluster configurations using computational 
methods.[287–289] Experimentally, atomic local environments can 
be inferred from X-ray adsorption spectroscopy (XAS). Several 
works have tried to predict the local environments by combining 
ML models with high-throughput computational or experi-
mental XAS data.[172,290–294] Timoshenko et al.[290] have used 
neural networks to predict the Pt nanoparticle structure from 
the L-edge X-ray absorption near-edge spectra. The authors first 
constructed an experimentally verified computational database 
of L-edge XANES. Then the mapping from the L-edge XANES 
to the coordination number up to the fourth coordination shell 
was learned using neural networks. The NN model was suc-
cessfully applied to experimental XANES. This example shows 
the power of ML beyond the capability of traditional methods. 
Conventionally, the study of coordination beyond the first shell 
is carried out using extended X-ray absorption fine structure 
(EXAFS), which has a relatively weak signal and is challenging 
in the probe of the local environment of systems at high tem-
peratures, dilute samples, and in complex environments. The 
combination of ML with L-edge XANES solves this problem 
with high accuracy and can enable on-the-fly data and local 
environment acquisition. Predicting the local environments 
from X-ray absorption data will likely facilitate the mechanistic 
understanding of catalysis on an atomistic level.

In a study of C60 adsorption on a TiO2 (101) surface, Todorović 
et al.[295] have devised a Bayesian optimization structure search 
(BOSS) scheme for addressing this interface problem by map-
ping the adsorption energy surface using only several DFT com-
putations. The BOSS scheme was able to find energy minima 
using 12 data points in 1D and 45 data points in 2D, more than 
twice the efficiency of grid search. In higher dimensions, the 
grid search becomes intractable, yet the BOSS scheme was still 
able to find the minima with 700 data points in 5D.

Finally, surface coverage and energies, and consequently, 
morphology, can change with the chemical environment of the 
catalyst. Ulissi et al.[296] have used a GPR model to rapidly predict 
the free energies of different surface coverage configurations 
and thus construct the surface diagram. The computational cost 
was reduced by three times in constructing the Pourbaix dia-
grams of IrO2 and MoS2 using the ML-based approaches.

6.3.4. Summary

ML approaches have partially succeeded in solving the problems 
associated with large surface configurational space in catalysis. 
Nevertheless, the model errors are currently still too large to be 
a reliable surrogate to DFT calculations. For adsorption energies 
on chemically diverse surfaces, the prediction errors are above 
0.2 eV.[119] Such large errors may misrepresent an unstable sur-
face site as a stable one and change the reaction mechanisms. 

The high errors are an intrinsic difficulty for surface adsorption 
predictions, which require the relaxation of atoms to their equi-
librium positions, while such relaxations are only possible with 
expensive ab initio methods or accurate ML transferable force 
fields. To reach errors below 0.2 eV, geometric descriptors based 
on local coordination counting are unlikely to yield good results 
and those that involve certain levels of advanced yet cheap cal-
culations seem to be a better choice, as seen by the examples 
where adding d-band centers leads to more accurate models.

6.4. Thermoelectrics

Thermoelectrics, which are materials that can convert heat 
to electricity and vice versa, has long been seen as a potential 
approach to greatly enhance the efficiency of industrial pro-
cesses and transportation, as well as a means of more efficient 
heating and cooling. However, the development of thermo-
electric devices has long been constrained by materials perfor-
mance. The performance of thermoelectric material is given by 
its figure of merit zT, defined as
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where S is the Seebeck coefficient, κ, κelectron, and κphonon are 
the total, electron, and phonon thermal conductivities, respec-
tively, σ is the electrical conductivity, and T is the tempera-
ture. Another commonly used metric is the power factor (PF), 
defined as σS2. As σ and κelectron are positively correlated, it can 
be seen that the ideal thermoelectric material would have a high 
electrical conductivity, high Seebeck coefficient and low phonon 
thermal conductivity, i.e., “phonon-glass electron-crystal” struc-
tures.[297] Despite intense research efforts, the best zT achieved 
to date remains ≈2.6 for SnSe.[298]

Here, we will review ML works aimed at specifically identi-
fying thermoelectrics through property predictions. There are 
several works that aim to identify new intermetallic structures 
(e.g., Heuslers being a major class) and their stability, but 
make no attempt to predict other critical thermoelectric proper-
ties.[117,299,300] These works will not be reviewed here.

The Seebeck coefficient and electrical conductivity of a mate-
rial are usually calculated within the framework of Boltzmann 
transport theory, using, for example, the BoltzTrap code.[301] 
Making use of the Gaultois’s database,[302] which contains 
≈1000 experimentally characterized thermoelectrics, Furman-
chuk et al.[184] have developed a RF model to predict Seebeck 
coefficients. There were initially 452 features describing each 
structure in both crystal level and atomic level, but the best per-
forming model only needed 187. The RMSE of the best model 
was 84 μV K−1, which indicates an uncertainty of 11% in the 
Seebeck coefficient ranging from −400 to 400 μV K−1. The pre-
dictions on an external test set of 20 materials from Gaultois’s 
database were found to be accurate with a R2 ≥ 0.88, which is 
evidence of the generalizability of the model. It was also found 
(using feature importance) that the thermal conductivity of 
constituent elements in their ground-state crystal structures 
is important in determining the overall Seebeck coefficient. 
Choudhary et al.[303] have also attempted to develop ML models 
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for the classifications of Seebeck coefficients as well as the PF. 
For data at 600 K and 1020 cm−3 doping concentration, thresh-
olds of −100 μV K−1, 100 μV K−1, and 1000 μW (mK)−2 were set 
for n-type Seebeck coefficients, p-type Seebeck coefficients, and 
PF, respectively. Using CFID features with GBDT models, the 
classification AUCs are generally above 0.8.

The thermal conductivity is usually obtained by computing 
the phonon dispersion curve and applying the phonon Boltz-
mann transport equation (BTE). Obtaining an accurate phonon 
dispersion curve and force constants is highly computationally 
expensive. Seko et al.[142] have developed a Bayesian optimiza-
tion method to locate the compound with the lowest lattice 
thermal conductivity. They computed lattice thermal conduc-
tivity for 101 compounds and used them as observations for a 
kriging search using GPR. The descriptors were volume (V) 
and density (ρ) of the crystal, along with a 34-digit one-hot-
encoding of the elements. As a demonstration, the model suc-
cessfully identified PbSe and LiI as the compounds with the 
lowest thermal conductivity using only 11 and 19 observed data, 
respectively. As a comparison, random search required 55 and 
65 data points. The authors further screened 54 779 compounds 
from Materials Project,[10] and 221 were expected to have lower 
thermal conductivity than rocksalt PbSe (0.9 W m−1 K−1). First-
principles verification confirmed that all of the top five predicted 
compounds have thermal conductivity less than 0.2 W m−1 K−1. 
While Seko et al.[142] used computed thermal conductivity as the 
learning target, Chen et al.[304] have developed a model to learn 
from experimentally measured thermal conductivity. The data 
set contains 100 experimentally measured thermal conductivi-
ties from a data set with diverse compositions and space groups. 
From a total of 63 features including elemental properties, DFT 

relaxed structural information, number of valence electrons for 
each subshell, DFT computed bulk modulus, and space group 
number, the 29 features with the highest importance were iden-
tified via recursive feature elimination. The as-trained GPR 
model was found to have RMSE of 0.18 for training set and 0.28 
in test set for logκL. Finally, the overall thermal resistance of a 
thermoelectric device is the sum of the bulk thermal resistance 
and the thermal boundary resistance (TBR) at the interfaces of 
the materials. Zhan et al.[305] have developed four ML models 
to predict experimentally measured TBR. The four models 
deployed different algorithms, namely, generalized linear regres-
sion (GLR), LASSO-GLR, GPR, and SVR. The data set contained 
total of 876 TBRs measured for 368 interfaces of 45 different 
materials, of which the predicted TBRs by acoustic mismatch 
model (AMM) and diffuse mismatch model (DMM) only showed 
weak correlation with experimental values and the coefficients 
were R2 = 0.6 and R2 = 0.62, respectively. The GPR and SVR 
models are the best performing, with R2 of 0.92 and RMSE of 
13.2 and 13.9 10−9 m2 K W−1, respectively. Furthermore, by ana-
lyzing the feature importance, the film thickness was found to be 
an important descriptor, which is in accordance with intuition.

6.4.1. Recommendation Engines

In addition to using models to predict single property, Gaultois 
et al.[306] have developed an ML-based recommendation engine 
for the discovery of thermoelectric materials, which took into 
account of four properties, i.e., the Seebeck coefficient, elec-
trical resistivity, thermal conductivity, and bandgap (Figure 13). 
The data used in this work was fairly comprehensive, including 
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Figure 13. Distribution of leave-one-out cross validation errors of the recommendation engine on four key properties: a) Seebeck coefficient; b) electrical 
resistivity; c) thermal conductivity; d) bandgap. For the given material and property, the engine outputs the confidence score between 0 and 1 that the 
property falls within predefined ideal windows. The errors approaching 1 represent false negatives, meaning the property is poor when the engine pre-
dicts it to be promising. The errors approaching −1 represents false positive where the property is ideal when the engine predicts it to be poor. The errors 
close to 0 represent the model’s predictions are in accordance with the ground truth. Therefore the peaks around 0 for four properties indicate the high 
reliability of the engine. Reproduced according to the terms of the CC-BY license.[306] Copyright 2016, The Authors.
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both experimental and first-principles data, from almost 
all main-stream materials databases.[10,302] The descriptors 
of choice were elemental properties, with heavier weights 
assigned to the ones that displayed periodic table principles. 
The engine makes decision with the help of RF models on 
the input materials by analyzing whether the properties fall 
within certain criteria. To demonstrate the engine’s ability in 
guiding experimental design, the authors chose two materials 
(RE12Co5Bi, RE = Er, Gd) out of high-ranking candidates for 
experimental synthesis. The model suggested their high prob-
ability of achieving high electrical and low thermal conductivity, 
and low probability of having a large Seebeck coefficient. Full 
characterization of the obtained materials showed that both 
materials have noncompetitive Seebeck coefficients, relatively 
high thermal conductivity, but promising electron conductivity. 
The overall zT is around 0.03 W m−1 K−1 at 400 K, which is 
higher than 30% structures in Gaultois’s database.[302] While 
the zT of the two materials are not state-of-the-art, it should 
be noted that common thermoelectric materials contain heavy 
p-block metalloids like Sn, Sb, and Te, and less portion of  
d- and f-block metals. Therefore, the two RE12Co5Bi com-
pounds are counterintuitive and thus showcases the capability 
of ML guidance in expanding the chemical space of the field. 
Other more successful experimental verification included the 
Heusler TiRu2Ga, whose preliminary results indicated that it 
had low thermal conductivity, and transition-metal germanides 
Mn(Ru0.4Ge0.6), whose thermal conductivity could be as low as 
2 W m−1 K−1.[117] In addition, two quaternary rare-earth germa-
nides RE-M-M′-Ge, i.e., Nd4Mn2InGe4 and Nd4Mn2AgCe4, have 
also been synthesized[307] and confirmed to have low thermal 
conductivities, in agreement with the engine prediction.

6.4.2. Adaptive Design

One important and often used technique in discovering 
optimum energy materials is chemical composition alterna-
tion, meaning to tune the ratio of certain constituent elements 
in order to optimize property. It has been reported experimen-
tally that Al2Fe3Si3 compound can exhibit low lattice thermal 
conductivity and high Seebeck coefficient at different tempera-
tures. However, various measurements of the overall PF of this 
compound are always less than 1 mW m−1 K−2. Recent evidence 
shows that the PF can be improved by controlling the conduc-
tion type of Al2Fe3Si3, which is further dictated by the ratio of 
Al/Si. Hou et al.[308] have employed a GPR model to predict PF 
for unknown compositions from existing experimental data. 
The input features were composition x in Al23.5+xFe36.5Si40−x  
and temperature. Initially, temperature-dependent PFs (T = 300–
840 K) were obtained for five compositions of Al23.5+xFe36.5Si40−x  
(x = 0.0, 1.5, 1.8, 2.0, 2.2). The model was trained using the ini-
tial data, and based on the prediction, the new composition with 
the highest PFs in the temperature range of 450–650 K would 
be synthesized and the measured data were added to the data 
set for further training of the model. The iteration was stopped 
with convergence at x = 0.9, which demonstrated higher PF 
than its neighbor ratios. The PF at ≈510 K with x = 0.9 was 
≈670 μW m−1 K−2, which is 40% higher than x = 0, the orig-
inal composition. The authors explained the improvements 

from two aspects. First, increasing x (Al content) results in a 
higher Seebeck coefficient because Al has fewer valence elec-
trons than Si, so introducing more Al reduces carrier concen-
tration. Second, the presence of a secondary metallic phase of 
τ8-Al2Fe3Si4 might be the reason why electrical conductivity 
of x = 0.9 is higher than x = 0.7. This work made a contribu-
tion in presenting a new phase of Al2Fe3Si3 that shows superior 
performance. The adaptive Bayesian analysis is an interesting 
approach to reduce the number of trials.

6.4.3. Text Mining

Encouraged by the advancement in the natural language pro-
cessing field, attempts have been made to extract data and 
insights from literature using text mining. In thermoelectrics, 
the relevant literature consists of 3.3 million published papers 
between 1922 and 2018 in more than 1000 journals.[52] Tshi-
toyan et al.[52] has shown that, by feeding these abstracts to a 
“machine,” one can obtain embeddings of words that incorpo-
rate the chemical relationships. The dot-product of the embed-
dings of two words can be interpreted as the likelihood of the 
words co-occurring in scientific abstracts. The authors therefore 
calculated the dot-products of 7663 material embeddings with 
the word “thermoelectric”. The average maximum PF (calcu-
lated by DFT) of 40.8 μW cm−1 K−2 for these top ten predictions 
was 3.6 times larger than the average of candidate materials 
(11.5 μW cm−1 K−2) and 2.4 times larger than the average of 
known thermoelectrics (17.0 μW cm−1 K−2). Also, these embed-
dings are highly readable. For example, CsAgGa2Se4 appeared 
close to words like “chalcogenide,” “bandgap,” “optoelectronic,” 
and “photovoltaic applications” in the coordinates of the embed-
ding (Figure 14c). It can explain why it is close to “thermoelec-
tric:” CsAgGa2Se4 belongs to chalcogenides which are often 
good thermoelectric materials. In addition, the bandgap is often 
an examined property for thermoelectric applications, and ther-
moelectric materials often have overlap with optoelectronics 
and PV applications. The trained embeddings can be used as a 
powerful tool for discovering new candidates, and more impor-
tantly, the methodology described in the paper could be easily 
transplanted for other tasks in materials design and benefit the 
field enormously.

6.4.4. Summary

As with other applications, the data quantity and quality are 
critical for training ML models. For thermoelectrics, as pointed 
out by Furmanchuk et al.,[184] the Seebeck coefficient is sen-
sitive to doping, meaning that missing or incorrect report of 
doping information could lead to unexpected modeling results. 
This imposes a strong requirement on data curation if experi-
mental properties are the targets. In DFT calculations, usually 
constant relaxation time approximation is used which cannot 
evaluate the carrier scattering. This leads to overestimation 
of bipolar conduction and underestimation of Seebeck coef-
ficients. Such errors can be case-dependent, leading to unex-
pected results in ML modeling. Therefore, more efforts shall be 
devoted on improving data quality.

Adv. Energy Mater. 2020, 1903242
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6.5. Piezoelectrics

Converting mechanical pressure into electricity (and vice versa) 
using piezoelectric materials is of significant technological 
interest for numerous applications in actuators, sensors, trans-
ducers, etc. The direct piezoelectric effect was firstly found in 
single crystal quartz, and scientists have further expanded the 
categories to perovskite ceramics (barium titanate, lead zirco-
nate titanate, or PZT), ferroelectric ilmenite (lithium niobate, 
lithium tantalite, etc.), and polymer (polyvinylidene fluoride). 
Despite the variety of piezoelectric materials, intensive studies 
are conducted primarily on PZT-based compounds because of 
their large piezoelectric coefficients[309] and vertical morpho-
tropic phase boundary (MPB).[310]

Balachandran et al.[311] have attempted to develop mul-
tivariate models for predicting Curie temperature (Tc) at 
MPB of perovskite BiMeO3–PbTiO3 solid solutions (Me is 
single cation with charge 3+ or a combination of two dif-
ferent cation with an average charge 3+) and discover high-
temperature perovskite piezoelectric materials. The authors 
reduced 30 descriptors associated with crystal geometry, 
bonding, thermodynamics, and electronic structure to 6 key 
attributes with the PCA approach. These attributes were used 
in a linear multivariate model fitting on 15 data using PLS. 
According to the formalism, the authors predicted the high-
temperature BiTmO3 and BiLuO3 with Tc of 730 and 705 °C, 
respectively (see Figure 15a). Then a tree-based classifica-
tion model was used to probe the importance of these attrib-
utes to determine structural stability, showing that the A–O 
bond length in ABO3 system is the most significant attribute 
(see Figure 15b). Similarly, Nelson and Sanvito[312] have pre-
dicted the experimental Tc for ≈2500 known magnets with 

RF algorithm and features only encoding the information 
of chemical composition. They used composition-weighted 
quantities, mode, and absolute deviation of elemental prop-
erties and predicted the target with an MAE of 57 K among 
all chemical compositions included in the test set without 
systematic bias toward any particular chemical compositions. 
When they tried to incorporate the structural information 
in the feature space, the prediction performance was poorer 
than that of using chemical composition only, which is likely 
due to the sparse training data given a relatively high-dimen-
sionality of the feature space.

While Tc represents one critical property in piezoelectric 
materials, the “verticality” of the MPB, which determines the 
temperature insensitivity property of the materials, is another. 
For years scientists have made intensive efforts in searching 
for alternatives to PZT-based compounds because of the envi-
ronmental concerns. However, these substitutes suffer from 
inferior temperature reliability compared to PZT,[313] which 
originates from a tilted/curved phase boundary in the composi-
tion-temperature phase diagram. Xue et al.[314] have discovered 
a monotonically decreasing relationship between the slope of 
the MPB with an increasing unit cell volume ratio (rV) of the 
tetragonal and rhombohedral ends of composition-temperature 
phase diagram in BaTiO3-based systems and PbTiO3-based  
systems (see Figure 15c). They then defined the ratio of ionic 
displacements of the tetragonal and rhombohedral ends as 
a polarization-related descriptor (rP) and revealed the posi-
tive linear correlation between the slope of MPB and rP (see 
Figure 15d). While these studies demonstrated effective 
descriptors in searching piezoelectric materials, the scope of 
their application was restricted to certain structures/chemical 
systems and by a limited amount of data.

Adv. Energy Mater. 2020, 1903242

Figure 14. Prediction of new thermoelectric materials using text mining. a) Ranking of the cosine similarities of thermoelectric materials with the 
embedding of “thermoelectric.” b) Distributions of the DFT-calculated power factors for 1820 known thermoelectrics (purple) and 7663 unreported 
candidates (green). The black dashed lines indicate the first ten predictions that have not been studied as thermoelectric. c) Illustration of how the 
context words of the materials connect to the word “thermoelectric.” The width of the edges in the figure is proportional to the cosine similarity 
between the two connected words. Examination of the context words indicates that the algorithm makes decision based on structure type, co-mention 
of other thermoelectric materials, association of other related applications, and description of the materials’ properties. Reproduced with permission.[52] 
Copyright 2019 Nature Publishing Group.
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Subsequently, Xue et al.[315] have applied Bayesian learning 
framework with uncertainties estimation and took linear 
regression as surrogate model to guide the discovery of new 
BaTiO3-based materials with desirable temperature reliability 
(see Figure 16). The authors used the atomic, crystal, and elec-
tronic structure properties of the tetragonal and rhombohedral 
ends of composition-temperature phase diagram as features 
and the change of composition dx along each MPB when tem-
perature decreases by 100 K from room temperature (298 K) as 
the target. The Landau functional provides a quadratic relation-
ship between temperature τMPB and composition x. The “best” 
candidate with the smallest dx was chosen for experimental 
validation and the model was updated with augmentation of the 
newly measured dx. This strategy has helped the authors find 
the (Ba0.5Ca0.5)TiO3–Ba(Ti0.7Zr0.3)O3 system with better MPB 
verticality but at the expense of poorer piezoelectric response 
d33. Similarly, Yuan et al.[316] have used Bayesian learning to lead 

the synthesis of the piezoelectric (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)
O3 compound with largest electrostrain of 0.23% in the BaTiO3-
based family and (Ba0.85Ca0.15) (Ti0.91Zr0.09)O3 compound with 
“optimal” d33 of 362 pC N−1.[317] While these studies paved a way 
in accelerating the discovery of targeted piezoelectric materials, 
one objective optimization may sometimes lead to the expense 
of other properties not in the optimized targets[315] or failure in 
reproducing the best available results.[317]

To simultaneously explore multiple (potentially competing) 
properties, Gopakumar et al.[318] have provided a way to iden-
tify the points on characteristic property boundary where one 
property cannot be improved without the expense of degrading 
the other property, i.e., the Pareto front. The authors considered 
the Pareto front between bandgap and piezoelectric modulus 
of 704 piezoelectric materials from Materials Project[10,319] 
to be “unknown” and used adaptive learning to identify this 
“unknown” Pareto front from initial known data with as few 
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Figure 15. a) The PLS linear model trained on 15 systems and tested on 5 systems. b) The dendrogram classification model used Shannon entropy 
as a selection criterion to discriminate different descriptors importance. Reproduced according to the terms of the CC-BY license.[311] Copyright 2011, 
The Authors. c) The relationship between the slope of MPB and descriptor rV (the ratio of the unit cell volume at two ends). d) The relationship between 
the slope of MPB and descriptor rP (the ratio of ionic displacements at two ends).[314] Reproduced with permission.[314] Copyright 2017, American 
Institute of Physics.
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measurements as possible. They have applied GPR and SVR 
with Gaussian radial basis function (RBF) kernel as surro-
gate models and expected improvement coupling the trade-off 
between “exploitation” and “exploration”[320] as learning criteria 
to optimally choose the next data point and update the model 
with new measured data until learning criteria is reached. 
Through the multiobjective optimization scheme, more than 
half of the Pareto-frontal points were found within the first 50 
measurements. In contrast to previous works, the work by Bal-
achandran et al.[320] explored a larger chemical space beyond 
titanates. Recently, large-scale screening for piezoelectrics 
has been attempted by combining high throughput screening 
and ML predictions.[321] Regression models targeting highest 
infrared frequency and maximum Born-effective charges, and 
classification models for maximum piezoelectric and average 
dielectric tensors have been built using CFID features and 
GBDT models to accelerate the materials discovery process. 
The model MAEs for highest infrared frequency and maximum 
Born-effective charges are 68.7 cm−1 and 0.6, respectively. Using 
thresholds of 1 C cm−2 for piezoelectric and 10 for dielectric, 
the classification model AUCs are 0.86 and 0.92, respectively.

6.5.1. Summary

ML in piezoelectrics is relatively new and initial efforts have 
been mainly on improving and understanding the existing 
titanate-based materials. Unlike other fields, the calculations 
of piezoelectrics are expensive. It is until recently, thousands of 
materials have been investigated computationally[319,321] and a 
large portion of known materials remains to be explored. Fur-
thermore, the piezoelectric constants are tensorial properties, 
which obey crystal symmetry and bandgap constraints, i.e., only 
structures lack inversion symmetry and have electronic band-
gaps can exhibit piezoelectric behavior. Such information is not 

considered in the existing models, and hence the models are 
not likely to fully capture the intrinsic piezoelectric behavior. 
This also calls for the fusion of physics and domain knowl-
edge to ML applications in material science. Learning a tenso-
rial property is also challenging and few attempts have been 
made to solve this issue.[322] The development of models that 
can predict tensors with symmetry constraints will likely see 
great interest.

6.6. Superconductors

Superconductivity describes electrical charge flow inside a 
material without resistance. Finding high-temperature, ideally, 
room-temperature, superconductors is of profound importance 
to the society on many aspects including reducing the electrical 
energy loss during transmission as well as saving the electricity 
waste in everyday appliances.[323] Improvements in first-princi-
ples calculations of electron–phonon spectra have made it pos-
sible to predict the critical temperature Tcr in silico. The error 
for predicting Tcr has been shown to be within 1 K in some 
elemental systems, ranging from weak-coupling (Mo,Al,Ta) 
to strong-coupling (Nb,Pb) superconductors.[324] This has led 
to the successful prediction and confirmation of new super-
conductors, including high pressure Si[325,326] and Li,[327–329] 
FeB4,[330,331] H2S (or H3S),[332,333] SnBi2Se4

[334] and PbBi2Te4,[335] 
and recently NaH10.[336–339] These successes, coupled with the 
development of databases of superconductors,[44,340,341] have 
made ML an interesting new tool in the search of novel super-
conductors, particularly since the mechanisms for supercon-
ducting behavior differ from system to system.[342] For example, 
simple SVR models using only the lattice parameters as inputs 
has worked reasonably well on Fe-based superconductors[343] 
and doped MgB2,[344] although the studies were limited in 
scope. Other than predicting the critical temperatures, ML 

Adv. Energy Mater. 2020, 1903242

Figure 16. a) A desirable vertical MPB provides temperature-independent piezoelectric response d33 for the MPB composition (XMPB). b) An undesir-
able tilted MPB brings up to highly temperature-sensitive piezoelectric response d33. c) Bayesian learning framework for materials design. The Bayesian 
linear regression model relates phase boundaries to materials’ features while the Landau functional serves as prior knowledge to constraint the model 
space. The loop is repeated until the material with the desired response is discovered. Reproduced with permission.[315] Copyright 2016, National 
Academy of Sciences.
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models have also been used in predicting the electron–phonon 
coupling constants of elemental systems,[345] and elucidating 
the electronic ordering from experimental electronic structure 
images in superconducting copper oxide.[346]

Using electronic band structure derived features, Isayev 
et al.[29] have visualized relationships between different mate-
rials in “cartograms.” The authors found Ba2Cu3XO7 (where 
X is a lanthanide) lies at the center of the data and mate-
rials with highest Tcr, e.g., Ba2Ca2Cu3HgO8 (Tcr = 133 K) and 
Ba2CaCu2HgO6 (Tcr = 125 K), were close in the feature space. 
The authors then used a modified Simplex (SiMRS) method 
for extracting structural features and used them together with 
electronic features for regression to predict Tcr and classifica-
tion to find materials with Tcr > 20 K. The regression model 
errors were high, with a cross-validation determination coeffi-
cient of only 0.66. Nevertheless, due to particular data distribu-
tion that has a clear boundary at Tcr = 20 K, a classifier was able 
to achieve a cumulative accuracy of 0.94. Stanev et al.[30] have 
utilized the SuperCon database, which currently hosts data for 
more than 12 000 superconductors,[341] and constructed a series 
of models and workflow pipelines for finding potential super-
conductors in the existing structural database. The authors 
noted that if using only the SuperCon database, the model will 
be inevitably biased toward predicting superconductors and 
cannot tell the ones that do not exhibit such behavior (negative 
samples). These samples are particularly important from an 
ML perspective. The authors then included a pool of 300 non-
superconducting materials to their model pool. The SuperCon 
database, however, does not provide structural information 
for the material. Thus compositional features using Magpie 
descriptors[72] were used with RF models for classifying high 
temperature superconductor by setting a threshold. The results 

showed that with a threshold of 10 K, the prediction accuracy 
was about 92%, and by keeping only the five most informative 
descriptors (from a full set of 145), the accuracy maintained at 
about 90%. RF regression models showed a surprisingly high 
accuracy in predicting Tcr with a R2 of 0.88 between the pre-
dicted and measured Tcr, even though the features were only 
compositional (Figure 17a). However, if only one group of 
superconductors was used as training data, the models failed 
to predict other groups, as shown in Figure 17b–e. This finding 
is consistent with a later study by Meredig et al.,[180] where 
the authors noted that the superconductivity data formed dis-
tinct groups and the error of the models on a given group 
would increase sharply if no training data from this group was 
included in the model. The conclusion seems to suggest that 
different mechanisms are at play for different superconductor 
groups and in fact is known in the community. In addition, 
the authors tried to include AFLOW features to selected com-
pounds with known structures and the inclusion was found to 
increase the model recall.

A distinct approach was taken by Konno et al.[347] to learn the 
Tcr of compounds from the composition using deep learning. 
The authors treated the periodic table as a rectangular image 
and filled the pixels of the image using the corresponding 
atomic fractions in the compound formula. The image was 
further separated into four channels, corresponding to s, p, d,  
and f blocks. Thus each compound could be encoded into a 
same-sized image with four channels. These image inputs were 
fed to CNN models for predicting Tcr and the predicted results 
showed an R2 value of 0.92. However, like the previous work 
using the SuperCon database, the crystal structure information 
was not included, making it difficult to draw conclusions even 
the model error was low. In addition, similar approaches to 
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Figure 17. a) Parity plot between ML predicted and measured ln Tcr using all data groups with Tcr > 10 K. The performance of model trained on b) low-
Tcr on cuprates and c) Fe-based materials. The performance of model trained on cuprates on d) low-Tcr materials and e) Fe-based materials. Adapted 
according to the terms of the CC-BY license.[30] Copyright 2018, The Authors.
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projecting the periodic table to an image have been adopted by 
Zheng et al.[348] to find novel X2YZ compounds. The prediction 
of Tcr has also been attempted by Matsumoto and Horide[349] on 
ternary systems and below.

6.6.1. Summary

Predicting the superconducting critical temperature Tcr, par-
ticularly for nonelements, remains a major challenge. The 
foremost reason is that there is a lack of a universal theory and 
physical model of superconductivity. Furthermore, current data 
compilations of Tcr seem to lack even basic structural informa-
tion, which is a critical gap that needs to be addressed for the 
development of reliable ML models.

7. Perspectives

In the preceding sections, we have attempted to give a critical 
review of the application of ML in the study and design of 
energy materials. While neither ML nor energy materials sci-
ence can be considered “new” fields, a confluence of factors, 
namely, the substantial advances in ML, particularly, in deep 
learning and the parallel advancements in high-throughput 
first-principles computations and large federated computed 
materials property databases, have led to an intensification 
of research activity in this area in the past 4–5 years. From  
Section 6, it can be seen that there have already been substan-
tial successes demonstrated, with ML models learning novel 
energy materials and insights. Here, we will provide our per-
spectives on the key challenges and opportunities in this nas-
cent field. It should be noted that many aspects of the review 
(e.g., ML techniques and applications) as well as the following 
perspectives are readily generalizable to other application 
domains, and indeed, many energy materials have nonenergy 
related applications as well.

7.1. Data

As is evident from Section 6, the problem of limited data plague 
many application domains. ML models trained on fewer than 
50 data points are common, especially when the target pro-
perty is highly specific and difficult to measure/compute (e.g., 
alkali ionic conductivities or migration barriers, binding ener-
gies on surfaces, etc.). The outlook is better for more general 
properties. For instance, energetic data, such as the formation 
energy and other derived energy quantities such as Ehull, as well 
as electronic structure (bandgaps, density of states, band struc-
ture, etc.) are widely available for broad chemistries and crystal 
structures. Indeed, state-of-the-art graph-based deep learning 
models such as CGCNN,[93] SchNet,[259] and MEGNet[94] are 
already able to achieve MAE <0.04 eV per atom on the forma-
tion energy and MAE <0.35 eV on bandgaps, across data sets of 
≈60 000–100 000 crystals, and this should serve as a benchmark 
for future general or specialized ML models. Sizable data sets 
also exist for elastic constants and moduli, diffraction spectra, 
X-ray absorption spectra, superconducting Tcr, etc. For the 

properties that are more difficult/expensive to measure/com-
pute, there are several approaches worth exploring.

7.1.1. Data Fusion/Multifidelity Approaches

If it is possible to obtain low-fidelity data easily/cheaply, low 
fidelity data can provide extra information to high-fidelity 
ML models. The classic example is the bandgap of materials, 
for which a spectrum of techniques exist at different trade-
offs between cost and accuracy.[246,350] Yet another example 
is energies from different levels of theory, e.g., DFT versus 
CCSD(T).[351]

7.1.2. Transfer Learning

Somewhat related to the data fusion concept is transfer 
learning, whereby the knowledge gained from one model is 
used in a different but related problem. From Figure 2, there 
remains a substantial difference in data quantity between dif-
ferent properties, for example, there is an order of magnitude 
fewer elastic constants than energies and band structures in the 
Materials Project. Chen et al.[94] recently showed the elemental 
embeddings from a MEGNet model trained on formation ener-
gies can be transferred to accelerate the training and improve 
the accuracy of ML models for the bandgaps and elastic moduli. 
We note that the term “transfer learning” has been used some-
what inaccurately in the materials science domain to describe 
multifidelity approaches.

7.1.3. Crowd-Sourcing/Text Mining

Crowd-sourcing can be a means to improve the quantity of 
data available. For example, the MPContribs from Materials 
Project,[352] the NIST materials data repository,[353] citrination 
platform,[354] and the materials data facility (MDF)[355] are pro-
viding interfaces and tools for users to share their materials 
data. A second approach to substantially increase the amount 
of available data is via text-mining/natural language processing 
approaches. While text mining has been used to some success 
in identifying broad application/synthesis trends,[48,50,52,53] there 
have been no works attempting to extract materials properties.

Data scarcity is further compounded by “prejudice” bias. 
For example, the majority of computed energies and electronic 
structure properties are for experimentally known materials. 
Furthermore, there is much larger quantity of data on perov-
skites for a variety of applications (solar cells, fuel cells, etc.) 
compared to most other crystal types owing to the intense 
experimental focus on these structures and the fact that they are 
relatively easy to compute (the cubic perovskite unit cell only 
has five atoms). Similar biases in data exist in nearly all appli-
cation domains. While it is impossible to compute all possible 
structural and compositional variations, care has to be taken to 
ensure that the chemical space outside of the immediate appli-
cation domain is sufficiently sampled to avoid nongeneralizable 
models, obvious or spurious trends, or trivial findings, e.g., 
finding minor modifications of known materials with modest 
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improvements. First-principles computations can help address 
this issue to a certain extent, since such computations are not 
limited to already synthesized/synthesizable materials.

7.2. Models

As mentioned in Section 5.1, simpler, interpretable models are 
often more desirable in scientific disciplines. Many ML models 
are treated as “black boxes,” with no relational constraints 
(well-established physical/chemical relationships) within 
their construction.

Relational constraints can be imposed within the model 
architecture itself as well as in feature selection. For instance, 
graph-based models implicitly encode bonding relationships 
between atoms in both crystals and molecules, while local-
environment-based ML-IAPs impose locality of interactions 
between atoms. Indeed, once the model architecture encodes 
such relations between atoms, the selection of features becomes 
much more straightforward. For instance, it has been shown 
that graph-based models can achieve among the lowest MAEs 
on broad categories of crystal/molecule properties[94] with just 
the atomic number as atom feature and the bond distance as 
the bond feature. In the drive to achieve lower MAEs, it is not 
uncommon to see materials ML works where a large number 
of features (numbering in the hundreds) are fed into a model 
trained with similarly sized data sets. In more egregious cases, 
many of the features are highly correlated with each other, 
affecting model generalizability. One frequently used approach 
is to identify the most important features subsequently, but 
such techniques may end up arbitrarily choosing one correlated 
feature over another within the training data set. Neverthe-
less, there are approaches that can aid in model interpret-
ability to some degree. For example, the symbolic regression 
method[356,357] is able to construct a mathematical formula for 
predicting target values, and such simple formulas may shed 
light on the physical processes. In deep learning for images, 
there have been attempts trying to unlock the “black box” of 
CNN models using class activation maps[358] or activation atlas 
maps.[359] Similar approaches that map certain molecular pro-
perties to the molecule geometries have been applied using 
GCNN models[360] and are likely to gain more popularity.

To date, uncertainty in the models is often overlooked 
except in a few cases where uncertainty is built in the model, 
for example, in GPR. However, in a materials discovery pro-
cess, the desired material with superior property is more likely 
an “outlier” from existing data and thus in the model predic-
tion on new materials, the credibility of the prediction should 
be assessed. This is especially true for black-box ML models. 
In addition to measuring the credibility of the prediction, the 
analysis of uncertainty also provides valuable information 
regarding the data selection for the model. Peterson et al.[361] 
devised a bootstrap approach to randomly sample the data 
with replacement for model construction. In each sampling 
out of a total number of 50, the same number of data points 
as the full data was sampled to construct a ML-IAP and those 
models were then used to predict energy and forces, forming 
an ensemble. The authors found that a large half ensemble 
spread on the sample (defined by the half of the spread 

between 5% and 95% of the predictions) was correlated to high 
uncertainty of model prediction on the sample and thus crea-
tive suggestions can be made by including the sample to the 
training data. However, creating an ensemble of models can 
be costly. In GPR models, such uncertainty analysis is carried 
out natively. For example, Bayesian optimization usually takes 
an iterative approach where, depending on the exploration and 
exploitation settings, high uncertainty samples are generally 
favored to be included in a data acquisition step. In neural net-
works, the analysis of uncertainty can be analyzed simply via 
keeping dropout in the prediction.[362] We believe that uncer-
tainty quantification will play a major role in providing model 
insights, guiding the model construction and data selection in 
the near future.

8. Conclusion

To conclude, ML has already had a major impact on the study 
and discovery of energy materials in recent years. Nevertheless, 
there remains major scope and opportunities for improvements 
in both predictive performance as well as model interpret-
ability. We are cautiously optimistic that with continued data 
improvements (e.g., better theoretical methods,[239–241,363] col-
lection, curation, uncertainty quantification, etc.) and ML 
architecture advances (e.g., incorporating relational biases, 
known physics and chemistry, etc.), these challenges are sur-
mountable and ML will become an integral complementary 
tool to existing experimental and computational techniques for 
materials science.
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