

1st Thesis Advisory Committee Meeting, February 28th 2023 Maria Barrera

Development of coatings with an electrical insulating effect and hydrophilic surface for use in electrocaloric heat pumps

Outline

Introduction

Electrocaloric heat pump

Motivation

Surface functionalization of electrocaloric components

Experimental work

- Material system suitable for the application
- WO₃/W
- TiO₂-SiO₂
- TiO₂-SiO₂/WO₃/W
- Dynamic contact angle measurements

Page 2

Condensation/evaporation under heat pipe conditions

Summary and outlook

Electrocaloric heat pump

Introduction

Schematic representation of the electrocaloric heat pump. © 2019 Fraunhofer IPM.

(1)	EC	material	S
-----	----	----------	---

- (2) electrodes
- (3) coatings
- (4) EC components
- (5) check valves
- (6) electrical supply line

- (7) gas-proof housing
- (8) EC segments
- (9) EC system
- (10) throttle
- (11) evaporator
- (12) condenser

Heat transfer by means of latent heat when a fluid evaporates or condenses on the EC material

Surface functionalization of electrocaloric components

Motivation

Requirements

• Uniform wetting of the surface by the working fluid for heat transfer optimization $0^{\circ} < \theta < 10^{\circ}$

→ (super)hydrophilic coatings

Preservation of electrocaloric properties

Challenge

Development of (super)hydrophilic coatings that do not require to be activated by periodical UV exposure

Material system suitable for the application

Approach

Development of long-lasting superhydrophilic thin films by means of pulsed magnetron sputtering.

Variation of deposition parameters:

- substrate temperature \rightarrow crystal structure and morphology
- film thickness
- pulse frequency and duty cycle

Batch plant for coating 3D substrates

WO₃/W Optimization of coatings

Sputtered tungsten top electrodes:

- highest thermal (bulk:164 Wm⁻¹K⁻¹) and electrical conductivity (bulk: 18.5 MS/m) of all non-noble metals.
- chemically and mechanically stable \rightarrow better bonding of WO₃ layer.

5 μm W deposited at 500 °C on Al_2O_3 ceramic

- columnar crystallites
- electrical conductivity: 4 MS/m

- nanocrystalline structure
- high porosity
- XRD: α-W (bcc), monoclinic-WO₃

- Pulsed magnetron sputtering in double magnetron arrangement
- Variation of composition by different pulse lengths
- Optimum composition: 36 65 at.% Si.

Crystallite size decreases with decreasing Ti content:

16:10:<mark>5</mark>:10 μs, Ti_{0.96}Si_{0.04}O₂

16:10:**6**:10 μs, Ti_{0.76}Si_{0.24}O₂

1 μ m, deposited at 250 °C on Al₂O₃ ceramic

16:10:<mark>8</mark>:10 μs, Ti_{0.50}Si_{0.50}O₂

Ti target – Si target

Page 7

Long-lasting superhydrophilic TiO₂-SiO₂/WO₃/W

Suitable material system

- Lasting hydrophilicity for more than 7 months of dark storage.
- Complete wetting recovery (WCA = 0°) after exposure to 3 hours of daylight.
- Surface energy modification

Long-lasting superhydrophilic TiO₂-SiO₂/WO₃/W

Suitable material system

- Lasting hydrophilicity for more than 7 months of dark storage.
- Complete wetting recovery (WCA = 0°) after exposure to 3 hours of daylight.
- Surface energy modification

Wenzel's equation:

 $\cos\theta^* = r \, \cos\theta$

Capillary effect:

spreading + wicking

SU8000 2.0kV 2.0mm x5.00k LA100(U)

TiO₂-SiO₂

WO₂

W

10.0um

Dynamic contact angle measurements

Evaporation of a 0.5 μL water drop

- Faster evaporation of a water drop on the multilayer TiO_2 -SiO₂/WO₃/W.
- Bigger contact radius on the multilayer TiO_2 -SiO₂/WO₃/W \rightarrow a larger surface area is wetted.

Page 10

Condensation/evaporation experiments

Dynamic wetting under heat pipe conditions

Time-dependent condensation and re-evaporation processes on surfaces with different wettability:

1st TAC Meeting, Maria Barrera

Condensation/evaporation experiments

Dynamic wetting under heat pipe conditions

Periodic process WO₃/W on Si wafer:

- Recipient is evacuated to approx. 25 mbar (H₂O vapor pressure at 21.5°C)
- Amount of water is adapted to chamber volume
- Water is evaporated
- Temperature of sample is controlled by Peltier device
- Pulses: 5 s on, 5 s off

Condensation/evaporation experiments

Dynamic wetting under heat pipe conditions

Uncoated Si wafer (ideal smooth surface):

- Nanodroplets → microdroplets
- Spherical cap shape, separated by dry areas
- Contraction of microdroplets (Constant contact angle mode)

- Precursor film \rightarrow nanodroplets
- Flat, irregularly-shaped (capillary effect)
- Flattening of microdroplets (Constant contact radius mode)

Summary and outlook

- Long-lasting superhydrophilic TiO_2 -SiO₂/WO₃/W multilayers have been developed by pulsed magnetron sputtering.
- Chemical properties + porous microstructure \rightarrow capillarity \rightarrow super-hydrophilicity (water contact angle < 10°), even after 7 months of dark storage.
- No need of periodical UV exposure.
- Improvement of condensation/evaporation experiments under reduced pressure conditions for heat transfer evaluation → (ESEM?)
- Surface functionalization of polymer electrocaloric materials taking into account their thermal stability.

Page 14

Thank you for your attention

1st TAC Meeting, Maria Barrera

28.02.2023

Confidentia

