

3rd Thesis Advisory Committee (TAC) Meeting

Theses update
 Post growth thermal treatment of Si_{1-x-y}Ge_ySn_x OI
 10 theses about the theses

03.05.2023

Antimo

Oliver Steuer

Supervisors: Dr. Slawomir Prucnal, Dr. Yordan Georgiev

Institute of Ion Beam Physics and Material Research · FWIO-FWIM · Dipl.-Ing. Oliver Steuer · o.steuer@hzdr.de

Transistor

DRESDEN

SCIENCE AND INNOVATION CAMPIL

Update

Title: Fabrication and characterisation of Si_{1-x-y}Ge_ySn_x alloys

Top-Gate Drain Dielectric III. Fabrication and characterisation of junction less transistors **Device** fabrication Source n-Si_{1-x-y}Ge_ySn_xChannel le-n-SiG Influence of post growth PLA on device performance (Today) S S aterial sience of Ge Φ allo progre II. Fabrication of GeSn and SiGeSn thin films on SOI Snx Ion implantation + FLA MBE and post growth thermal treatment: PLA, (FLA) (Today) SIS Si_{1-x-1} Ű I. Fabrication of GeSn and SiGeSn thick films and Post growth thermal treatment: FLA, PLA Paper 1: published Characterisation: RBS, SIMS, XRD, TEM... Paper 2: in submission process

- Fabrication and characterisation of Si_{1-x-v}Ge_vSn_x alloys -

Update Transistor fabrication - Material analysis Si_{1-x-y}Ge_xSn_xOI -- Device analysis -- Summary Si_{1-x-y}Ge_xSn_xOI -10 theses about the theses -

- Fabrication and characterisation of Si_{1-x-v}Ge_vSn_x alloys -

Update Transistor fabrication - Material analysis Si_{1-x-y}Ge_ySn_xOI -- Device analysis -- Summary Si_{1-x-y}Ge_ySn_xOI -10 theses about the theses -

Si_{1-x-y}Ge_ySn_x OI characterisation

As grown: Elemental distribution

- Targeted layer stack
- No O at Si_{1-x-y}Ge_ySn_x / SOI interface
- Homogeneous Sn distribution
- Slightly inhomogeneous surface with oxides

Lattice mismatch Ge on Si: 4.1%

Si_{1-x-y}Ge_ySn_x OI characterisation

As grown: crystal structure: mainly single crystalline

Si_{1-x-y}Ge_ySn_x OI characterisation Post growth PLA

Experiment: PLA with 3 different energy densities on one 10x10 mm² sample

Analysis:

- XRD
- RBS
- µ-Raman
- SIMS
- TEM
- Hall effect

Si_{1-x-y}Ge_ySn_x OI characterisation Post growth PLA - XRD

SOI material leads to some challenges:

- Low intensities
- Alignment issues

Commercial SOI wafer

Si_{1-x-y}Ge_ySn_x Ol characterisation Post growth PLA – XRD: HRXRD (004)

- No influence due to FLA
- Higher intensity and peak shift after PLA

Si_{1-x-y}Ge_ySn_x OI characterisation Post growth PLA – XRD: RSM (224) Ge_{1-x}Sn_xOI

- TEM Ge_{0.94}Sn_{0.06} as grown 10 nm
- $Ge_{0.94}Sn_{0.06}$ as grown 1x1 cm², without monochromator /(counts)

- Almost strain relaxed as grown state
- Recrystallization due to PLA
- Similar peak position

$Si_{1-x-y}Ge_ySn_x$ OI characterisation Post growth PLA – XRD: RSM (224) $Si_{1-x-y}Ge_ySn_xOI$

- Slight compressive strained
- Peak shift upwards after PLA 0.15 J cm⁻²
- PLA > 0,2 shift towards Si
- Next step:
 Strain calculation

Si_{1-x-y}Ge_ySn_x OI characterisation Post growth PLA – SIMS

- Shift towards deeper sputter depth due to sputter rate
- Out diffusion of Sn
- Sb concentration almost unaffected

$Si_{1-x-y}Ge_ySn_x$ OI characterisation Post growth PLA – TEM Ge_{1-x}Sn_xOI

As grown

SCIENCE AND

$\begin{array}{l} Si_{1-x-y}Ge_{y}Sn_{x} \ Ol \ characterisation \\ \mbox{Post growth PLA}-\mbox{TEM} \\ Ge_{1-x}Sn_{x}Ol \end{array}$

As grown

PLA 0.2 J cm⁻²

$\begin{array}{l} Si_{1-x-y}Ge_{y}Sn_{x} \ Ol \ characterisation \\ \mbox{Post growth PLA}-\mbox{TEM} \\ Si_{1-x-y}Ge_{y}Sn_{x}OI \end{array}$

As grown

PLA 0.25 J cm⁻²

$\begin{array}{l} Si_{1-x-y}Ge_{y}Sn_{x} \ OI \ characterisation \\ \mbox{Post growth PLA}-\mbox{TEM} \\ Si_{1-x-y}Ge_{y}Sn_{x}OI \end{array}$

As grown

PLA 0.25 J cm⁻²

- Fabrication and characterisation of Si_{1-x-v}Ge_vSn_x alloys -

Update Transistor fabrication - Material analysis Si_{1-x-v}Ge_vSn_xOI -**Device analysis -**Summary Si_{1-x-v}Ge_vSn_xOI -

10 theses about the theses -

Transistor fabrication Ge_{1-x}Sn_xOI

Transistor fabrication Si_{1-x-y}Ge_ySn_xOI

SCIENCE AND INNOVATION CAMP

- Fabrication and characterisation of Si_{1-x-v}Ge_vSn_x alloys -

Update Transistor fabrication - Material analysis Si_{1-x-y}Ge_ySn_xOI -- Device analysis -- Summary Si_{1-x-y}Ge_ySn_xOI -10 theses about the theses -

Summary Si_{1-x-y}Ge_ySn_xOI

- Device fabrication process adjusted based on previous results
- Si_{1-x-y}Ge_ySn_x growth on Si caused defects in Si_{1-x-y}Ge_ySn_x layer
- Post growth PLA performed
 - Amorphous inclusions can crystallize due to PLA
 - PLA can lead to Sn surface diffusion
- Si_{1-x-y}Ge_ySn_xOI and Ge_{1-x}Sn_x OI transistors fabricated
 - High I_{ON} could be achieved
 - AI_2O_3 increases the I_{ON}/I_{OFF} ratio, reduces hysteresis
 - Problems to turn the off transistor while using back gate
 - Control via top gate

- Fabrication and characterisation of Si_{1-x-v}Ge_vSn_x alloys -

Update Transistor fabrication - Material analysis Si_{1-x-y}Ge_ySn_xOI -- Device analysis -- Summary Si_{1-x-y}Ge_ySn_xOI -10 theses about the theses -

10 theses about the theses

- 1. Ge_{1-x}Sn_x and Si_{1-x-y}Ge_ySn_x alloys are promising group IV semiconductor alloys of integrated circuits.
- 2. $Ge_{1-x}Sn_x$ and $Si_{1-x-y}Ge_ySn_x$ alloys can be fabricated by ion beam implantation and flash lamp annealing.
- 3. Millisecond Flash lamp annealing can be used for contact formation and recrystallization processes.
- 4. Nanosecond pulsed laser annealing with energy densities above the melting threshold leads to strain relaxation and elemental redistribution.
- 5. Nanosecond pulsed laser annealing can improve the quality of MBE grown Ge_{1-x}Sn_x and Si_{1-x-y}Ge_ySn_x alloys on silicon on insulator, but leads to redistribution of elements within the layer.
- 6. CMOS compatible fabrication of $Ge_{1-x}Sn_x$ and $Si_{1-x-y}Ge_ySn_x x = 6$ at.%, y = 80 at.% junction less transistors is feasible.
- Junction less Ge_{1-x}Sn_x and Si_{1-x-y}Ge_ySn_x x=6 at.%, y= 80 at.% transistors achieves a large on currents
- 8. Post growth thermal treatments can improve the device performance
- 9. Open for transistor topic
- 10. Open for transistor topic

Open topics

- Status talk
- 3rd reviwer
- Submission date

