

Computational Modelling of Nanosensor Responses to Odor Molecules

Supervised by Prof. Gianaurelio Cuniberti Dr. Rafael Gutierrez Dr. Arezoo Dianat

Kick-Off Meeting

Narges Ghasemi 02.03.2023

Smart Electronic Olfaction for Body Odor Diagnostics (SMELLODI)

Functions of the human olfaction system;

- Social communication
- Avoidance of environmental hazards
- Ingestive behavior
- Disease detection

Nanoengineering Approaches Toward Artificial Nose

Serious Challenge

- The biological olfactory system is highly discriminative and sensitive compared to the other sensory systems.
- A single odor source typically emits a combination of many unique odorant molecules that vary in composition

Kim et al., Frontiers in Chemistry, Volume 9, 2021

Chemoresistive sensors

- Metal-oxide-semiconductors (MOS)
- Conductive polymers
- Nanomaterials like graphene, carbon nanotubes

Advantages:

- Excellent carrier mobility
- High mechanical strength
- Low fabrication cost
- Being adaptive through the functionalization of the sensing material envisioned in SMELLODI

Schroeder et al. ACS Sens. 2019, 4, 2101-2108,

Three components of SMELLODI;

- the development of an eNose platform
- > Study of healthy and pathological body odor perception by individuals
- > The controlled synthesis of odors

Work packages included in SMELLODI

Motivation

In order to improve or tune the sensitivity and selectivity of graphene surface, the functionalization of graphene nanoribbons with artificial receptors should be investigated.

Research Plan

- > A consistent set of molecular descriptors will be defined for the odor molecules.
- > The focus will be on mucin-derived glycans and glycopeptides receptors
- Structural optimization will be performed to address stable conformations and binding energies of receptors on CNTs and the graphene surface
- Based on the stable structures, an atomistic calculation of transport characteristics of analyte-receptor interactions will be carried out.

Simulation setup:

- Functionalization of Graphene nanoribbon by Mucin-derived artificial receptors.
- Adding odor molecules to functionalized nanoribbon.

Computational method:

- Method: DFTB
- Geometry optimization with Dispersion corrections
- Electron transport calculations with SCC correction

Mucin-derived artificial receptors, suggested by S. Yitzchaik

Selected odor molecules

Computational Modelling of Nanosensor Responses to Odor Molecules Narges Ghasemi TAC Kick-Off Meeting // 02.03.2023

Functionalization of Graphene nanoribbon by artificial receptors

SCC Transmission and DOS in AGNR with and without the receptor

Interaction between the receptor and the first odor molecule

Binding energy = -1.058 eV

Computational Modelling of Nanosensor Responses to Odor Molecules Narges Ghasemi TAC Kick-Off Meeting // 02.03.2023

SCC Transmission and DOS in functionalized AGNR with and without the first odour molecule

Interaction between the receptor and the second odor molecule

Triacetin: C9H14O6

SCC Transmission and DOS in functionalized AGNR with and without the second odour molecule

Conclusion

- > The AGNR have been functionalized by one of the artificial receptor(Fmoc-Tyr-OH)
- > The interaction between the functionalized AGNR with the odor molecules have been investigated
- > The sensitivity in functionalized AGNR seems to be low.

Suggestion for the next step

> The calculations could be repeated with defective AGNRs.

Thank you for your attention!