
Charge Transport Mechanism in 2D COFs

2nd TAC Meeting

Elif Ünsal

Supervised by Rafael Gutierrez Gianaurelio Cuniberti

Dresden, August 30th 2022

Elif Ünsal Institute for Materials Science elif.unsal@tu-dresden.de

Motivation

Objectives and Challenges

Workflow

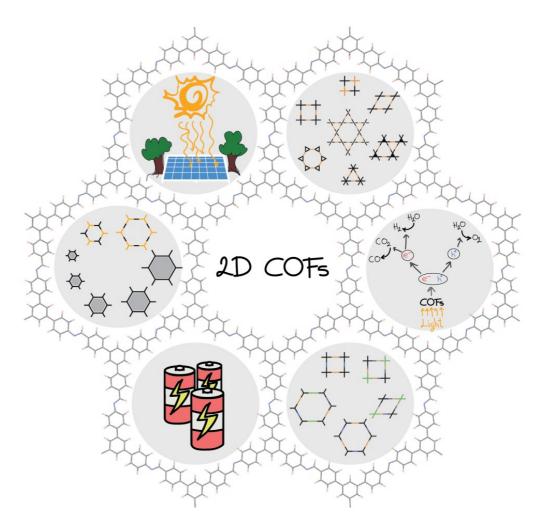
Results

- Porphyrin-based COFs
- DFTBephy: A DFTB-based Approach to Electron-Phonon Coupling (EPC)

Ongoing Works & Collaborations

- COF Heterostructures (Organic-Inorganic)
- Stacking Types in COFs
- COF Heterostructures (Organic)

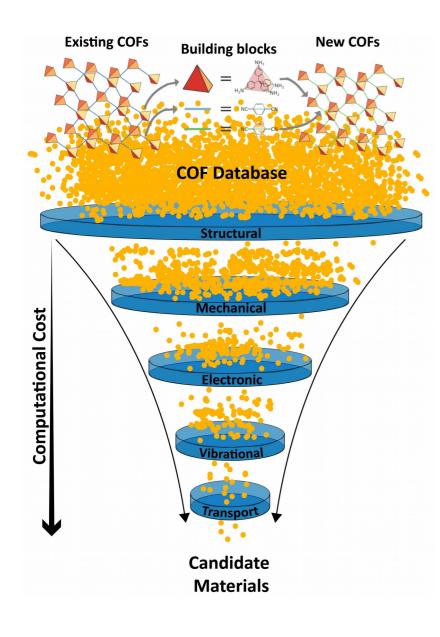
Overview



Motivation

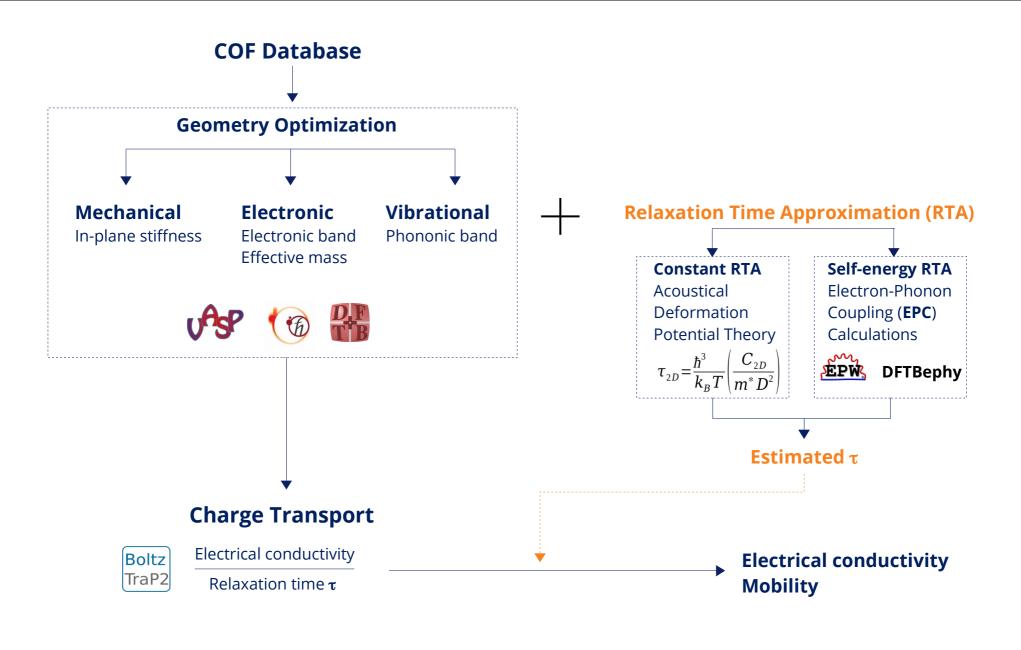
- 2D COFs attractive for wide range of applications in: Photovoltaics, energy storage, catalysis etc.
- * Various types of tailor-made 2D COFs
- * Feasibly tunable physical properties!
- Huge variety of COFs !!
 <u>Systematic investigation</u>
 <u>Predicting the promising materials</u>
- Charge transport properties of most of 2D COFs are still unknown.

[1] Diercks and Yaghi, Science, 355, eaal 1585 (2017).
 [2] Dong and Feng, Chem. Rev., 118(13), 6189-6235 (2018).
 [3] Feng *et al.* Chem. Soc. Rev., 41, 6010-6022 (2012)



Objectives and Challenges

- To understand the charge transport mechanism in 2D COFs using firstprinciples approaches
- To design novel 2D COFs with functional transport properties
- To screen wide range of COFs
- Most of the COFs contains large amounts of atoms in their unit cells.
- Even for the geometry optimization with standard DFT method, material screening is challenging.



Workflow

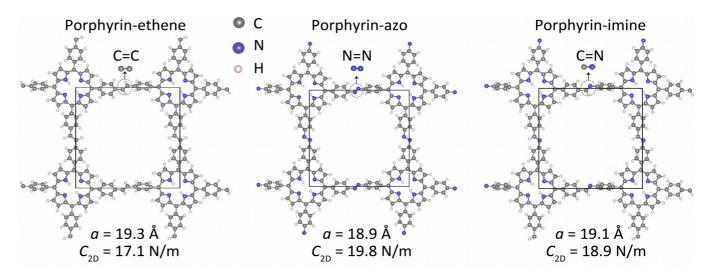
TIMATE

Results: Porphyrin-based COFs

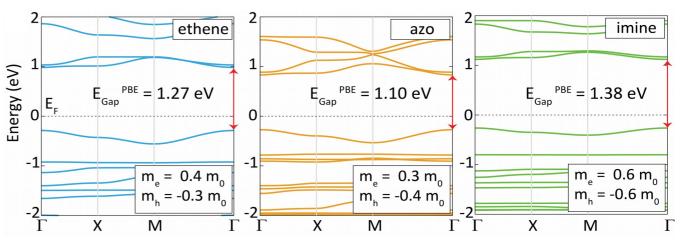
Why porphyrin-based COFs?

Hole mobilities **up to 8.1** cm²V⁻¹s⁻¹

Chem. Mater., 2011, 23, 18 4094-4097.


- Method: DFT- PBE
- Quadratic unit cell
- In-plane stiffness C_{2D}:

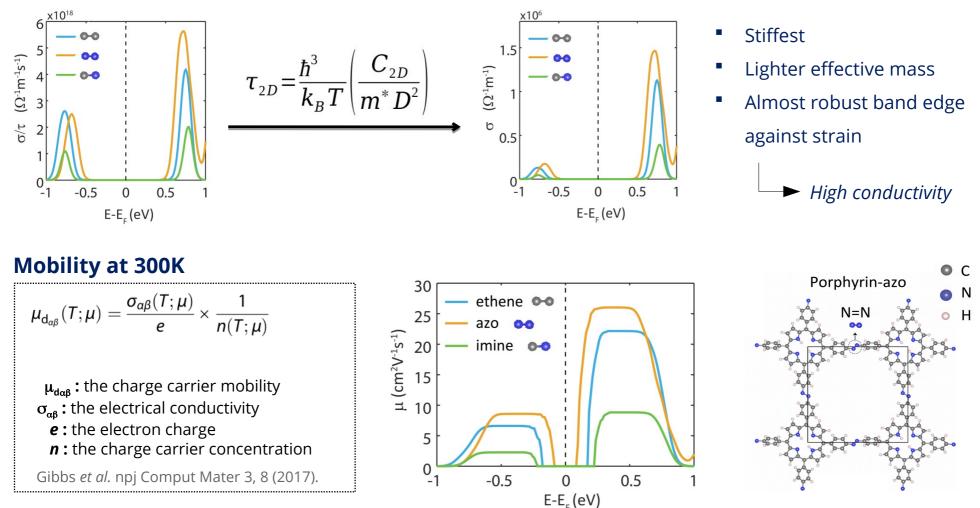
$C_{2D,azo} > C_{2D,imine} > C_{2D,ethene}$


- Direct band gap
 E_{G,imine} > E_{G,ethene} > E_{G,azo}
- Deformation potential constant

	D _{electron}	D _{hole}
ethene	-1.07	-2.96
azo	-1.34	-2.57
imine	-1.17	-2.50

Structural and Mechanical Properties

Electronic Properties



Results: Porphyrin-based COFs

Transport Properties within Constant RTA

Electrical Conductivity at 300K

Next Step: Calculating their transport properties within self-energy RTA

Results: DFTBephy

EPC calculations from ab-initio are computationally too expensive!

Especially for the systems with large number of atoms \rightarrow COFs

-1

-2

-3

-5

-6

-7

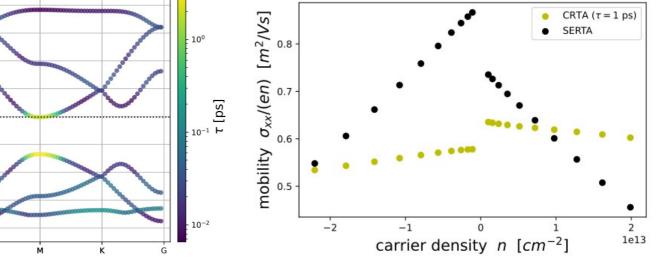
E [eV]

DFTBephy: A DFTB-based Approach for El-Ph Coupling Calculations

Collaboration with A. Pecchia and A. Croy

- Charge carrier relaxation times within self-energy RTA [Ponce et al. Rep. Prog. Phys. 83,2020]

Preliminary results for γ -graphyne:


Side 10^{-2} -2 -8 ----Duration \rightarrow 4-5 hours — A chance for COF screening

Next Step: Our results will be benchmarked against EPW calculations

Тор

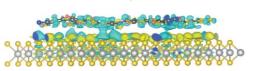
FRIEDRICH-SCHILLER

COC COR SMI

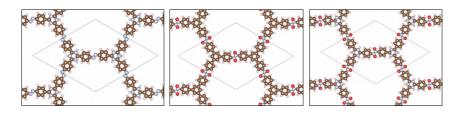
Phonopy

Ongoing Works & Collaborations

Nanochemistry Lab. (Paolo Samori), I.S.I.S.


- Charge transfer in COF/MoS₂ Heterostructures
 - 1) Electron transfer: $COF \rightarrow MoS_2$
 - 2) Larger doping level for "smaller" COF

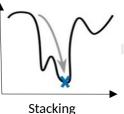
3) Interfacial charges mostly localized around N atoms


MoS.

Charge Transfer per Area [e/cm ³]		
	TFPB MoS ₂	PDA MoS ₂
Calculated	8.8x10 ¹¹	> 8.0x10 ¹¹
Experimental	21.8x10 ¹¹	> 14.6x10 ¹¹

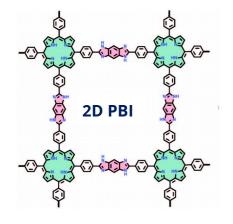
CO

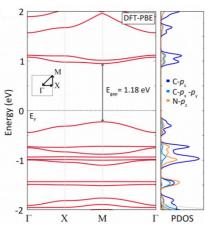
• Stacking Analysis in Triazine-Based COFs

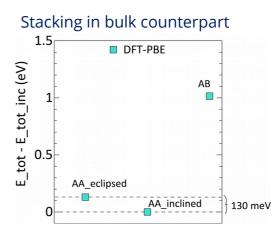


TAPB-TFPB/MoS

TAPB-PDA/MoS

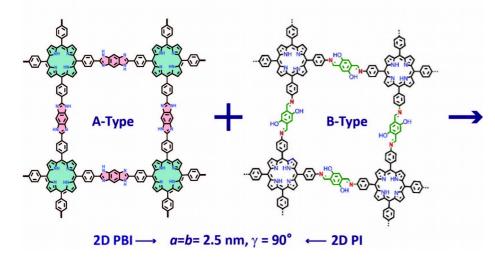

Mo
 S
 C


N



Anupam Prasoon, Renhao Dong, Xinliang Feng, TU Dresden

Stacking in Few-Layer Polybenzimidazole (PBI) COF



Next step: Electronic properties of few-layer PBI

Charge Transport in 2D PBI-Polyimine (PI) Heterostructure

No lattice mismatch!

Synthesized:

- AB-Type
- BA-Type

Charge transfer between the layers

In-plane mobility of the heterostructure

- Computational
- Experimental

Overview

Workshops and Conferences :

Poster Presentations:

- Chem2DMat, online (August 31-September 3, 2021) CHem2Dmat
- IWOM2021-TYC workshop on Charge Transport in Organic Materials (June 21-25, 2021)
- Daresbury DFTB+ School, Daresbury, UK (June 6-10, 2022)
- CRC1415 Retreat 2022, Niederwiesa, DE (June 15-17, 2022)
- Quantum Transport Methods and Algorithms, Zurich, CH (June 6-8,2022)

Talk:

- CRC 1415 MGK Seminar, Dresden, DE (August 16, 2022)

Publications:

- DFTBephy: A DFTB-based Approach for El-Ph Coupling Calculations (in preparation)

DRESDEN

- Modulating the electronic properties of TMDs with 2D covalent organic networks (in preparation)
- Few layer PBI (in preparation)

CRC

Overview

Anticipated Workshops and Conferences :

<u>Talk:</u>

- DPG-Tagung, Regensburg, DE (September 4-9, 2022)

ULTIMATE related:

- 5th Progress Meeting, Genova, IT (November 2022)
- Entrepreneurship and career planning (IBM, ULTIMATE) (April 2023)

ULTIMATE Secondements:

- @UNISTRA (February 14-March 27 2022) V
- @DWI Leibniz Institute for Interactive Materials (4 Weeks)
- @IBM (2 Weeks)

Courses:

Winter term 2022/2023

- Computational Materials Science: Molekulardynamik
- Werkstoffe der Energietechnik

Rigorosum:

Summer term 2022/2023

- Nanostructured Materials
- Many-Body Theory in Condensed Matter

