Promotionsvorhaben Oliver Steuer - Thema und Projekt -- Aktueller Stand -

- Ausblick -

Oliver Steuer 06.05.2022

Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf

Promotionsvorhaben Oliver Steuer - Thema und Projekt -- Aktueller Stand -

> Oliver Steuer 06.05.2022

- Ausblick -

Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf

Member of Helmholtz Association

Motivation

Si

- + cheap
- + well understood
- + SiO_2

- + well developed technology
- carrier mobility

	Group IV		
Semiconductors	Si	Ge	
Electron mobility (cm ² /Vs)	1600	3900	
Hole mobility (cm²/Vs)	430	1900	

	-			-		
YEAR OF PRODUCTION	2020	2022	2025	2028	2031	2034
	G48M36	G45M24	G42M20	G40M16	G38M16T2	G38M16T4
Logic industry "Node Range" Labeling (nm)	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
IDM -Foundry node labeling	17-15	15-f3	13-12.1	12.1-f1.5	11.5e-f1.0e	11.0e-f0.7e
Logic device structure options	FINFET	finFET LGAA	LGAA	LGAA	LGAA-3D	LGAA-3D
Mainstream device for logic	fInFET	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D
LOGIC TECHNOLOGY ANCHORS						
Patterning technology inflection for Mx interconnect	193I, EUV DP	193I, EUV DP	193I, EUV DP	1931, High-NA EUV	1931, High-NA EUV	1931, High-NA EUV
Beyond-CMOS as complimentary to mainstream CMOS	-	-	-	2D Device, FeFET	2D Device, FeFET	2D Device, FeFET
Channel material technology inflection	SIGe25%	SIGe50%	SIGe50%	Ge, 2D Mat	Ge, 2D Mat	Ge, 2D Mat
Process technology inflection	Conformal Doping Contact	Channel, RMG	Lateral /Atomic Etch	Non-Cu Mx	3DVL SI	3DVL SI
Stacking generation inflection	2D	3D-stacking: W2W, D2W Mem-on- Logic	3D-stacking: W2W, D2W Mem-on- Logic	SD-stacking, Fine-pitch stacking, P-over-N, Mem-on- Logic	3D-stacking, 3DVL SI: Mem-on- Logic with Interconnect	3D-stacking, 3DVL SI: Logic-on- Logic

*Note: Information based on 2020 IRDS More Moore Table MM01

Source: International Roadmap for Devices and Systems (IRDS™) 2021 EditionIRDS™ 2021: Metrology

Member of Helmholtz Association

Motivation

P.Moontragoon, Z. Ikonić, and P. Harrison; Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials. Semiconductor science and technology, 2007.

Member of Helmholtz Association

Motivation

Dipl.-Ing. Oliver Steuer | o.steuer@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

BMBF-Project

Dr. Yordan Georgiev

Oliver Steuer

Group IV heterostructures for future nanoelectronic devices

Member of Helmholtz Association

Challenges

Solubility of Sn < 1%

Fig. Calculated Sn solid solubility curves as a function of temperature for various Si-Ge solid compositions. The dashed line correspond to the ternary eutectic points.

J.P. Fleurial, A. Borshchevsky, SiGe-Metal ternary phase diagram calculations, J. Electrochem. Sci. 137 (1990) 2928, DOI:10.1149/1.2087101

$Ge_{1-x}Sn_x$

• solubility limit < 1%

Fig. Equilibrium phase diagram of Ge-Sn. Shown is the Ge rich side up to 15%Sn.

E. Kasper, M. Kittler, M. Oehme, and T. Arguirov: Germanium tin: silicon photonicstoward the mid-infrared; 2013

Member of Helmholtz Association

Challenges

GeSn

compressive strain

layer stack:

GeSn or SiGeSn

Substrate (Si or Ge)

Member of Helmholtz Association

Material fabrication SiGeSn

Ion implantation and FLA - process

Ion implantation

FLA: Recrystallization

https://www.hzdr.de/db/Pic?pOid=56057

Material fabrication GeSn

Ion implantation and FLA

• up to 6% Sn for GeSn on Si

S. Prucnal, Y. Berencén, M. Wang1, L. Rebohle, R. Kudrawiec, M. Polak, V. Zviagin, R. Schmidt-Grund, M. Grundmann, J. Grenzer, M. Turek, A. Droździel, K. Pyszniak, J. Zuk, M. Helm, W. Skorupa, and S. Zhou Band gap renormalization in n-type GeSn alloys made by ion implantation and flash lamp annealing, Journal of Applied Physics, 125 (2019).

Member of Helmholtz Association

Seite 10

Dipl.-Ing. Oliver Steuer | o.steuer@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

Material fabrication SiGeSn

Ion implantation and FLA

• up to 4.5% Sn for SiGeSn on Si

(t)

Member of Helmholtz Association

Promotionsvorhaben **Oliver Steuer** - Thema und Projekt -- Aktueller Stand -- Material characterisation -- Ausblick -

Oliver Steuer 06.05.2022

Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf

Member of Helmholtz Association

Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting

laser wavelength:		
annealing time:		
annealed area:		

308 nm 28 ns 5x5 mm²

300 nm Ge_{0.89}Sn_{0.11}

280 nm Ge

100 nm Ge-VS

50 nm Si

Si p⁻ (100) Substrate

samples	energy density [J/cm ²]
a)	0.20
b)	0.25
c)	0.30
g)	0.35
e)	0.40
f)	0.50
g)	0.60

Measurements: µRaman, HRXRD, TEM, PR Hall effect, Positron annihilation spectroscopy

Member of Helmholtz Association

Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting HRXRD – RSM:

Member of Helmholtz Association

Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting

TEM:

bright-field TEM

EDX

HRTEM

Member of Helmholtz Association

Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting Summary:

- control of the molten layer thickness
- afterwards still single crystalline samples
- small redistribution of Sn
- direct band gap is about 0.5 eV
- able to release in plain strain

Member of Helmholtz Association

Seite 16

Dipl.-Ing. Oliver Steuer | o.steuer@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting Outlook:

- Defect evolution in GeSn
- Relaxed GeSn as virtual substrate for GeSn_{0.06}

Direct band gab Relaxed GeSn surface

Member of Helmholtz Association

Promotionsvorhaben **Oliver Steuer** - Thema und Projekt -- Aktueller Stand -- Transistor fabrication -- Ausblick -

Oliver Steuer 06.05.2022

Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf

Member of Helmholtz Association

JL-FET principles

Utilizes a semiconductor film with a gate to control its resistance and hence, the current flowing through it.

Member of Helmholtz Association

Member of Helmholtz Association

Dipl.-Ing. Oliver Steuer | o.steuer@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

Seite 20

Materials for fabrication

doped SiGe

doped SiGeSn

Ion implantation and FLA

Molecular beam epitaxy

20 nm Ge:Sb

20 nm Ge_{0.94}Sn_{0.06}:Sb

20 nm Si_{0 15}Ge_{0 85}:Sb

20 nm $Si_{0.14}Ge_{0.8}Sn_{0.06}$:Sb

Member of Helmholtz Association

2. Patterning of nanowires (NW) - RIE -

A) F-Based RIE C4F8 = 22 sccm; SF6 = 10sccm; O2 = 5 sccm

Pressure = 0.9 Pa ICP power = 400 W

RF power = 12 W Etch time = 28 s

B) F-Based RIE

C4F8 = 22 sccm; SF6 = 10sccm; O2 = 5 sccm Pressure = 0.9 Pa ICP power = 400 W **RF power = 14 W Etch time = 30 s**

Member of Helmholtz Association

2. Patterning of nanowires (NW) - HSQ removal -

A) F-Based RIE

C4F8 = 22 sccm; SF6 = 10sccm; O2 = 5 sccm Pressure = 0.9 Pa ICP power = 400 W **RF power = 12 W Etch time = 28 s**

B) F-Based RIE

C4F8 = 22 sccm; SF6 = 10sccm; O2 = 5 sccm Pressure = 0.9 Pa ICP power = 400 W **RF power = 14 W Etch time = 30 s**

concep

Member of Helmholtz Association

Member of Helmholtz Association

Chip 5-2

Fabrication of n-type GeSn-JNT

Member of Helmholtz Association

6. Gate metal

Pt Al₂O₃

Si

SiO2

6. Top gate

TEM

Dipl.-Ing. Oliver Steuer | o.steuer@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

Promotionsvorhaben Oliver Steuer - Thema und Projekt -

Thema und Projekt Aktueller Stand Ausblick -

Oliver Steuer 06.05.2022

Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf

Outlook and PhD topic

Group IV heterostructures for future nanoelectronic devices

15 nm Si _{0,7} Ge _{0,3} Sn _x	15 nm Si _{0,7} Ge _{0,3}		
12 nm Si (100)	12 nm Si (100)		
21 nm SiO ₂	21 nm SiO_2		
750 µm Si bulk	750 µm Si bulk		

- Electrical charakertsation
- 4 types of Sn implanation
- 6 transistors MBE
- Influence of FLA of Al₂O₃ on Ge and Si
- Ion implantationen P, Ga and Sn
- Contact formation (CTLM)
- Band gab and strain engineering
- Defect investegation in GeSn and SiGeSn
- Virtual Substrate for GeSn and SiGeSn
- Material for transistors

Topic?: Fabrication and characterisation of Si_{1-x-y}Ge_xSn_y alloys

DRESDEN

Member of Helmholtz Association

Pitfalls

- Thin films difficult for material characterisation
- Si below main layer
- Cleanroom HZDR not always open (Corona + construction site April- September)
- RIE in partner institute
- Sn segregation during processes possible
- Delays in processes due to broken tools

