

TAC Meeting

Björn Pohle 17.02.2022

Determination of battery parameters

- OCV + temperature dependency
- Particle morphology
- Diffusion coefficient

- OCV + temperature dependency
- Particle morphology
- Diffusion coefficient

Selection of the electrolyte

- Large number of components possible, there are currently 2 typical representatives, typically Ether- and Carbonate-based systems
- Possible usable range for the application between -20 to 60°C
- Melting point of sodium 97,8°C

Calculation of electrolyte parameter

- Modification of the origin setup with the complete RHD instruments setup
- Sodium is more reactive for contaminate
- All measurements is execute in the glovebox

Characterisation electrolytes

- measurement setup (fluid cell, symmetric cell, concentration cell)
- electrolyte contains 1M NaClO₄ in EC/PC 1:1 + 5 % FEC
- Temperature range between -20 to 60 °C
- Determination of the parameters with EIS / GITT / OCV
 - Specific conductivity EIS measurement
 - Diffusion coefficient GITT
 - Transport number Polarisation

Next steps for the electrolyte parameter

- Carbonate-based electrolytes have a lower stability in sodium cells in comparison to lithium cells → determination the parameter for Etherbased systems with Diglyme
- Finish the parameters calculation for the EC/PC + FEC setup, and a solidstate electrolyte with the NASICON-structure
- Creation of a materials database for the electrolytes

Anode characterisation

- Stability of a pure metal anode is low without any modification of the surface and not direct usable, this effect is not pronounced in lithium cells
- During cycling, Na dendrites are growing and destroy the surface \rightarrow capacity reduction
- Opportunities of the modification
 - Thin artificial SEI layers or coatings
 - 2D or 3D Anode structures
 - Electrolyte modification
- → The characterisation without any modification is possible, but a fast capacity loss is observed

Effect of the metal dendrites

- Dependency of the dendrite growth on temperature, current density, concentration of the electrolyte and the current density
- Without dendrite growth preventing, destroying of the cell with a short circuit or fire / explosion is the result
- The change from a liquid to solid-state electrolyte increases the safety, but the risk for dendrites as well

Anode Modification

- different possible ways for protection of the sodium metal anode
- the target from 2D / 3D material is an defined structure for the infiltrated sodium
- with the coated layer or films, a formed protection barrier or alloy at the surface is created

Cathode characterisation

- Determination of the electrochemical parameters with coin cells 2025
- Self-synthesized stable cathode material Na_xCo_{0.8}Ti_{0.2}O₂ with a good specific capacity of max. 120 mAh/g
- Measurement of the materials performance at 0°C, 25°C, 40°C and 60 °C
- Publication is in preparation

Next Steps

- To finish the characterisation of anode and cathode materials
- To define the anode modification with good stability of the anode
- To create the materials database for electrode materials/ electrolytes
- Build up an p2d sodium batteries model
- validate the model with real measurements
- To finish two publications about the cathode materials

Example for simulations from past work

Thank you for your attention

......

.....

Optional informations

Characterisation of the separator material (Whatman GF/D)

thickness	0.025	cm
density	2.23	g/cm^3
porosity	94.49	%
tortuosity	2.154	
McMullin numbers	2.28	

.....

