

e University of Applied Sciences

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications

Sven Ingebrandt

University of Applied Sciences Kaiserslautern – Campus Zweibrücken, Germany

TU Dresden, 17.10.2013

Outline

- Introduction to the University of Applied Sciences Kaiserslautern
- Motivation
- Silicon nanowire (SiNW) detection principles
- Top-down fabrication of SiNW sensors
- Electronic readout principles for SiNW sensors
- Electrochemical characterization
- Bioassays with SiNW sensors :
 - 1. DNA immobilization and hybridization detection
 - 2. Ca²⁺ ions peptide interaction
 - 3. Immunoassays
 - 4. Detection of cellular signals
 - 5. Impedimetric detection of cellular adhesion
- Possible future assays with SiNW sensors
- Summary

Introduction to the University of Applied Sciences Kaiserslautern

Introduction to the UASK: Zweibrücken

Area: 70.64 km² Population: 34,109

City of roses and horses

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

Introduction to the UASK

- Spread over three cities Kaiserslautern, Pirmasens, and Zweibrücken
- 5 faculties, 23 courses, 6000 students, ~168 professors

Campus Kaiserslautern

- Applied engineering sciences
- Construction and design

Campus Pirmasens

 Applied logistics- and polymersciences

Campus Zweibrücken

- Economics
- Informatics and Microsystemtechnology

Introduction to the UASK:

Courses with subjects Micro-Nano-Bio in our faculty I/MST

"Applied Life Sciences: Applied Bio-, Pharmaand Medical Sciences"

"Microsystemand Nanotechnology"

Bachelor of Science (7 Semesters)

Master of Science (3 Semesters) Bachelor of Engineering (7 Semesters)

Master of Engineering (3 Semesters)

Introduction to the UASK: Study in Zweibrücken

Speciality: Large clean room (300 sqm) for education and research

Student courses / Summer schools

Introduction to the UASK: New highlight - Nanoimprint Lithography

Installed in cleanroom of FHKL

DFG-'Large equipment proposal: Obducat Eitre 6" Nanoimprint-Lithography

Introduction to the UASK: New highlight - Schottky Field Emission SEM

Zeiss Gemini Supra with high Resolution EDX

Research Focus IMS (integrated miniaturized systems)

http://www.fh-kl.de/fh/forschung/forschungsschwerpunkte/ims.html

AG Ingebrandt

AG Moebius

AG Müller

Involved Professors

AG Saumer

Bundesministerium für Bildung

Ph.D. students of the FB I/MST

At the moment 22 cooperative Ph.D. theses:

8 in AG Ingebrandt4 in AG Schäfer3 in AG Moebius1 in AG Hoffmann

4 in AG Müller 1 in AG Saumer 1 in AG Picard Bundesministerium für Bildung

Conferences organized by our university:

AG Ingebrandt 2012 in Cancun, Mexiko

EnFI 2012 Conference in Zweibrücken

Bundesministerium für Bildung

AG Biomedical Signalling - Group structure Prof. Dr. Sven Ingebrandt

Walid-Madhat Munief (Assistant) Nina Stock (Technical assistant)

Biosensor Principles	Cell-Sensor Hybrids	Micro- and Nanodevices	Nanoscale Transducers
Group head:	Group head:	Group head:	Group head:
Dr. Maryam Weil	Dr. Jessica Ka-Yan Law	Dr. Xuan-Thang Vu	Dr. Vivek Pachauri
Ph.D. students:	Ph.D. students:	Ph.D. students:	Ph.D. students:
Lotta Delle	Anna Susloparova	Miriam Freyler	Ruben Lanche
Students:	Dieter Koppenhöfer	Thanh Chien Nguyen	Xiaoling Lu
Tina Welsch	Students:	Dipti Rani	Students:
Alice Kasjanow	Nathalie Schüssler	Students:	Jan-Felix Schoppmeier
	Olga Fominov	Darja Schendel	Claudia Ackermann
		Stefan Ohlinger	

Biomedical Signalling Research Group (AG Ingebrandt) – July 2013

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

FachhochschuleInformatik undKaiserslauternMikrosystemtechnikUniversity of Applied SciencesZweibrücken

Motivation

Motivation: Biosensors and applications

Applications

- Food analysis
- Drug development
- Criminal investigation
- Medical diagnosis
- Test of donated organs

http://www.minimed.com

Ideal properties:

- High sensitivity
- High selectivity
- Cost effective devices
- Real-time detection
- Fast response time
- Point-of-care usage, ...

Motivation: ISFET-based biosensors – General principle

- Label free and real-time detection
- Direct electronic readout signal
- Possibility of a miniaturization

Detection principles: Potentiometric measurements

- The gate potential is modulating the inversion channel between drain and source
- Changes in drain-source current are proportional to changes of the gate potential (in the linear region)
- <u>Two signal components:</u>
- a) Potential change at the gate caused by an action potential of a cell
- b) Potential change at the gate caused by changes of the ionic concentration of the electrolyte near the gate. e.g. pH-sensitivity

Detection principles: Impedimetric measurements

ISFET as impedimetric biosensor – Transistor-Transfer Function (TTF)

Bio-sensing applications: Electronic DNA-chip with micro-ISFETs

- Novel, lock-in based signal transduction concept
- Reliable recording
- Fast sampling

S. Ingebrandt, Y. Han, F. Nakamura, A. Poghossian , M.J. Schöning, and A. Offenhäusser. Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors, <u>Biosensors and Bioelectronics</u>, In Press, Corrected Proof, Available online 21 December 2006

Motivation: Silicon nanowire biosensor

Advantages

- Ultrahigh surface-to-volume ratio
- Dimensions of the biomolecules are comparable to that of the nanowires
- Strong influence of the surface effects to the electronic properties

High sensitivity

Possibility to create dense arrays

Requirements

- Wires in the 10 nm range with good carrier mobilities
- Low density of trap states at the interfaces (high subthreshold swing)
- High transconductance
- Stability and reliability of the output signal
- Processability of the sensors

Top-down fabrication of SiNW arrays

First trial: Electron beam lithography

At project start: Si nanowire by e-beam lithography and RIE (in cleanroom of IBN-2)

Silicon

Insulator

- Insulator - Conductor

Semiconductor

- Electron Beam Writer Leica EBPG 5000 Plus

EHT = 20.00 kV WD = 2 mm

- High resolution (down to 5nm)
- Maskless patterning

Silicon On Insulator

Date :1 Feb 200

Project start in 2006

Date :1 Feb 2007 Photo No. = 9452

Bundesministerium für Bildung

24

und Forschung

Informatik und Mikrosystemtechnik Zweibrücken

Fabrication process of Si-NW arrays

- Silicon nanowire device concept:
- Reed group (Yale)
 - Top-down approach
 - Biomolecular sensing demonstrated recently

[Source: Stern er al, Nature, February 2007]

Wet etching process with tetra methyl ammonium hydroxide (TMAH)

Bundesministerium für Bildung und Forschung

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

Dr. X.-T. Vu, R. Stockmann

Chip designs

4×4 Arrays

6 wires parallel Length: 3mm Width: 100, 200, 500, 1000nm (mask design) pitch: 200mm

28×2 Arrays

Single wires Length: 10mm, 20mm, 40mm Width: 200, 400nm (mask design) pitch: 50mm or 10mm

Integration with micro-fluidics

16×16, 32×32 and 128×128 arrays

X.T.Vu et al, Physica Status Solidi, 206 (2009) 426 X.T. Vu et al, Sensors and Actuators – B Chemical, 144 (2010) 354

X.T. Vu, et al., Phys. Status Solidi A-Appl. Mat., 207, 4, (2010) 850-857.

Fabrication process of Si-NW arrays

Fabrication of larger Si-NW FET arrays

Dr. X.-T. Vu, R. Stockmann

Two designs: 16×16 with 100 µm pitch (256 channels) 32×32 with 50 µm pitch (1024 channels)

PECVD passivation was done in Zweibrücken

Gate oxide

Informatik und Mikrosystemtechnik Zweibrücken

Dr. X.-T. Vu, R. Stockmann

Gate oxide

Fabrication process of Si-NW arrays: SiNW devices

- Wafer-scale, reproducible process
- Size of SiNW can be as small as 60 nm at the bottom (in current process)
- High quality of the gate oxide and smooth surfaces
- High quality of the passivation layer stable operation in electrolyte solution

Dr. X.-T. Vu, R. Stockmann

Fabrication process of Si-NW arrays: Wafer-scale processing

NEW Fabrication process of Si-NW arrays in Zweibrücken has started

Mold: nanowire structure

Imprint: nanowire structure in PMMA

NEW Fabrication process of Si-NW arrays in Zweibrücken has started

0.22 µm -0.13 µm +: 100 JIM N: 100 hw

SEM image of nanowire structure etched into SiO₂

AFM image of PMMA imprinted nanowire structure

Bundesministerium für Bildung

Dr. X.-T. Vu

Fabrication process of Si-NW arrays: Chip packaging

- Wire bonding
- Contact isolated: Medical epoxy, PDMS
- Can be used directly or integrated with micro-fluidics

Portable amplifier for the FET arrays

- Simultaneous measurement of all 16 channels
- Precise temperature control
- Amplifier stages with 1x, 10x, 30x, 100x
- Differential readout with reference channel
- Measurement of the transfer function by a 16x lock-in circuit
- Portable system with USB-interface to PC
- Custom-made software (Delphi 5.0)
- Sampling rate 1 Hz (up to 10 kHz per channel with external USB-DAC card)

T. C. Nguyen, Dr. X.-T. Vu

NEW 32-channel readout system design

- Here is the design for one channel, different channels are currently addressed by switching
- The system is flexible for different ranges of drain-source currents
- Suitable for both characterization and impedimetric measurement of FET devices

T. C. Nguyen et al., Physica Status Solidi (a), 210, 5, 870-876 (2013).

NEW amplifier system

At the moment still single channel

LabVIEW programming

- State machine programming:
 - Program is divided into different states
 - Easier to read
 - Easier to manage
 - Easier to scale
- Stand-alone application: no
 LabVIEW development tool is needed

T. C. Nguyen et al., <u>Physica Status Solidi (a)</u>, 210, 5, 870–876 (2013).

Bundesministerium für Bildung

T. C. Nguyen, Dr. X.-T. Vu

NEW labview-based readout software

Electrochemical characterization

Electrical characterization setup

- Understanding the SiNW electrical transport properties
- Finding of a stable configuration for biosensor experiments

Back - gate characteristics: $I_{DS}(V_{BG})$

Front gate in air:

Front gate with electrolyte (floating potential or applied voltage)

Front - gate characteristics: $I_{DS}(V_{FG})$

Back gate floating

Back gate with applied voltage

Electrical characteristics

	Implanted CL	Non-implanted CL	
Back-gate control	p-type only	p- and n-type	
(in dry and wet environment)	unstable operation	unstable operation	
Front-gate control	p-type only	n-type only	
(in wet environment)	stable operation	stable operation	

Front-gate configuration was identified for optimum biosensing experiments

• In any case, an electrochemical reference electrode is needed for the front gate contact

to keep the system stable and the readout signal reliable

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

Dr. X.-T. Vu

Electrical characteristics

- P- enhancement and long-channel transistor
- V_{TH} = 0.8 V at pH 7
- $g_{m, max}$ (at V_{DS}=-2V): 0.5 µS to 10 µS
- I_{on}/I_{off} =10⁵-10⁶
- S = 80 110 mV/decade, size dependent

Bundesministerium für Bildung

Electrochemical characterization

X.T. Vu, et al., Phys. Status Solidi A-Appl. Mat., 206, 3, (2009) 426-434.

pH sensitivity : 42 mV / pH and does not depend on size and operation mode

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

 Fachhochschule
 Informatik und

 Kaiserslautern
 Mikrosystemtechnik

 University of Applied Sciences
 Zweibrücken

Bioassays Assay 1: DNA detection

Assay 1: DNA immobilization and hybridization

SiNW sensor is much more sensitive than our microscale ISFETs

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

Assay 1: Covalent attachment of DNA probes

Protocol (a)*:

- Silanization with 3-aminopropyltriethoxysilane
- Usage of succinic anhydride as cross linker
- Covalent attachment of amino-functionalized

DNA

Protocol (b)**:

- Silanization with 3-glycidoxypropyltrimethoxysilane
- Direct, covalent attachment of amino-functionalized DNA and of proteins

* Han et al., 2006; Ingebrandt and Offenhäusser, 2006. **Ghosh-Moulick et al., 2009.

Assay 1: Surface modification - silanization

Gas phase silanization

- Homogenous monolayers
- Encapsulated material not damaged

Contact angle measurement

- Quantify wettability
- Qualify silanization:
 - Did silanization work?
 - Is layer homogeneous?

Bundesministerium für Bildung

Assay 1: DNA microspotting & electrical readout

Site-specific spotting of different capture

molecules

Differential read-out

possible

Defined distances to

avoid cross-contaminations

Bundesministerium für Bildung

M. Schwartz, Dr. X.-T. Vu

Assay 1: Surface modification steps - overview

3-Glycidoxypropyltrimethoxysilane (GPTES)

- No cross-linker due to covalent binding
- Creation of monolayers

Bundesministerium für Bildung

Results unpublished

Assay 1: DNA detection – dc readout

Applied concentrations:

V_{TH} shifted to the right due to binding of negatively charged DNA molecules

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

 Fachhochschule
 Informatik und

 Kaiserslautern
 Mikrosystemtechnik

 University of Applied Sciences
 Zweibrücken

Bioassays Assay 2: Ca²⁺ ions – peptide interaction

Assay 2: Ca²⁺ ions – peptide interaction

M. Hitzbleck et al. Submitted to Langmuir

M. Hitzbleck et al., Physica Status Solidi (a), 210, 5, 1030–1037 (2013).

Bundesministerium für Bildung

 Fachhochschule
 Informatik und

 Kaiserslautern
 Mikrosystemtechnik

 University of Applied Sciences
 Zweibrücken

Bioassays Assay 3: Immunoassays

Assay 3: Antibody-antigen detection by SiNW (Human CNTF*)

CNTF is known to alter the self – renewal process of neuronal stem cells and the progenitor cell division and differentiation

It is used in the therapy and gene-therapy of retinal ganglion cell damage or loss

CNTF seems to have a protective role in multiple sclerosis mouse model regarding demyelinisation and plays a role in the pathogenesis of other neurodegenerative diseases
CNTF is a good model system for the future measurements of other neurotropic factors such as BDNF, GDNF, FGF and NGF

CNFT is usually detected by an elaborated ELISA method
Sensitivity of the ELISA method is 30pg/mL at a dynamic
range of 30 pg/mL - 3000 pg/mL

*CNTF: Ciliary neurotrophic factor

M. Schwartz, Dr. X.-T. Vu

Assay 3: Antibody-antigen – dc readout

- 1 µg/ml capture antibody
- 5 pg/ml BDNF

- Block with 1 % BSA
- 10 pg/ml BDNF

Results unpublished

Bundesministerium für Bildung

und Forschung

- 1 pg/ml BDNF
- 50 pg/ml BDNF

 V_{TH} shifted to the left

 Fachhochschule
 Informatik und

 Kaiserslautern
 Mikrosystemtechnik

 University of Applied Sciences
 Zweibrücken

Bioassays Assay 4: Detection of cellular signals

Dr. X.-T. Vu

Assay 4: Recording of extracellular action potentials

Primary cardiac myocytes (E18) and HL-1 cells were cultured on NW-FETs arrays

Once a confluent layer is formed cells are spontaneously beating.

Signals can be site-selectively recorded by the NW-FET array.

Rat cardiac myocytes at 5 DIV

Bundesministerium für Bildung und Forschung

Dr. J. F. Eschermann, Dr. X.-T. Vu

Assay 4: Recording of extracellular action potentials

Fachhochschule

University of Applied Sciences

Kaiserslautern

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt

Dr. X.-T. Vu

Assay 4: Recording of extracellular action potentials **Results unpublished** Primary cardiac myocyte culture!!! 1 mV0.5 m 2 mV 50 ms 2 mV 0.5 s 5 ms Each of the 16-channels is responding 50 ms

High signal-to-noise ratio : 5 – 10 due to the strong coupling between the cells and the SiNWs

 Cachhochschule
 Informatik und

 Kaiserslautern
 Mikrosystemtechnik

 Iniversity of Applied Sciences
 Zweibrücken

Bioassays Assay 5: Impedimetric detection of cellular adhesion

Dr. X.-T. Vu

Assay 5: Impedimetric detection of cellular adhesion

Dr. X.-T. Vu

Assay 5: Impedimetric detection of cellular adhesion

Results unpublished

HEK cell-SiNW coupling: Detailed SEM analysis

FachhochschuleInformatik undKaiserslauternMikrosystemtechnikUniversity of Applied SciencesZweibrücken

Future assays

New research projects related to SiNW sensing

- Marie-Curie ITN: PROSENSE
- Cancer Diagnosis: Parallel Sensing of Prostate Cancer Biomarkers

Start 01.10.2012

Participants

1 (Coordinator)	UBath	Ν	N	United Kingdom
2	CardiffU	Ν	N	United Kingdom
3	SAS	Ν	N	Slovakia
4	INESC-MN	Ν	N	Portugal
5	DCU	Ν	N	Ireland
6	AET	Y	Y	United Kingdom
7	EPFL	Ν	N	Switzerland
8	FH-KL	Ν	N	Germany
9	Xeptagen	Y	Y	Italy

Subject 1: SiNW Sensors Subject 2: rGO-Sensors

2 Ph.D. students (3 years)

Associated Partners

1	Euroimmun AG	Euroimmun	Germany
2	University Hospital of Wales	UHW	United Kingdom
3	University Hospitals Bristol National Health Service Foundation Trust	UHB	United Kingdom
4	University of the West of England	UWE	United Kingdom
5	North Bristol National Health Service Trust	BUI/NBT	United Kingdom
6	Royal United Hospital Bath National Health Service Trust	RUH	United Kingdom

D. Rani, Dr. X.-T. Vu

New research projects related to SiNW sensing

Developing a NW-based sensor platform for detection of PCa in parallel with fluorescence techniques

Bundesministerium für Bildung

D. Rani, Dr. X.-T. Vu

New research projects related to SiNW sensing

Si NW FET Fabrication on Sapphire substrate for combined optical and electrical sensing

- Dip Chip:
- 32 single NW devices on 7*7mm² chip.
- NW dimensions- 1µm(length)*0.1µm(width).
- Common source configuration.

Summary

- Si nanowire arrays were successfully fabricated in a wafer-scale process. They
 can be highly integrated (128x128 arrays) and are CMOS compatible
- Robust chips with reliable operation in liquid
- DNA and biomolecular detection experiments were successful
- Extracellular recordings are possible

Outlook

- Sensitivity (DNA hybridization, protein, immune)
- Model to explain the results
- Enzyme detection
- Coupling with cells (mast cells, cardiac myocytes, tumor cell lines, neuronal cells)

Acknowledgements

FH Kaiserslautern

All members of AGBM and technical staff of FHKL

BMBF:

'Nanowire Sensors' 'Cancer Cell Chip' 'Multiparametric Sensing'

DAAD:

PPP exchange grant – Germany/Hong Kong

EU-ITN Marie Curie: Prosense

Industry: 'Alternative Biosensor Principles'

Internal fh-funding:

- Nanotox
- Nanoimprint-Lithography

Cooperation partners

FH Kaiserslautern Profs. Karl-Herbert Schäfer, Monika Saumer, Cornelia Keck **Research Center Jülich** Prof Dr. A. Offenhäusser **JL University Giessen** Prof. Dr. Martin Eickhoff **Phillipps-University Marburg Prof. Dr. Wolfgang Parak TU Kaiserslautern** Prof. Dr. Christiane Ziegler Prof. Dr. Ing. Andreas König **University des Saarlands - Homburg** Prof. Dr. Markus Hoth **University of Applied Sciences Aachen** Prof. Dr. Ing. Michael J. Schöning

Universiteit Hasselt, Belgium Prof. Dr. Patrick Wagner The Chinese University Hong Kong Prof. Dr. John A. Rudd Prof. Dr. Chi-Kong Yeung Nanyang Technological University Singapore Prof. Dr. Peng Chen Italian Institute of Technology - Genua Dr. Axel Blau Korean Advanced Institute of Science and Technology - Deajeon Prof. Dr. Yoonkey Nam

University of Applied Sciences Kaiserslautern

Biomedical signalling group July 2013

http://www.fh-kl.de/fachbereiche/imst/arbeitsgruppe-bioelektronik/en/home.html

Top-Down Processed Silicon Nanowire Arrays for Biomedical Applications - Sven Ingebrandt