

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques

Heiko B. Weber Lehrstuhl für Angewandte Physik

Friedrich-Alexander-Universität Erlangen-Nürnberg

Chair for Applied Physics

Electronic Properties of epitaxial graphene

Semiconductors and their doping (Dr. Michael Krieger)

Electron transport on the molecular scale

THz generation and detection (Dr. Sascha Preu)

People

Daniel Secker

Stefan Wagner

Stefan Ballmann

Ferdinand Kisslinger

Benjamin Gmeiner

Konrad Ullmann

- Introduction: our technique
- vibrational degrees of freedom
- magnetic degrees of freedom
- novel experimental tools

- Introduction: our technique

- vibrational degrees of freedom
- magnetic degrees of freedom
- novel experimental tools

Single - molecule contacts

Mechanically controlled break junction technique

Experimental

Mounted either in a ³He or ⁴He cryostat,

in vacuum, at temperatures down to 300mK

Conductance traces

First experiments

10

- Introduction: our technique
- vibrational degrees of freedom
- magnetic degrees of freedom
- novel experimental tools

Vibrations

Electronic processes in molecules are related to vibrations!

Electron transfer

One electronic level ϵ and one vibrational mode ω :

Comparison with quantum dots

For nearly all molecules:

At low voltages vibrations may be resolved, at higher V peaks appear smeared

 \rightarrow Seeking for a model system for vibrations

Single-molecule string

John Gladysz, Erlangen / Texas A&M

Oligoyne: ideal linear sp bond

Synthetic Carbon Allotropes SFB953

- no aryl rings, no rotational degree of freedom
- heavy Pt ions provide fixed ends

ChemPhysChem 11, 2256 (2010)

Density functional theory

- DFT (calculations using TM 5.7: BP86/SVP,TZVP, B3LYP/TZVP
- Electronic structure + vibrational frequencies (3N-6 normal modes)

DFT in collaboration with: Wolfgang Hieringer, Andreas Görling, Erlangen

Vibrational features

DFT (longitudinal string-like excitations)	Experiment
37.9 mV	37 ± 1.5mV
79.4 mV	89 ± 0.9mV
126.6 mV	130 ±1.5 mV

Vibrations are detected as sidepeaks, but the peaks are still too broad!

Further oligoines

87.5

120

52.5

Synthetic Carbon Allotropes SFB953

Martin Bryce, Durham

PRL 107, 046802 (2011)

Synthetic Carbon Allotropes SFB95

PHYSICAL REVIEW LETTERS

week ending 22 JULY 2011

Quantum Interference and Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current

R. Härtle,¹ M. Butzin,¹ O. Rubio-Pons,^{1,2} and M. Thoss¹

¹Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
²Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany (Received 21 February 2011; revised manuscript received 16 June 2011; published 21 July 2011)

Quantum interference and decoherence in single-molecule junctions is analyzed employing a nonequilibrium Green's function approach. Electrons tunneling through quasidegenerate states of a molecular junction exhibit interference effects. We show that electronic-vibrational coupling, inherent to any molecular junction, strongly quenches such interference effects. This decoherence mechanism may cause significantly larger electrical currents and is particularly pronounced if the junction is vibrationally highly excited, e.g., due to inelastic processes in the resonant transport regime.

Vibrations

Experiment

Experiment: stability check

a)

Data extraction

Broken symmetry

Split conjugation

A counter example

When even/odd state pairs are remote, no T dependence is observed.

Intermediate conclusion:

Oligoines show vibrational substructure in the first peak

Destructive interference provided by degenerate levels suppresses conductance

Vibrations contribute to enhance the current level

D. Secker, S. Wagner, S. Ballmann, R. Härtle, M. Thoss, H.B. Weber, PRL **106**, 136807 (2011)

S. Ballmann, R. Härtle, P.B. Coto, M. Elbing, M. Mayor, M.R. Bryce, M. Thoss, H.B. Weber, PRL **109**, 056801 (2012)

- Introduction: our technique
- vibrational degrees of freedom
- magnetic degrees of freedom
- novel experimental tools

A spin pair occurs either as singlet or triplet

Even electron number:

Can we detect the spin state of a coupled spin pair?

Co₂ Here: pseudo singlet, pseudo triplet (Karin Fink, KIT) d Co-dimer complex 1 Co \mathbf{DO}^{2} $E[cm^{-1}]$ pseudo 1500triplet * E₄ 'Α, E3 ⁴T_{1g} 2· 1000 0 - 1pseudo singlet 500-F₃C E, E, 0-Mario Ruben, Frank Schramm (KIT) LF SOC pairing

Molecular Spintronics

Black: pseudo triplet Red: pseudo singlet

Karin Fink (KIT)

Blind experiments

Kondo effect

Kondo effect in quantum dots:

ground state

in which an unpaired spin is screened by the surrounding electrons

Kondo-like anomaly

Magnetic degree of freedom

Switching the spin states

Switching the spin states

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Intermediate conclusion:

The results suggests that one observes the spin state of a pair of a coupled spin system by a Kondo-like anomaly

We observe a bias-driven transition from the pseudo-singlet to the pseudo-triplet state

S. Wagner, F. Kißlinger, S. Ballmann, F. Schramm, R. Chandrasekar, T. Bodenstein, O. Fuhr, D. Secker, K. Fink, M. Ruben, H. B. Weber: Nature Nanotechnology (2013)

- Introduction: our technique
- vibrational degrees of freedom
- magnetic degrees of freedom
- novel experimental tools

SFB 953: Synthetic carbon allotropes

Experimental improvements

Nearly ideal device achieved

- 9 nm low- κ dielectric (Ta₂O₅, ϵ = 27)
- <10 pA leakage currents at 7V
- single-molecule contacts
- -Gate action is still poor and inhomogeneous

New Journal of Physics 14, 123028 (2012)

SFB 953: Synthetic carbon allotropes

We produce epitaxial monolayer graphene on wafer scale on silicon carbide

K. Emtsev...H.B.Weber, T. Seyller: Nature materials 8, 203 (2009)

Creation of graphene-electrodes with nanometer separation

Goal: creation of graphene-electrodes with nanometer separation

Scheme

Contacting single molecules

Fabrication of nanogaps

Sample preparation:

(unpublished data are removed in this public version)

Molecular Nanojunctions become accessible with/to

- electrostatic gates
- STM, AFM,
- light pulses
- Raman spectroscopy
- High-frequency exitations
- chemistry

. . .

• superconductivity

D. Waldmann ...H.B.W.

Nature materials. 10, 357(2011)

THz antenna

Charge transport in single molecules is affected by vibrations

- the first peak
- vibrations lift interferences

Magnetic moments are detectable as Kondo anomalies,

- the combined spin of two magnetic cores can be detected

New tools are available:

- gated break junctions
- graphene electrodes

People

In my group: Daniel Secker

Stefan Ballmann Stefan Wagner Konrad Ullmann

Ferdinand Kisslinger

Chemistry:

Marcel Mayor, Basel John Gladysz, Texas A & M Mario Ruben, Karlsruhe Nazario Martin, Madrid Martin Bryce, Durham Rik Tykwinski, Erlangen

Theory:

Andreas Görling, Erlangen Felix von Oppen, Berlin Michael Thoss, Erlangen Karin Fink, Karlsruhe

