<u>Plasma membrane structure and dynamics</u> explored via a combined AFM/FCS approach

Salvatore Chiantia

Molekulare Biophysik, Dept. Of Biology Humboldt-Universität zu Berlin

Dresden nanoSeminar, May 2013

Outline

1. Combination of AFM and quantitative fluorescence microscopy

2. Biophysical studies of plasma membrane heterogeneities

3. Advanced models for the plasma membrane: asymmetric bilayers

4. Inter-leaflet coupling in asymmetric membranes

5. Future plans

Experimental approach: Techniques

Atomic force microscopy (AFM)

Nm resolution imaging in physiological conditions

Measuring forces and mechanical properties of sample

Slow

Fluorescence imaging, fluorescence correlation spectroscopy (FCS)

Fluorescence fluctuations (vs. time) to measure dynamics

Good temporal resolution (even cLSM)

Single molecule sensitivity

Extension to 1- or 2-dimensional space information (ICS, scanning FCS, RICS)

FCS and other correlation imaging techniques

LSM Images - Diffusion Coefficients

Hidden time structure in scanning process

Other ICS techniques are specific cases: e.g. Line and pixel times \rightarrow 0, TICS, STICS Using also TIRF

lightmicroscopy.ucdenver.edu

Overview of fluorescence-based techniques

ICS family summary: Dynamics over large range Spatial information (e.g. flow) Concentration (diffraction limited)

Molecular interactions (CC between different channels) Aggregation/multimerization state (brightness analysis)

Overview of fluorescence-based techniques

Super-resolution (PALM, STORM):

Effective shrinking of PSF via single-molecule localization precision

Experimental approach: Techniques

Atomic force microscopy (AFM)

Nm resolution imaging in physiological conditions

Measuring forces and mechanical properties of sample

Slow

Fluorescence imaging, fluorescence correlation spectroscopy (FCS, ICS)

Fluorescence fluctuations (vs. time) to measure dynamics

Good temporal resolution (even cLSM)

Single molecule sensitivity

Extension to 1- or 2-dimensional space information (ICS, scanning FCS, RICS)

Combination of AFM and ICS/cLSM

Combination of different experimental approaches on the same sample. Best time and spatial resolution

Complementary information about structure dynamics and inter-molecular forces

(Chiantia et al. 2006b)

Structure of plasma membrane

Fluid Mosaic Model (Singer and Nicolson, 1972)

Greatneck.k12.ny.us

Protein-lipid domains (rafts)

-Rich in sphingolipids and cholesterol

- -Lipid trafficking
- -Protein sorting
- -Cell-cell signaling
- -Viral infection

Model for phase-separation in cell membranes

Lipid phase separation

Resistant, stable in time Can contain proteins (enzymes, receptors...)

Advantages of the combined AFM-FCS approach

LSM

Advantages of the combined AFM-FCS approach

Force measurements

Environmental stress on membranes

Sugars

Environmental stress on membranes

Chiantia et al., Langmuir (2005)

Role of ceramide in plasma membrane organization

Apoptosis, immune response, senescence (Cell growth, cancer therapy)

Stress agents:

bacterial infections (Neisseria gonorrhoeae, Malaria)
Viral infections (Rhinovirus, Sindbis virus)
UV-light, heat shock → SMase → Ceramide
Lateral organization of plasma membrane, capping

Role of ceramide in plasma membrane organization

Cell membranes are asymmetric

Lipid asymmetry is involved in neuronal development, apoptosis, immune response, platelets activation, tumors, thalassemia and diabetes (Balasubramanian, 2003)

Inter-leaflet coupling

Outer leaflet is rich in saturated sphingolipids \rightarrow ordered domains

Inner leaflet is rich in unsaturated lipids \rightarrow NO domains

•Clustering of membrane components anchored to the outer leaflet triggers formation of domains (e.g. GPI-anchored proteins, PRR in neutrophils) (Chen 2006, 2009, Ewers 2010)

•Proteins associated to the inner inflet are recruited and activated to start signaling (e.g. src-like tyrosine kinases)

•But inner leaflet lipids cannot separate into domains! <u>How is information</u> <u>transmitted across the bilayer? How are the leaflets coupled?</u>

•Model membranes displaying asymmetry did not exist

Inter-leaflet coupling: effect of inner leaflet composition

Inner leaflet stay disordered when ordered domains are present in the outer leaflet

Certain natural lipids mixtures in the inner leaflet increase coupling

Inter-leaflet coupling: effect of inner leaflet composition

Coupling depends on the saturation and length of the acyl chains → signaling
Increased interaction at bilayer midplane for the lipids with higher coupling

Chiantia et al. 2012

What now?

- Powerful combined approach: AFM and quantitative fluorescence microscopy
- Advanced models for plasma membrane
- We can now study membrane function and structure with unprecedented depth

Influenza: virus structure and life cycle

▶22 Million people infected in 2009

➢ 20000 influenza-associated deaths in Germany alone

≻Virus is often spherical, 100 nm diameter

Enveloped by a lipid bilayer containing 3 proteins: HA, NA (the spike proteins) and M2

➤M1 is the matrix protein

- 1- Binding and internalization
- 2- Production of viral components
- 3- Assembly and budding of progeny

Influenza virus assembly at the plasma membrane

Trans-membrane signaling in cells

Investigation of inter-leaflet coupling and signalling mechanisms in cellular membranes

Intelligent drug carriers

Therapeutic nanoparticles (e.g. liposomes), not only for drug delivery

Acknowledgments

- Andreas Herrmann, HU zu Berlin
- Erwin London, State University of NY
- Petra Schwille, MPI Munich
- Funding: LRSF, HHMI, SFB 740

Asymmetric Giant Unilamellar Vesicles (GUV)

• Prepared via mßCD-mediated exchange

- Compared to other asymmetric model systems: high yield, easy to prepare, trans-membrane protein reconstitution
- GUVs can be used e.g. with optical microscopy and sensitive single molecule techniques
- Can be translated to supported bilayers Chiantia et al. 2010

Role of ceramide in plasma membrane organization

Physical properties of ceramide \rightarrow Effects on membrane organization Hydrophobic, Donor/Acceptor for H-bonds (Ceramide-enriched domains)

