Molecular Electronics: Exploiting the diversity that chemical space has on offer

Gemma C. Solomon Nano Science Centre and Department of Chemistry University of Copenhagen

Outline

- I. Making more than wires: Understanding and tuning quantum interference in cross-conjugated molecules
- Going beyond bonds:
 Mapping through-space contributions to transport
- Putting it all together:
 Understanding the transport through a bistable, fluctuating molecular system.

Nature's ingenuity

http://chemgroups.northwestern.edu/wasielewski/res/ap.htm

A range of experimental approaches... ... and experimental uncertainty

Chemical diversity

.. reduced to barrier tunneling

Calculating conductance

 $T = \operatorname{Tr}[\Gamma_L G^r \Gamma_R G^a]$

Calculating current from transmission

$$I(V) = \frac{2e}{h} \int_{-\infty}^{\infty} dE \operatorname{Tr}[\Gamma_L G^r \Gamma_R G^a](f_L - f_R)$$

A hint at something different

A little aside σ and π bonds

- A molecular orbital can be classified as:
 - $\circ \sigma$ if the interaction occurs along the line connecting two nuclei
 - and π when the interaction occurs in 2 regions one directly above and one directly below the line connecting two nuclei

The molecular analogue: cross-conjugated molecules

"a compound possessing three unsaturated groups, two of which although conjugated to a third unsaturated center are not conjugated to each other." N. F. Phelan, M. Orchin, J. Chem. Educ. **45**, 633 (1968)

A simple comparison

The most well-known example of interference:

Some larger systems

A comparison of 3 methods

Stability is important

•Simulations were run in Tinker 4.0.

•Following a Ins equilibration, 100 snapshots were taken at Ips intervals.

•The transmission was calculated using atk 2.0.

•The conductance distributions are shown with a Gaussian fit.

Conductance (2V bias)

Dephasing

Tuning the interference feature

Voltage dependence

A Molecular Rectifier

JACS 130, 17309 (2008)

A model system

Code	Max. R. R.	Voltage
Hückel-IV	249	I.2V
gDFTB	18.6	1.0∨
ATK	17.6	0.6 V

JACS 130, 17309 (2008)

More striking results

Max. R. R.	Voltage	
>150,000	0.8V	
501	0.52V	
83.5	1.5V	
	Max. R. R. >150,000 501 83.5	

JACS 130, 17309 (2008)

Designing molecular electronic devices....means assembling molecules

- Positioning single molecules between metallic electrodes is an enormous challenge.
- Controllable synthesis of really large molecules is another enormous challenge.
- Self-assembly of supramolecular structures or carefully constructed films seem to be a promising alternative.

J. Heath and M. Ratner, Physics Today, May 2003

M. Reed and J. Tour Scientific American, June 2000

π-stacked structures are favorable for self-assembly

J.A.A.W. Elemans, A. E. Rowan and R. J. M. Nolte J. Mater. Chem. (2003) **13** 2661

- Non-bonding interactions can be used to build extremely large structures.
- These structures have been suggested as architectures for charge transport.
 - What is really desirable for charge transport in a π -stacked system?

R. van Hameren et al. Science (2006) **314** 1433

Current through an arbitrary surface

 $I_{mn} = \frac{2e}{\hbar} \int \frac{d\varepsilon}{2\pi} K_{mn}(\varepsilon) \qquad I = \frac{2e}{\hbar} \sum_{m \in M_L} \sum_{n \in M_R} \int d\varepsilon K_{mn}(\varepsilon)$

 $\sum K_{mn}(\mathbf{\varepsilon}) = (f_L(\mathbf{\varepsilon}) - f_R(\mathbf{\varepsilon}))T(\mathbf{\varepsilon})$ $m \in M_L n \in M_R$

 $K_{mn}(\varepsilon) = \sum_{i \in m} \sum_{\substack{j \in n \\ n \neq m}} \sum_{kl} (if_L(V_{ij}G_{jk}^r\Gamma_{kl}^LG_{li}^a - V_{ji}G_{il}^r\Gamma_{lk}^LG_{kj}^a)$ $-if_R(V_{ji}G_{il}^r\Gamma_{lk}^RG_{kj}^a - V_{ij}G_{jk}^r\Gamma_{kl}^RG_{lj}^a))$

Nature Chem. 2, 223-228 (2010)

Conservation

What does local transmission look like?

A note about local transmission plots:

- The radius of the arrow is proportional to the magnitude of the local transmission
- The arrows are normalized so the largest component in each picture is the same size.
- The arrows are only shown for elements that are greater than 10% of the maximum local transmission element.
- The arrows are sometimes coloured red and blue to indicate transmission in the forward and reverse direction.

Nature Chem. 2, 223-228 (2010)

What does local transmission look like?

Nature Chem. 2, 223-228 (2010)

Similar behavior

σ -systems can be unusual too

We can see the signature of interference

Nature Chem. 2, 223-228 (2010)

Non-bonding interactions can also hurt transport

Take a simple series

JACS 132, 7887 (2010)

Increasing transmission by reducing overlap

Putting it all together

Mechanically activated molecular switch

JACS 133, 2242 (2011)

Agreement between transport methods

JACS 133, 2242 (2011)

Bistability leads to blinking in the conductance

Average transmission at fixed extension

The cow diagram: understanding transport domains

JACS 133, 2242 (2011)

Conclusions and future work

- Finding the right molecule for the job is important for optimizing electronic function in molecular electronic devices.
- Quantum interference in molecules offers interesting possibilities for tuning electrical properties.
- This effect seems to be robust, but the question remains as to what interesting properties we might also be able to get out of the inelastic transport through these systems.

Acknowledgements

Mark Ratner

David Andrews, Carmen Herrman, Thorsten Hansen, Josh Vura-Weis, Randall Goldsmith, Ignacio Franco, Christopher George

Michael Wasielewski, Richard Van Duyne, Vladimiro Mujica, George Schatz \$\$\$ DoE, NSF-Chemistry, NSF-MRSEC,ONR-Chemistry, DFG

•

Danish Agency for Science Technology and Innovation Ministry of Science Technology and Innovation

PhD & Post doc. positions available now