Finite-size effects in the phonon density of states of nanostructured germanium

TECHNISCHE UNIVERSITÄT DARMSTADT

Daniel Sopu TUD, Germany Material Modeling

About me

Material science building

Our group

Introduction

The studied nanostructures

Literature review

Literature review

Literature review

Open questions

> What are the finite size effects that lead to changes in the PDOS of nanostructured materials?

> How do these size effect influence the PDOS?

Is it possible to obtain information about structure and properties of nanoglasses by studying vibrational properties?

Methods

- PDOS of nanoparticles, nanocrystals, embedded nanoparticles and nanoglasses are studied by means of MD simulations.
- Ge covalently bonded material using the Tersoff interatomic potential [1].
- PDOS, $G(\omega)$, was calculated by the Fourier transform of the velocity autocorrelation Z(t) [2],
 - $G(\omega) = \int_0^\infty Z(t) \cos(\omega t) dt \qquad \qquad Z(t) = \frac{\langle v(t)v(0) \rangle}{\langle v(0) \rangle}$
- PDOS calculation were performed at 50 K.

Tersoff J., Phys. Rev. B, 39, 5566, (1989)
Dickey J., Phys. Rev., 188, 1407, (1069)

Methods

Methods

Size effects which change the PDOS

Size effects which change the PDOS

Size effects which change the PDOS

Free Nanoparticles

Free Nanoparticles

TECHNISCHE Free vs. embedded nanoparticles UNIVERSITÄT DARMSTADT 0.50 Free vs embedded nanoparticle (d=7.8 nm) : Surface atoms 0.40 (free nanoparticle) Interface atoms ------(embedded nanoparticle) Glassy matrix affects the 0.30 Phonon DOS partial PDOS of the crystal-glass Bulk glass interface. 0.20 0.60 0.10 Free vs embedded nanoparticle (d=7.8 nm) : (inner atoms) 0.50 Free nanoparticle 0.00 Embedded nanoparticle 2 4 6 8 10 0 0.40 Frequency (THz) Phonon DOS 0.30 0.20 Vibrational modes of glassy matrix 0.10 do not extend in the inner part of the embedded particle 0.00 2 8 10 4 6 0 Frequency (THz)

Nanocrystalline Ge

Daniel Sopu | Dresden 20.10.2011

Nanoglass-introduction

32 glassy sphere (5 nm)

Sopu D., Appl. Phys. Lett., 94, 191911, (2009)

Sopu D., Appl. Phys. Lett., 94, 191911, (2009)

PDOS depending on the interface width 0.20 Bulk glass Nanoglass: 1 interface of 3nm ------1 nm 3 interfaces of 1nm 0.15 Phonon DOS 0.10 Interfaces with 8% excess free volume 0.05 0.00 2 8 10 0 4 6 THz 3 nm Same free volume in both NGs leads to no difference in the PDOS

Conclusions

In case of nanocrystalline materials the PDOS changes as follow:

(1) Nanostructural discontinuities (surface atoms, GBs, interfaces) cause an enhanced population modes with low frequencies.

(2) Tensile (compresive) surface stress result in a shift of the entire PDOS to lower (higher) frequencies

(3) Confinement due to the particle size cause the disappearance of several optical modes at Brillouin zone (q=0)

In case of nanoglasses the PDOS changes only due to the excess free volume in the interfaces.

Sopu D et al., Phys. Rev. B, 83, 245416, (2011)

Daniel Sopu | Dresden 20.10.2011

Thank you for your attention!

Funded by DFG AL-578-5