From atoms to structures – how spiders turn weakness into strength

Markus J. Buehler*

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA

* E-mail: mbuehler@MIT.EDU

Max Bergmann Lecture, Max Bergmann Center Of Biomaterials, Dresden, Germany, Oct. 10, 2011

Funding: DOD-MURI & DOD-PECASE, National Science Foundation

Massachusetts Institute of Technology

Universality-diversity paradigm

 H_4

amyloid

fibre

100s nm

universality

Blackledge et al.

spider web across rivers

Plii

μm

Create multifunctionality (diversity) by changing structural arrangements of few (universal) constituents rather than inventing new building blocks

M. Buehler, Nature Nanotechnology, 2010

Structure & mechanical response of spider silk beta-sheet nanocrystal 20..100 nm

>100 µm

H.

amyloid plaque

or film

hierarchy

length

scale

li)

Steel: strength ~1 GPa

Spider silk: strength

temperature via self-

Natural construction

~1-2 GPa & 60% strain

strong bonds

Made @ room

assembly

material

@ failure weak bonds

Schroedinger

"quantum"

8

secondary protein

structures (BS, AH, TC, RC) comparative study

Develop analytical models

3.

organs

organisms

Earthquake: failure of the earth's crust

7

Supercomputing is a key tool

_____Phir

Pulling on a single collagen molecule

41)

Pulling on a single collagen molecule

Pliī

Coarse-graining 14 Experiment (type II TC) 12 Experiment (type | TC) MD 10 -WLC Force (pN) atomistic representation Mechanism: x=280 nm Entropic elasticity (change in configurational 0.5 0.6 0.9 0.7 0.8 entropy) Reduced extension (x/L)

Advancement in experimental equipment: Have quantitatively confirmed predictions from our simulations

Sun et al., J. Biomechanics, 2004; Buehler and Wong, Biophys. J., 2007

Use approach to understanding healthy collagen: bottom-up material description

Atomistic model of collagen fibril vs. experiment

Biophys. J., 2009

Hierarchical features of soft collagenous tissue

Pliī

(nanocracks)

20

Enables a multi-scale approach

- The basis of multi-scale methodology is the parameterization of "coarse-grain" models through analysis of more complex and sophisticated "fine-grain" models.
- Already a common practice to "train" atomistic force-fields for molecular dynamics simulations via results from quantum mechanics (e.g. DFT), extended across all scales

Mechanical response of spider silk

How can we explain the mechanical properties of spider silk from a fundamental & mechanistic perspective?

Under polarized light http://www.microlabnw.com/ Z. Shao and F. Vollrath, Nature, 2002

Spider silk's hierarchical structure

Pliī

Structure prediction and functional properties

Replica Exchange approach (parallelized)

(temperature)

Plir

Plii

Simulate copies of same system with different temperatures

Exchange configurations between them

Evaluate most stable configurations obtained at low temperature = solution "ensemble" of structures S. Keten, M. Buehler, APL, 2010

Detailed view of structure & mechanics

Composite of ordered-semi-amorphous structure (sequence controlled)

S. Keten, M. Buehler, *APL*, 2010; *Roy. Soc. Interface*, 2010; Highlight in *Science*, 2010

Nanoscale mechanism of deformation

Semi-amorphous region (A) provides **ductility** (molecular unfolding of 3₁-helices)

Beta-sheet crystal (B) provides **strength** (controls maximum force; breaking of crystal) – **features weak H-bonding**

Weakness of H-bonds (inferior building block)

Mii

H-Bond energy: 2-10 kcal/mol

Thermal energy scale $k_B T \approx 0.6$ kcal/mol (room temp)

controls unique properties of water Water: liquid @ 300K Protein: solid @ 300K WHY?

individual H-bonds in water

Strength prediction of beta-strands

Scaling of strength of H-bond assemblies

PRL, 2008; Buehler and Keten, Rev. Mod. Phys., 2010

2.5 L0 (nm)

Plii

Keten and Buehler, PRL, 2008, Ackbarow, Keten et al., J. of Phys. Cond. Matt., 2009

Scaling empirically confirmed: H-bond cluster size in natural proteins

Nanoscale mechanism of deformation

Plii

How to build a well-connected network

Pliī

Plii

Thus: Larger stacks of beta-sheets leads to better percolation and thus better material properties 35

Each node has maximum of three

Nanoscale mechanism of deformation

Plii

How does the stack height (crystal size) influence mechanical properties?

test with lateral loading model

Size effects in silk nanocrystals

Plii

Multiscale approach of fibrils

0.4

0.6

Normalized Strain

0.8

0 0

0.2

T. Giesa, M. Arslan, M. Buehler, Nano Letters, 2011

H

T. Giesa, M. Arslan, M. Buehler, Nano Letters, 2011

1

0.1

•Functional properties emerge due to interactions of building blocks at different scales

•Scaling laws govern how structures at specific scales must form in order to be used as "new" building blocks as next hierarchy levels

•Scaling laws may involve parameters from different hierarchical levels

Can we formulate this in a selfconsistent way, *i.e.* to describe it in a generic mathematical model that can be solved for different situations (similar to BCs)?

M. Buehler, Nano Today, 2010

Category theory—describe system by relationships between elements: ologs

l'lii

Mii

Category theory—describe system by relationships between elements: ologs

54

56

Category theory: S. Eilenberg S. MacLane (1942–45)

Functionality emerges from interplay between building blocks

Defined by interactions between them, use physics from theory/simulation/ experiment to build olog

Category theory—describe system by relationships between elements: ologs

Туре	Type Labels	Protein Specific	Social-network Specific
A	a one-dimensional system of bricks, glue, and lifeline	beta-helix	social network with wireless & physical passageways
В	a one-dimensional system of bricks and glue without lifeline	beta-sheet nanocrystal	social network with wireless, without physical passageways
с	a brittle system (S) of bricks (b) and glue (g)	brittle protein filament	brittle social network
D	a "chain" graph * \rightarrow * \rightarrow * \rightarrow *	chain shape for protein	chain shape for network
E	a ductile system (S) of bricks (b) and glue (g)	ductile protein filament	ductile social network
F	a one-dimensional system (S) of bricks (b) and glue (g)	beta-helix / beta-sheet nanocrystal	social network
G	a system consisting of bricks connected by glue and lifeline, both structured as in graph G	lifeline protein of specified shape	lifeline social network of specified shape
н	a graph	shape of protein	shape of network
I.	a threesome (b,g,L) of building blocks, serving as bricks, glue, and lifeline	amino cluster, H-bond, backbone	transceiver, wifi system, physical passageway
J	a system consisting of bricks connected by glue, structured as in graph G	protein of specified shape	social network of specified shape
к	a threesome (b,g,S) of building blocks, serving as bricks, glue, and strong-glue	amino acid cluster, H-bond, backbone	transceiver, wifi system, physical passageway
L	a pair (b,S) of building blocks, serving as bricks and strong-glue	amino acid cluster, backbone	transceiver, physical passageway
м	a pair (R,r) of real numbers such that R is roughly equal to r	e.g. R= 20.5 r= 23.45	e.g. R=20.5 r=23.45
N	a pair (b,g) of building blocks, serving as bricks and glue	amino acid cluster, H-bond	transceiver, wifi system
0	a pair (R,r) of real numbers such that R>>r	e.g. R= 100 r = 20.6	e.g. R=100 r=20.6
Р	a pair (B1,B2) of building blocks, such that B2 can connect two instances of B1	e.g. amino acid and backbone	e.g transceiver and wifi
Q	a pair (x,y) of real numbers	e.g. x = 20.55, y = 50.6	e.g. x=20.55, y=50.6
R	a brick	amino acid cluster	transceiver
s	a glue	H-bond cluster	wifi connection
т	a lifeline	backbone	physical passageway
U	a building block	basic unit of material	basic unit of social interaction
v	a real number	e.g. 181.2	e.g. 181.2
w	a resting extension	e.g. 61 Angstrom	e.g. 1/100 error/bit

Category theory representation

diversity orchestral sound (symphony) spider web silk fibril music melody 泄 protein Rer structure & property (mutability) tones at different pitch and chords (composite of tones) sing & sign nanocomposite heterobeta-sheet nanocrystals envelope (distinct istruments) modulating Architecture & civil engineering ACTG DNA/ACGU mRNA, 20 amino acids basic wave forms universality M. Buehler, Nano Today, 2010 60 59

Challenges and opportunities

Biology (building blocks)

(unstructured)

l'liī

l'Iliī

Can NOT predict function

Can PREDICT function

Hierarchies result in defect tolerant behavior

Summary: Universality-diversity paradigm

Engineering impact: Bioinspired materials; i.e. define properties, geometry etc. of materials other than protein, e.g. metal-polymers by applying scaling laws: Use silica (sand), clay, and soy beans transformed to create high tech materials

M. Buehler, Nature Nanotechnology, 2010; Nano Today, 2010

Paradigm uncovered:

 Create multifunctionality (diversity) by changing structural arrangements of few (universal) constituents: geometry controlled by confinement/scaling laws

Plii

 No reliance on invention of new building blocks

 Departure from widely used engineering approach: Turn weakness to strength

Pliī