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Quantum Faraday Effect in Aharonov—-Bohm Loops
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The following two (well accepted) statements look contradictory:

1. The wave function of an Aharonov-Bohm (AB) ring Is arbitrary
(Its local phase factor depends on the choice of gauge).

2. Wave function (density matrix, in general) of a system can be
reconstructed by the quantum state tomography (QST).

What happens if we try to reconstruct the wave function of an AB ring
by the QST?
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Backgrounds; a paradox

“Faraday” Phase Shift in Double-Dot Aharonov-Bohm Loop
- for a Fast Switching of the Flux

- for an Adiabatic Switching of the Flux

Conclusion
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e Backgrounds; a paradox




- The problem is invariant under the
gauge transformation: ~
A—A'=A+Vy
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- K =X(¥) « arbitrary gingle-valued
%A dl = @ -

- Any physical quantity is periodic in @ with period @, (= hc/e)
(Byers-Yang’s theorem)
- Local phase factor of Y(r) is arbitrary
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Josephson charge qubit with a flux
(equivalent to a double-dot loop)
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Makhlin, Schon, & Shnirman (1999)

2 QD levels
Tunnel coupling

Oy = he/e

2 charge (Cooper pair) states

Josephson coupling
O, = he/2e
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Quantum state tomography (QST)?
~ b Rl \X J

“Is the process of reconstructing the quantum state (density matrix) for a
source of gquantum systems by (ensemble) measurements on the
systems coming from the source.”

Cf. X-ray computed tomography (CT)

Tomography [Greek]
= tomos (slice) + grapherin (to write)
: Imaging by sectioning

Image taken from “Wikipedia™
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- Density matrix of a qguantum system can be reconstructed by measurement of

(01), (02), (03)
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Stern-Gelach-like experiment:

- {01), {72), {03) can be measured by three different choices of measurement axis

- Individual measurements collapse the quantum state
- Many identical copies are needed to reconstruct the state




Quantum state tomography (of a qubit)
~ bt e \ | V4

QST for a Joshepson charge qubit with AB flux
(Liu et al., PRB (2005))

- Charge detection = (o3)

—te'

- Pseudospin rotation + charge detection = (o), (09) ( w1 @ .m)
(involves voltage and flux switching)

However, what is measured when one tries to measure something
that is arbitrary (density matrix of an AB loop) ?
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e “Faraday” Phase Shift in Double-Dot Aharonov-Bohm Loop
- for a Fast Switching of the Flux
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- to investigate the flux dependence of the state

The procedure of the experiment:

1. Prepare an initial ground state at
=@
Sudde ing of th
= n @l (=0
3. Measure the time-dependent

charge at one of the QDs.
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Ave. el. number of QD-1 N
(for the symmetric gauge)
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A flux-switching & charge oscillation
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, . Aflux-switching & charge oscillation
For the symmetric gauge (¢,= ¢yp,) For the “¢,= 0" gauge
Hl(r) F’?l(f) p=2nm
1t i
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In general, it gives an arbitrary result depending on the gauge :<

What about the gauge invariance?
- @) is not enough to decide the physics of this problem




Faraday effect:
additional constraint on the gauge

A gauge should be chosen to give &
the correct inductive field: OD-1 O OD-2
b
1 8A Time-dependent part of E-field
E:_VV_EE KE-dr——/Adrl%
'/bE-dr = _;E A-dr = ;%

For e.g., a symmetric ring with circular symmetric flux satisfies:

50, = 60y, = 5P /2

(([)” + ¢ = (I))
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A flux-switching & charge oscillation
@ =@ -2 0 (for a symmetric ring)

For the symmetric gauge

(9= Pp= ¢/2)
. 4 periodicity

ty = —2tcos (¢/2)

For the “¢,= 0” gauge o
: 2r periodicity




Faradav-induced h ase

Faraday-induced momentum kick

Ap—e/Edt——EAA
C

Faraday-induced phase shift (local)
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Oralr) = 7O T = —CAA() ¥

* For one loop:
0DF, = —QWA(D/(P() (= - (change of the AB phase))
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Faraday-induced phase

In general, local “Faraday phase” is also a physical quantity (gauge-invariant):
Q@

QD-1 ) QD-2

b
6¢F(‘z<path a) — 5@Fa(pa.th b) — —WA(D/(DO

(for a symmetric double-dot ring)

- 2@, periodicity




Faraday-induced phase

e Geometric phase shift
- depends only on 4A(r) (initial & final configurations)

@F(f(r) = %Ap I = —%AA(I‘) - T

* Not a topological one

2, A'V o
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» “Faraday” Phase Shift in Double-Dot Aharonov-Bohm Loop

- for an Adiabatic Switching of the Flux




Adiabatic switching of the flux
LR h/AE < Aty, S Dephasing time
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Procedure:

1. Start from the ground state at
Ae=() @ = P

2. Initialize a nonstationary state by
sudden switching of Aeg

3. Adiabatic switching of the fiux

Q=@ D @ 5 G

4. Measure the time-dependent

charge at one of the QDs.
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Adiabatic switching of the flux
h/AE < Atg, S Dephasing time

Occupation QD1

--- For an adiabatic|change of @ =@, 2 0
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Out of phase oscillation

< Faraday-induced phase shift
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Conclusion

When one tries to reconstruct (by a QST) the wave function (of an AB
loop) which is arbitrary:

 Its local phase is determined by the law of Faraday induction, not by
the arbitrary choice of gauge.

e The induced phase is geometric, but non-topological
* Double-dot loop is only one example

Reference: KK, arXiv:1102.5261




Conclusion

“No progress without a paradox.”

- J. A. Wheeler

Mesoscopic Physics & Quantum Information Lab.



