

Faculty of Mechanical Engineering, Institute of Materials Science, Chair "Materials Science and Nanotechnology"

Identification and Immobilization of Biological Receptor Molecules for Nanowire-based Biosensing

C. Kühn^{1#}, L. Römhildt^{1#}, E. Boschke², J. Opitz^{1,3}, G. Cuniberti¹

- ¹ Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
- ² Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, 01062 Dresden, Germany
- ³ Fraunhofer Institute IZFP Dresden, 01109 Dresden, Germany
- # both authors contributed equally

Motivation

Why Nanowire-based Biosensing?

- 1D nanostructure
- high surface-to-volume ratio binding of target molecule →
- change in electron transport properties

- **→** target: virus proteins
- → identification of peptides as small receptor molecules by phage display
- **⇒** silicon surface functionalization
- **→** immobilization of receptors

Identification of Receptors - Phage Display and Biopanning

Characterization of Individual Phage Clones

round 2 and 4: Nunc MaxiSorpTM 96 well plate

Isolation and amplification of individual phage plaques

ELISA after round 4 BSA M13KE pool R4

→ ELISA signal strongly dependent on phage concentration and binding affinity, but reproducibility has to be improved

Sequencing of Phage-Displayed Peptides

- PCR and gel electrophoresis of enriched phage library inserts
- sequencing result: 35 of 36 sequences analyzable 23 different sequences

Outlook

- → further binding studies of most promising candidates
- → immobilization of peptides for nanowire-based biosensing

Immobilization of Receptors - Functionalization

Immobilization of receptor molecules: DNA aptamers

Fluorescence microscopy

optical detection of anti-thrombin aptamer bound to reactive carboxy surface with FAM*-modified aptamer

*FAM - carboxy-fluorescein dye

no fluorescence on nonfunctionalised Si wafer

high density of fluorescent dots → successful aptamer binding to functionalised reactive surface

References and Contact

[1] W.M. Weber et al., Nanotechnology 2008, NANO '08. 8th IEEE Conference on, 580-581

Contact:

claudia.kuehn@nano.tu-dresden.de lotta.roemhildt@nano.tu-dresden.de

Acknowledgements

This work was supported by the European Union (European Social Fund) and the Free State of Saxony (Sächsische Aufbaubank) in the young researcher group 'InnovaSens' (SAB-Nr. 080942409).

Europa fördert Sachsen.

