

Impedimetric biosensors: from point mutations in DNA to histamine in tuna brine

Technische Universität Dresden, May 19, 2011

Biosensors @ Hasselt University

IMO-MAF BIOSensors, 2001 Patrick Wagner

BIOMED

Physiology, Genetics, Immunology Luc Michiels Marcel Ameloot

IMO-Chem

Organic & Bio-Polymeric Chemistry, 2003 Thomas Cleij

IMO-Chem

Biochemistry, 2009 Wanda Guedens Peter Adriaensens **Maastricht University & Academic Hospital**

NUTRIM, CARIM Freddy Troost Mat Daemen

XIOS Electronical Engineering, 2009 **Ronald Thoelen**

IMO-MAF

Wide Bandgap Materials Ken Haenen Milos Nesladek

IMO-MAF

Electronic & Physical Characterization Jan D'Haen Ward De Ceuninck

IMO-MAF

Nanostructure Physics Hans-Gerd Boyen

Sensor ingredients

Platforms

- Conjugated polymers
- Inorganic Semiconductors:
 synthetic diamond,
 cubic boron nitride, silicon,
 carbon structures

Receptors

-Biological (DNA and Antibodies) -Synthetic (Molecular Imprinted Polymers, Aptamers)

Biosensors

Fast, user friendly label-free sensitive, selective point-of-care, monitoring

Detection

Impedance spectroscopy
Microbalances QCM
ELISA, fluorescence, Concap, voltammetry

Immuno-

sensors for

proteins

Small-molecule

detection by

MIP's

Enzymatic

biosensors

DNA-sensors

for genetic

tests

Immuno-

sensors for

proteins

Small-molecule detection by MIP's

Enzymatic

biosensors

DNA-sensors

for genetic

tests

Impedance spectroscopy

rsiteit hasselt imec

MATERIAALONDERZOEK 20 Years Materials for the Future 1 M O - 1 M O M E C

Jeroen

imec

MATERIAALONDERZOEK 20 Years Materials for the Future 1 M O - 1 M O M E C

> 100 Hz – 15 MHz 1 Channel

100 Hz – 100 kHz 8 Channels 5.7 sec / sweep 10 Hz – 100 kHz 8 Channels 9 sec / sweep

Part 1: Electronic sensors for DNA

Key element in 'Theranostics`

Application examples

SNP mutations correlate with certain diseases.....

DNA – base pair coupling

DNA Mutation

DNA Mutation

Finding SNPs with microarrays

Schematic !

- Hybridisation at high temperature $\approx 80^{\circ}$ C
- Long hybridisation time of 16 hours

imec

NSTITUUT VOOR IATERIAALONDERZOEK 0 Years Materials for the Future

• Only thermodynamically most-stable = complementary duplex forms

Denaturation by thermal melting

Stronger UV absorption in SS-DNA

Denaturing gradient gel electrophoresis (DGGE)

- Established, but time consuming: hours to 2 days
- Hard to integrate in high throughput analysis

Test panel of DNA duplexes: 29-mers

imec

INSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future

Photo-coupling of fatty-acid crosslinker

c=c double bond

DNA attachment by EDC reaction

imec

MATERIAALONDERZOEK 20 Years Materials for the Future 1 M O - 1 M O M E C

imec

NSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the future I M O - I M O M E C

Denaturation monitoring with double rinsing

Equivalent circuitry

	1 x PBS before denaturation	1 x PBS after denaturation	0.1 M NaOH	Error (%)
R ₁ (Ω)	142	142	140	2.5
CPE (nSs)	21.9	24.1	23.9	2.2
n	0.8	0.79	0.79	1.0
$R_{2}(k\Omega)$	39.3	38.0	37.1	1.2

Use data at 10 kHz for high signal/noise, capacitive sensing effect in CPE

Resistance effect of ds- and ss DNA brush

- Electric field effect in p-doped silicon ?
- Electric field effect in p-doped NCD ?

imec

IMOMED

INSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future

 \blacktriangleright ds-DNA brush impedes ion movement in buffer ?

negative DNA charge

Denaturation with 4 duplexes (x 5 electrodes)

Compilation of denaturation data

rsiteit hasselt

imec

MATERIAALONDERZOEK 20 Years Materials for the Future I M O - I M O M E C

Target DNA:	Complement	Mismatch BP 20	Mismatch BP 7	Random
T melting (° C) (FractTM)	91 (84)	85 (78)	88 (81)	- 33 (- 41)
T melting (° C) (HyTher)	79.5	75.0	76.7	- 50.8
$< \tau_1 > (min)$	2.26	1.38	1.16	0.59
$\sigma < \tau_1 > (min)$	0.11	0.05	0.04	0.08
$< \tau_2 > (min)$	0.52	0.50	0.46	0.46
$\sigma < \tau_2 > (min)$	0.08	0.09	0.06	0.04
$< A_1/Z(0) > (\%)$	3.4	2.0	2.0	0.4
$\sigma < A_1/Z(0) > (\%)$	1.1	0.3	0.7	0.2
$< A_2/Z(t_2) > (\%)$	4.9	6.9	5.6	9.8
$\sigma < A_2/Z(t_2) > (\%)$	1.3	0.5	1.2	1.1

Compilation of time-constant data

• SNP resolution: same defect at different positions

imec

NSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future

> B. van Grinsven et al., *Lab Chip*, 2011, 11, 1656

- Reproducible data for several diamond electrodes
- No sensor regeneration between successive steps // stable under storage

Calculated melting temperatures vs. denaturation time

HyTher - online

http://ozone3.chem.wayne.edu

- base-pair interactions
- nearest neighbor effects
- salt concentration
- tethered terminus

`Zipper – model rules`

- Cracking 1 base pair needs 1 time unit
- Chemical denaturation starts at

Denaturation in 'zipper' model

Zipper time: 14.5 units Denaturation time: 2.26 min Zipper time: 9.5 units Denaturation time: 1.38 min Zipper time: 11 units Denaturation time: 1.16 min Zipper time: 1.5 units Denaturation time: 0.59 min

Denaturation in 'zipper' model

Zipper time: 14.5 units Denaturation time: 2.26 min

Zipper time: 9.5 units Denaturation time: 1.38 min Zipper time: 11 units Denaturation time: 1.16 min Zipper time: 1.5 units Denaturation time: 0.59 min

- Fehlerhafte DNA geht schneller kaputt
- Effect can be used to detect and localize SNP mutations
- Chemical equivalent of thermal denaturation
- Denaturation-time constants correlate with calculated melting temperatures
- To be studied: can we discriminate between different defects at identical positions ?

Part 2: Small molecule detection

MIP preparation principle

Solution	Pre-polymerization complex	Polymerization	Extraction
	complex		

- a: Template molecule forms a pre-polymerisation complex with functional monomers
- b: Polymerisation in presence of cross-linker
- c: Removal of template leaves cavity with well-defined shape and complementary functional groups

Preparation of molecular imprints

Reference:

imec

INSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future

- NIP: same procedure without L-nicotine
- L-cotinine: similar molecule;
 two hydrogen atoms replaced by one oxygen atom

MIP-particle morphology

imec

NSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future MO - IMOMEC

- Suspension polymerisation
- Diameter ± 5.0 µm

Optical batch rebinding experiments

UV-vis absorption Wavelength ~ 276 nm

imec

TITUUT VOOR

- C_i = initial target concentration
- C_f = free target concentration
- C_b = bound target concentration
- S_b = bound target per gram MIP or NIP

Target / MIP binding: Target / NIP binding: Analogue / MIP binding:

specificity aspecificity selectivity

Binding isotherms predict MIP performance in sensor setup.

Test of aspecificity: MIP vs NIP

Serotonin

imec

INSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future

Classic allometric fit ($R^2 = 0.99$)

Fit parameters	NIP	MIP
А	62.3 ± 1.9	233 ± 12.9
b	0.88 ± 0.06	0.90 ± 0.05

Imprint factor (IF) of 4.0 at 0.6 mM

Langmuir isotherm :
$$Sb = \frac{N * K * Cf}{1 + K * Cf}$$

Freundlich isotherm : $Sb = a C_f^{\ b}$

Selectivity test: serotonin vs. competitor

Competitor: 5-HIAA (metabolite)

Distribution of affinity constants:

Integration in sensing platforms

- Use the most specific and selective MIP
- MIP immobilization by **matrix entrapment** in a polymeric transducer layer
- Electronic detection of the MIP binding by two sensing principles:

1) Impedance Spectroscopy:

Target binding in the MIP \rightarrow change of the complex resistance

2) Quartz Crystal Microbalance (QCM):

Target binding in the MIP \rightarrow change of resonance frequency due to mass increase

Matrix entrapment of MIP particles

imec

INSTITUT VOOR

MATERIAALONDERZOEK

PPV/PVC adhesive Aluminum Glass

Straightforward, uniform coverage of the sensing surface : ~ 20%

MIP immobilization by matrix entrapment

Layout of impedimetric cells

Impedance addition setup

Impedimetric flow-through setup

Bongaers et al., 2010. Phys. Status Solidi A. 207, 837-843.

Impedance measurements in PBS buffer

imec

INSTITUUT VOOR MATERIAALONDERZOEK 20 Years Materials for the Future

- First: stabilization
- Addition of serotonin of defined concentration
 - Impedance normalized to stabilized value
- Increase calculated by moving average (6 points, 3 min in between)
 - Per concentration : ± 30 min

Target: Serotonin in PBS buffer (addition setup)

Nanomolar detection limit

Relevant concentrations: 5-20 nM in plasma (Wymenga et al., Lancet, 1999)

Actual samples: blood plasma

- Detect serotonin in portal blood
- Addition of vitamin C to prevent oxidation

Spiking in impedance directly visible but...

Determine initial concentration ?

Initial plasma concentration

- Healthy individuals : 5-20 nM (Wymenga et al., Lancet, 1999)
- Add 10 mg MIP to extract serotonin from plasma
- Upon addition of plasma with native serotonin: + 0.32% → 18.8 nM

Impedimetric modeling

fluid & counter electrode Al / PPV / fluid interfaces Al / PPV / fluid interfaces **imprinted polymers**

	MIP			NIP	
Spiked (nM)	CPE _{im} (µS*s ⁿ)	n _{in}	CPE _{im} (µS*s °)	n _{in}	
0	13	0.62	54	0.46	
50	7.0	0.69	53	0.46	
100	5.3	0.72	52	0.46	
150	3.9	0.75	45	0.48	
200	2.8	0.79	50	0.47	
250	3.4	0.77	36	0.51	

Impedance change from dielectric constant ?

- ε_0 and $\frac{A}{d}$ are constant
- binding: changes local ε_r

water ~ 81, organic molecules ~ 5-10

$$C = \varepsilon_r * \varepsilon_0 * \frac{A}{d}$$

Similar: MIP-based histamine detection

siteit lasselt imec

MATERIAALONDERZOEK

Histamine in food sample: fish

- Synthesis of selective and specific MIPs for serotonin, histamine, nicotine ...
- Integration in a biomimetic sensor with impedance spectroscopy as read-out technique
- Nanomolar detection limit in plasma (biological matrix) and purified food samples
- Offset correction via target extraction
- Straightforward design, rapid and low-cost technique (as compared to chromatography)

Emerging activities 1

Emerging activities 2

Development of Plastic Bioelectronics

Development of novel functional materials, such as conjugated polymers

well-defined functional groups

Future: single molecule interactions

Partners and funding

- Aachen University of Applied Sciences
- Research Center Jülich
- ISAS & BESSY II Berlin
- K.U.Leuven: LVSM & MeBioS
- U Antwerpen: EMAT & CMT
- VITO Materials Technology
- IMEC ESAT
- Siemens Corporate Technology
- University of Applied Sciences Kaiserslautern
- Cranfield Health

- UHasselt Special Research Funds BOF
- Province of Limburg: Life-Sciences Impulse Programme
- Research Foundation Flanders FWO
- BELSPO Interuniversity Attraction Poles IUAP
- Methusalem NANO Antwerp-Hasselt
- IWT
- Interreg NanoSensEU
- 7th Framework Programme -DINAMO