Molecular-level assessment of disease-relevant mechanisms by AFM

Adrian Keller

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark

Biomolecules at surfaces

Biomolecules at the solid-liquid interface

The presence of surfaces has a strong effect on biomolecules, i.e. DNA, proteins, and peptides.

\rightarrow exploited for the self-assembly of supramolecular nanopatterns

Mamdouh *et al.*, *J. Am. Chem. Soc.* (2006), **128**, 13305

Mamdouh *et al.*, *J. Am. Chem. Soc.* (2008), **130**, 695

Bald et al., Small (2011), 7, 939

However -

also in the physiological environment, different surfaces interact with biomolecules: *cell membranes, blood vessels, surfaces of bones, implants, tubing, ...*

 \rightarrow How do surfaces influence the physiological action of biomolecules?

 \rightarrow in-vitro studies using biological model surfaces

Surface properties influence protein adsorption

R н U A A S

Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation

The structure of mica surfaces

- layered structure:
 - negatively charged aluminosilicate sheets
 - alternating layers of K⁺ ions
 - distance between layers 1 nm
 - cleaving (Scotch tape) → atomically flat terraces → great for AFM!
- aqueous solution:
 - K⁺ ions exchanged into solution
 - surface exhibits a negative net charge
 - \rightarrow hydrophilic surface

Ion-beam modification of mica surfaces

25 eV Ar⁺ \rightarrow mica:

- negligible effect on crystal structure
- very low sputter yield
 - \rightarrow negligible effect on topography
 - \rightarrow negligible effect on surface composition
- no new chemical species
- very effecient removal of outermost K⁺ ions
- \rightarrow underlying alumino-silicate sheet exposed
- \rightarrow silicate tetrahedra act as adsorption sites for C
- \rightarrow increased adsorption of hydrocarbons from the environment
- \rightarrow hydrocarbons are hydrophobic

Ion-induced surface hydrophobicity

Chemical analysis by XPS

TABLE I. Elemental concentrations of K and C (in at.%) of virgin and irradiated mica surfaces aged for different times.

	Virgin			$25 \text{ eV}, 10^{15} \text{ cm}^{-2}$	
Element	10 min	4 days	64 days	4 days	67 days
K	7.3 ± 0.1	7.6 ± 0.3	6.1 ± 1.6	4.6 ± 0.4	2.2 ± 0.3
С	6.1 ± 0.1	5.2 ± 1.4	10.5 ± 3.7	10.2 ± 4.6	18.4 ± 0.6

- increased C content on bombarded samples
 → thin HC film
 - high fluences: preferential sputtering
- C content increasing with age
- HR XPS: composition of HC films independent of age and treatment
- contact angle not (solely) determined by amount of HCs on the surface

Keller et al., J. Chem. Phys. (2011) 134, 104705

Influence of hydrophobicity on the surface-catalyzed assembly of the Islet Amyloid Polypeptide

Amyloid aggregation

- Polymerization of misfolded peptides/proteins in solution or at interfaces
- Self-assembly into nanostructures:
 oligomeric particles protofibrils

Dong et al., Nanotechnology. (2006), 17, 4003

higher-order fibrils

glucagon

- In principle, ANY protein or polypeptide can form amyloid aggregates!
- Amyloid aggregation related to the development of various diseases, e.g. *Alzheimer's disease*, *Parkinson's disease*, *prion disease*, ...

The Islet Amyloid Polypeptide (IAPP)

- Islet Amyloid Polypeptide (IAPP):
 - hormonal factor secreted from the pancreatic β -cells together with insulin
 - reduces insulin sensitivity
 - islet amyloid deposits present the pancreas of > 90% of type II diabetes patients

Cytotoxicity of IAPP aggregates

Engel *et al., Proc. Natl. Acad. Sci. USA.* (2008), **105**, 6033

Khemtéourian et al., Exp. Diabetes Res. (2008), 421287

\rightarrow islet amyloid can induce apoptotic cell-death in insulin-producing β -cells

 \rightarrow relevant to the development of type II diabetes

Amyloid aggregation at surfaces

The presence of a surface may:

- induce the formation of initial oligomers (nucleation)
- influence the assembly rate and lag time
- affect the structure of the aggregates

Physicochemical surface properties have a strong effect on amyloid aggregation! Amyloid β

Mica: hydrophilic

 α -synuclein

Kowalewski *et al., Proc. Natl. Acad. Sci. USA*. (1999), **96**, 3688

Hoyer *et al.*, *J. Mol. Biol.* (2004), **340**, 127

Time-lapse study of IAPP aggregation on HC films

Preparation of mica surfaces

- sub-100 eV ion bombardment
- exposure to lab atmosphere
- comparing aggregation on surfaces with different contact angles

IAPP incubation

- 13 μM IAPP in *water*
- *room temperature*
- incubation time 0.5 to 6 h
- samples dried in N₂ stream
- Ex-situ AFM:
 - tapping mode in air

IAPP on a mica/HC surface with $\theta = 23^{\circ}$

protofibrils height: (2.0 ± 0.5) nm

fibrils height: (4.5 ± 0.5) nm twist: (28.4 ± 3.7) nm

IAPP on a mica/HC surface with $\theta = 38^{\circ}$

IAPP on a mica/HC surface with $\theta = 76^{\circ}$

Influence of hydrophobicity on IAPP aggregation

Interplay between electrostatic and hydrophobic interactions with the substrate:

 \rightarrow determines conformation of adorbed monomers

 \rightarrow dictates the pathway of aggregation

IAPP: 37 amino-residue polypeptide

amyloidogenic region

Conclusion

- Surface-catalyzed processes play an important role in the physiological environment and strongly affect how biomolecules behave.
- Disease-relevant aggregation of proteins and peptides can follow completely different pathways when occurring at surfaces.
- The physicochemical surface properties dictate the type of interaction with the molecule: *electrostatic vs. hydrophobic interactions*

 \rightarrow biological model surfaces with tunable properties needed!

- Low-energy ion-beam irradiation allows the fabrication of novel model surfaces with tunable properties.
- IAPP aggregation (lag time, aggregation rate, morphology) at surfaces is driven by the interplay between electrostatic and hydrophobic interactions.

Acknowledgements

iNANO:

Ilko Bald Alexandru Rotaru Ryosuke Ogaki Peter Kingshott Mingdong Dong Flemming Besenbacher Kurt Gothelf

Tsinghua University Beijing:

Ye-Ping Yu Qian Liu Yan-Mei Li

HZDR:

Monika Fritzsche Stefan Facsko

Alexander von Humboldt Stiftung/Foundation

