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Electrical communications, fluid dynamics, and  
some fundamental issues in physics2 

 
Alfred Fettweis 

Ruhr-Unversität Bochum 
Germany 

 
Abstract 
 
Strict validity of Maxwell's equations in vacuum is assumed and con-
cepts such as field velocity, rest field , autonomous (charge and current den-
sities seen as properties, not sources), and basal electromagnetic (EM) field 
are introduced. Flow equations are derived that for a basal EM field are 
structured exactly like those of fluid dynamics and thus in fact describe 
an EM fluid. Condensed field configurations, in particular of rotating 
type, are analysed whose properties make them well suited to serve as 
models for an electron (positron) and a photon, respectively. Although 
these fields are essentially contained in a very small volume, they are 
nowhere point-like, neither in position, nor in time, nor in frequency. 
 
    At their basic (first) level of observation, electrons and photons then ap-
pear to consist of an EM fluid; its detailed behaviour is governed by the 
laws of the alternative relativistic dynamics published in recent years. At 
a second level of observation, the focus is directed on energy density, 
which changes indeed due to two distinct effects: convection and work 
done by the internal forces. The combined overall energy migration can 
be described by a single energy velocity, and the resulting expressions 
for mass and energy densities agree with the laws of classical relativistic 
dynamics. At the third level of observation, finally, the movement of a 
particle as a whole is observed, thus ignoring the details of the behav-
iour inside of the EM fluid. This movement turns out to be governed by 
the laws of classical relativistic dynamics, which is in full agreement 
with known experimental results. Using the electron model, the deter-
mination of Sommerfeld's fine-structure constant, can, in principle, be 
reduced to a purely mathematical problem. The photon-like model ex-
hibits all 13 generally known photon properties and offers a natural in-

                                                 
2 This is a more complete text about the results presented by the author in a lecture on 8 
July 2009 at the Nordrhein-Westfälische Akademie der Wissenschaften und der Künste 
in Düsseldorf, Germany. 



Alfred Fettweis 

 

10 

terpretation of the wave-particle duality. All results follow by strict 
mathematical deduction from Maxwell's equations and their relativistic 
transformation rules. No incompatibility arises between relativity theory 
and the quantum principle.  
 
 

Nachrichtentechnik, Fluiddynamik 
und einige Grundfragen der Physik3 

 
Alfred Fettweis 

Ruhr-Unversität Bochum 
 
Zusammenfassung 
 
Grundannahme ist die strenge Gültigkeit der Maxwellschen Gleichun-
gen im Vaku-um.  Konzepte wie Feldgeschwindigkeit, Ruhfeld, autonomes 
(Ladungs- und Stromdichten aufgefasst als Eigenschaften, nicht Quel-
len) und basales elektromagnetisches (EM) Feld werden eingeführt. Strö-
mungsgleichungen werden hergeleitet, die für ein basales Feld die gleiche 
Struktur besitzen wie die Grundgleichungen der Fluiddynamik, also 
eigentlich ein EM-Fluid beschreiben. Verdichtete Felder, insbesondere 
von rotierendem Typ, werden untersucht, die als Modelle für ein Elek-
tron (Positron) bzw. ein Photon geeignet sind. Obwohl solche Felder auf 
ein sehr kleines Volumen beschränkt sind, sind sie keinesfalls einfach 
punktförmig, und zwar weder im Ort, noch in der Zeit, noch in der Fre-
quenz. 
 
    Auf der primären Beobachtungsebene erweisen sich Elektronen und Pho-
tonen damit als EM-Fluide, deren Detailverhalten durch die vor einigen 
Jahren bekannt gewordene alternative relativistische Dynamik beschrie-
ben wird. Energiedichten ändern sich infolge zweier sehr unterschied-
licher Effekte: Konvektion und durch die Kräfte geleistete Arbeit.  Beide 
Effekte zusammen ergeben eine Energiemigration, die mittels einer resul-
                                                 
3  Ausführlichere Darstellung der Ergebnisse, über die am 8. Juli 2009 unter dem Titel 
"Mechanistische Eigenschaften elektromagnetischer Felder, nachrichtentechnische 
Anforderungen und einige Grundfragen der Physik" auf einer gemeinsamen Sitzung der 
Klasse für Naturwissenschaften und Medizin und der Klasse für Ingenieur- und Wirt-
schaftswissenschaften der Nordrhein-Westfälischen Akademie der Wissenschaften und 
der Künste in Düsseldorf berichtet worden ist. 
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tierenden Energiegeschwindigkeit erfasst werden kann  (sekundäre Be-
obachtungsebene) und zu Ausdrücken für Massen- und Energiedichten 
führt, die wie in der klassischen relativistischen Dynamik aufgebaut 
sind. Entsprechend genügen auch die dynamischen Gleichungen eines 
geladenen EM-Teilchen, das sich als Ganzes bewegt (tertiäre Beobach-
tungsebene), der klassischen relativistischen Dynamik, in Übereinstim-
mung mit den bekannten experimentellen Ergebnissen. Aus dem Elekt-
ron-Modell lässt sich – prinzipiell -  die Bestimmung der Sommerfeld-
schen Feinstrukturkonstante auf eine rein mathematische Aufgabe zu-
rückführen. Das Photonmodell besitzt alle 13 üblicherweise bekannten 
Eigenschaften eines Photons und bietet eine natürliche Interpretation 
des Welle-Teilchen-Dualismus. Alle Ergebnisse folgen streng mathema-
tisch aus den Maxwellschen Gleichungen und deren relativistischen 
Transformationsregeln. Inkompatibilitäten zwischen Auffassungen der 
Relativitäts- und der Quantentheorie treten nicht auf. 
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1. Introduction 
 
This paper addresses some fundamental issues in physics but from a 
point of view inspired by results from the theories of communications 
systems and fluid dynamics. In line with this it assumes the strict valid-
ity of Maxwell's equations in vacuum, even down to the smallest dimen-
sions, and their inherent relativistic transformation rules.  
 
    In an attempt to finding a proper mechanistic interpretation of Max-
well's theory, the concepts of field velocity and rest field of an electromag-
netic (EM) field are introduced and precisely defined. For this, use is 
made of the known equations for determining the new field quantities 
after subjecting the coordinates (position coordinates x, y, z and time t) 
to a Lorentz transformation (Section 2). The judiciousness of these defi-
nitions is subsequently confirmed by deriving a variety of results and by 
showing several of their consequences (Sections 2 and 3). Using rigorous 
mathematical deductions from Maxwell's equations, the known equa-
tions involving field momentum and stress tensor as well as the equa-
tion relating Poynting vector and energy are then found to be equivalent 
to new equations, say flow equations, that are of the same type as the cor-
responding equations of fluid dynamics (Section 4) and thus lend them-
selves indeed to a consistent mechanistic interpretation. We speak about 
this as an observation at the primary or basic level. At this basic level, the 
EM field thus behaves like an electromagnetic fluid (EM fluid) that is mov-
ing under the influence of the surface and volume forces acting in it. In 
particular, changes of energy densities are caused by to two entirely dis-
tinct effects, convection and work done by these forces.  
 
    On the other hand, one may be interested in the combined result of 
these two effects and characterize the overall energy migration simply 
by means of an effective energy velocity. We refer to this as an observation 
at the secondary level.  The effective energy velocity reaches twice the 
field velocity at the low end and becomes equal to it at the speed of 
light. Whether at the primary or the secondary level, the flow equations 
clearly show that an EM field inherently has inertia and thus mass.  
 
    At the secondary level, thus when using the effective energy velocity, 
the original flow equations admit a form that exhibits relevant proper-
ties, at least in as far as the expressions for mass and energy are con-
cerned, that are in agreement with classical relativistic dynamics [1-12]. 
At the primary level, however, the results are better compatible with 
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those of an alternative relativistic dynamics that was first mentioned in 
[13, 14] and had then gradually been refined in a sequence of papers, the 
last one of which being [15]; it is summarized and partly corrected in the 
present Appendix C. Even at the secondary level, this alternative theory 
still plays a role and may therefore not simply be replaced by the classi-
cal theory. It had actually been inspired by earlier work on topics in cir-
cuit theory, digital signal processing, and on a robust, physically-
motivated approach, based on wave-digital concepts [16-18], for nu-
merically integrating partial differential equations representing physi-
cally meaningful systems. Nevertheless, as interesting and instructive as 
these interpretations at the primary and secondary level may be, their 
details do not affect the validity of the subsequent developments, thus of 
the bulk of the results presented in this text. 
 
    Requiring a current to be a consequence of moving charges leads to 
the concept of an autonomous (self-sustaining) field and, more specifi-
cally, of a basal field, i.e., an autonomous field described in a reference 
system where its rest current vanishes everywhere (Sections 2 and 4). 
For basal fields the flow equations become particularly elegant. All this 
makes it quite plausible that elementary particles, at least EM particles 
such as electrons, positrons, and photons, are nowhere point objects but 
condensed fields. In accordance with what has been said above, they 
would have an inner structure for which, on the one hand, Maxwell's 
theory still strictly holds but which, on the other, may be considered to 
consist of an EM fluid. In that fluid, the details of the flow of momen-
tum, energy and charge densities are observed at the basic level and 
hence follow laws of the alternative relativistic dynamics. At the secon-
dary level, however, classical relativistic dynamics also plays an impor-
tant role. At the tertiary level, finally, i.e. if the fine details are ignored 
and only the movement of a particle as a whole is observed, it is classical 
relativistic dynamics that determines the overall behaviour (Section 7), 
confirming the excellent agreement of all major experiments with the 
predictions of that theory.  
  
    The relevance of such considerations is confirmed by examining two 
specific localized basal EM fields (Sections 5 and 6). The first one of these 
makes direct use of the mechanistic interpretation and concerns a field 
rotating around an axis (electron, positron?). An analytic expression for 
a quantity is derived that is highly similar to the so-called fine structure 
constant. This quantity is not only dimensionless but its determination 
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can be reduced to finding the solution of a mathematical problem that 
does not involve any physical parameter, thus to finding a pure mathe-
matical number. Evaluating it, however, requires three nonlinear partial 
differential equations and two subsequent integrals to be properly 
solved, which altogether amounts to a task that has so far resisted at-
tempts to finding an analytic solution. Standard numerical methods may 
have difficulty coping with the specific nature of some of the additional 
conditions that are to be respected.  
 
    The other localized field (photon?) is one that is propagating with the 
speed of light, c , in a single direction, is planar and transversal with 
respect to that direction, is polarized either in a fixed direction or circu-
larly, has zero rest energy and zero rest mass, occupies a narrow fre-
quency band centred at its nominal oscillating frequency, and properly 
obeys the uncertainty relation; its energy is proportional to its nominal 
frequency, its length proportional to the corresponding wavelength, its 
momentum equal to its energy divided by c , and in dispersive media it 
propagates with the group velocity. Such a field obviously is simultane-
ously wave and particle and thus offers a completely natural explana-
tion of what is known as the wave-particle dualism.  
 
    Some of the results presented in this paper have already appeared in 
[19] and partly in [13-15], but there are also some deeper reaching 
changes. In particular, the crucial distinction between the three levels of 
observation for the flow equations and thus the simultaneous relevance 
of both the classical and the alternative relativistic dynamics had not 
been realised. Although the relations on which the present viewpoint is 
based had been included in [19], their far reaching consequences had 
been overlooked. Instead, an attempt had been made to reconcile the 
alternative relativistic dynamics with experimental observations, but 
this way of handling the issue is no longer accepted as adequate. This 
justifies including in the present paper those earlier results that appear 
essential for a coherent, self-contained presentation. A summary of the 
required alternative relativistic results is presented in Appendix C1; de-
tails about their derivation can be found in [13-15]. Some concluding and 
summarizing remarks are given in Section 8. Subsections 3.4 to 3.6, al-
though of definite interest, could be omitted in a first reading. 
 
    The author is aware of the many imperfections of this text. Despite its 
length, it is still quite incomplete, and many details should have been 
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presented more carefully. In view of his age (83), however, the author 
feels that the results should be made available at least in their present 
form. He would be delighted if some younger experts would pick up the 
thread and address some of the many challenging issues that remain to 
be examined and clarified. 
 
2.  Field velocity and rest field: concepts and basic properties 
 
2.1 Electromagnetic fields in vacuum  
 
Let RF be the reference frame under consideration. A point P in RF is 
characterized by its position coordinates , ,x y z , or compactly by 

T( , , )x y z=r , 
and its time coordinate t , altogether thus by its coordinates , , ,x y z t . In 
this text we exclusively consider electromagnetic (EM) fields in vacuum. 
Such fields can be described in RF  by the field variables 

T T

T

, , ( , , ) ,

( , , ) , and ,
x y z x y z

x y z

(E ,E E ) H H H

i i i q

= =

=

E H

i
 

and by two constants, ε  and μ , which, obviously, are identical to those 
frequently denoted by 0ε  and 0μ , respectively. While E , H , i , ε , and 
μ  represent quantities in standard notation (although we here adopt H  
instead of the frequently preferred B ), we are designating the charge 
density by q , not by ρ  as is commonly done. This allows us to represent 
consistently the density, whether per unit area or per unit volume, of 
any relevant quantity by a meaningful small letter, and the correspond-
ing full quantity for, say, a particle by the respective capital letter. We 
also make systematic use of the transposition operator T  when han-
dling vectors and matrices; this has several advantages in our context 
(cf. Appendix A1). We do of course assume all coordinate systems to be 
right-handed. 
 
    The EM field itself is described by what is commonly called Maxwell’s 
equations, i.e., by 
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,   (a)

,     (b)

t

t

∂ ⎫ε + = ∇× ⎪⎪∂
⎬∂ ⎪μ = −∇×
⎪∂ ⎭

E i H

H E
 (2.1) 

}T T, 0, (a),(b)q = ε∇ ∇ =E H  (2.2) 

where                                       T( , , )
x y z
∂ ∂ ∂

∇ =
∂ ∂ ∂

.   

From the point of view adopted in this paper, we assume the field to be 
autonomous (self-sustaining), i.e., q  and i  to be not sources, but proper-
ties of the field. Charges and currents are thus always assumed to be 
distributed; their densities can be determined from E  and H  by (2.1)(a) 
and (2.2)(a).    
  
    In accordance with standard concepts from special relativity [1-12], let 

FR ′  be a second reference frame moving with constant velocity 
T

0 0 0 0( , , )x y zv v v=v  

with respect to RF. Instead of 0v  we frequently use the normalized ve-
locity 0β  and the corresponding scalars 0α  and 0β  defined by 

T 2 T
0 0 0 0 0 0 0 0

2 2
0 0 0

1 1( , , ) , , ,

             0 1, 1 0,

x y z c
c

= β β β = β = =
εμ

≤ β < α = −β >

β v β β
 

c  being the speed of light. As shown explicitly in the definition of 0α , 
square roots of positive numbers are always assumed positive in this 
text. To P corresponds in FR ′  a point P′  having coordinates tzyx ′′′′ ,,, . 
As is commonly done, we make use of the available freedom by adopt-
ing for the coordinates of RF and FR ′  the privileged choice for which  

T T 0
0 0 0 0 0 0

1( 0 0) , ( 0 0) , vv , , , ,
c c

= = = β β =v β v ,               (2.3) 

and for which the Lorentz transformation linking P and P′  thus simplifies 
to 
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0 0

0 0

0 0
0 0

1 1( ), , , ( ), (a)

1 1( ), , , ( ), (b)

xx x v t y y z z t t
c
xx x v t y y z z t t
c

⎫′ ′ ′ ′= − = = = −β ⎪α α ⎪
⎬′ ⎪′ ′ ′ ′ ′= + = = = +β
⎪α α ⎭

       (2.4) 

Since in (2.4) 0v  can be positive or negative, the same holds for  0β , 
which is thus related to the modulus of 0β  by 0 0 0| | | |β =± = ± ββ . Al-

though the assumption 2
0 1β <  excludes the case 0 0α =  we sometimes 

consider also the limit 2
0 1β → , 0 0α → . 

 
    The field variables in FR ′  are  

T T T( , ) , ( , ) , ( , , ) ,x y z x y z x y zE ,E E H ,H H i i i q′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =E H i , 

while ε  and μ  are, of course, the same as in RF. As is again well-known, 
it follows from (2.3) and (2.4) that 

}, , (a),(b)x x x xE E H H′ ′= =                                   (2.5)                 

0 0
0 0

0 0

1 1( ), ( ), (a),(b)

1 1( ), ( ), (c),(d)

y y z z z y

y y 0 z z z 0 y

E E v H E E v H

H H v E H H v E

⎫′ ′= −μ = +μ ⎪α α ⎪
⎬
⎪′ ′= + ε = − ε
⎪α α ⎭

      (2.6)                         

0

0

1 ( ), , , (a),(b),(c)

1                 ( ),                       (d)

x x 0 y y z z

0
x2

i i v q i i i i

vq q i
c

⎫′ ′ ′= − = = ⎪α ⎪
⎬
⎪′ = −
⎪α ⎭

         (2.7)  

the latter equations being of the same general type as (2.4). 
 
    The Poynting vectors in RF and FR ′  are given by  

HES ×== T)( zyx ,S,SS ,      HES ′×′=′′′=′ T)( zyx S,S,S , 
respectively. Using (2.3), (2.5), and (2.6) one finds,  
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( )

( )

2
2 20 0

2 2
0 0

0
0

0
0

1 ( 2 ), (a)

1 ( ) ,       (b)

1 ( ) ,        (c)

x y z z y x x x

y z x x z y x y x y

z x y y x z x z x z

vS E H E H S E H w

S E H E H S v E E H H

S E H E H S v E E H H

⎫+β′ ′ ′ ′ ′= − = + ε +μ − ⎪α α ⎪
⎪

′ ′ ′ ′ ′= − = + ε +μ ⎬α ⎪
⎪

′ ′ ′ ′ ′= − = + ε +μ ⎪
α ⎭

     (2.8) 

where                      
, ,x y z z y y z x x z z x y y xS E H E H S E H E H S E H E H= − = − = − , 

and where w  is, the classical field-energy density in RF given by 
2 2 2 T 2 T1

2 ( ), ,w E H E H= ε +μ = =E E H H .                   (2.9) 
For fully fixing E  and H , we could in fact assume ||E=E  and 

||H=H , thus 0≥E  and 0≥H , but in order to preserve our freedom 
for later purposes we will not impose that unnecessary restriction. This 
corresponds to a remark we have made above for 0v  and 0β  and holds 
for most other vector quantities throughout this paper. Equations such 
as (2.5) to (2.8) can be inverted by simply interchanging primed and un-
primed quantities and by replacing 0v  by 0v− (cf. (2.4)). 
 
 2.2 Field velocity    
 
As will be confirmed later, it is crucial to associate with an EM field a 
further local property that we call  the field velocity. We represent it by 
the symbol v  and its associated normalized velocity by β , and we have, 

T T( , , ) , ( , , )x y z x y zv v v
c

= = β β β =
vv β .  

In order to arrive at a proper definition of v , recall first that in the usual 
perception some type of flow is associated with the concept of a 
Poynting vector S . Hence, it is natural to require v  to be co-parallel (cf. 
first paragraph of Appendix A1) with S  and to vanish if 0S = .  
 
    Let us then select any arbitrary point P in RF. The goal we are at-
tempting to achieve is to find an associated reference frame FR ′  such 
that the velocity 0v by which FR ′  moves uniformly with respect to RF 
has the following properties: 
1.  0v  is co-parallel with S  at P in RF. 
2.   0S =′  at the corresponding point P′  in RF'. 



Electrical communications, fluid dynamics, and physics 

 

19 

3.  c<|| 0v , thus 1|| 0 <β . 
If the three properties just listed lead to a unique result we define the field 
velocity v  at P to be equal to the value of 0v  that has been obtained. 
However, if 0w =  we not only have 0S =  but also 0S =′ , and this for 
any choice of 0v  (cf. (2.8)). Therefore, in order to make the problem we 
are addressing meaningful we assume 0w ≠ . Or else, we are consider-
ing at present only such P for which at least one of the vectors E and 
H is not vanishing. The extension to 0w =  will be discussed later. 
 
    In order to carry out the calculations now required we first observe 
that we are still free to choose the position of the x-axis of RF. Hence, we 
may fix that position by requiring 0v  to be indeed of the form (2.3). But 
since S  is perpendicular to E  and H , we then have 

0==== zyxx SSHE . Taking into account (2.8), the requirements 

0vv = and 0S =′  yield 

2 , 0
1 2

x x
y z

v S v v
w

= = =
+β

,                                (2.10) 

or written in vector form, 

 
2 2

2
2 T 2 2 T

2

, ,          (a)
1 2 1 2

| | , . (b)

w cw
v v
c

⎫= = ⎪+β +β ⎪
⎬
⎪β = = = = ⎪⎭

v S β S

β β β v v
                 (2.11) 

Obviously, contrary to (2.10), (2.11) holds for any orientation of S  in RF. 
It reduces indeed to (2.10) in the special case that had led to that equa-
tion and remains valid if we pre-multiply all relevant vectors by a same 
arbitrary right-handed unit matrix. 
 
    Clearly, (2.11) fixes β  uniquely except for the value of | |β , for which 

                          2
2| | | |
1 cw

β
=

+β
S

                                      (2.12) 

is obtained. For the Poynting vector we have, using E  and H  as in (2.9) 
 2T22TT2 )()()(|| HEHEHESSS −=××== HE               (2.13) 

(cf. (A.4), Appendix), and therefore, in view of (2.9) and (2.12),  

                   1||2
1

||2
222 ≤

μ+ε
εμ

≤
β+
β

HE
EH

.                          (2.14) 
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Consequently, the quadratic equation (2.12) always yields positive solu-
tions for | |β  and thus for β , as needed. Due to (2.13), the first inequal-

ity in  (2.14) is in fact an equality if and only if 0T =HE , and the second 
one is an equality if and only if 22 HE μ=ε . If both these conditions 
hold, the solution of (2.12) is 1±=β , thus cv ±= . This limiting solution, 
which so far has been excluded by the assumption 00 >α , will hence-
forth be included in our considerations whenever permitted, even if this 
is not explicitly stated. 
 
    The equation (2.12) remains unchanged if β  is replaced by β/1 . 
Hence, a value with 1|| ≥β  is always paired with one for which 1|| ≤β . 
Only the latter is compatible with the last one (and its limiting case) of 
the three properties listed above as goal to achieve. The second of those 
properties is satisfied by construction, and the first one because the sca-
lar factor linking v  and S  in (2.11)(a) is positive. This completes the 
search for a physically meaningful definition of v .  
 

 We may now replace that physics-based definition by a strictly 
mathematical one. For doing this, we define the field velocity v  of an 
EM field in a point P by means of (2.11) together with the requirement 

1|| ≤β . Furthermore, we denote by 0RF  the specific FR ′  we have se-
lected and call it the rest reference frame associated with P. Thus, the uni-
form velocity by which 0RF  moves with respect to RF is equal to the 
field velocity v  at the point P with which 0RF  is associated. Due to 

T T 0= =S E S H  and (2.11) we have (cf. (A.3)), 
         T T T T0, 0= = = =v E v H β E β H .                          (2.15) 

 
    Since quantities such as β , β , 0β , 0β , etc. differ from the correspond-
ing v , v , 0v , 0v  etc. only by the normalizing factor c/1 , we sometimes 
refer to the former indifferently as velocities in the same way as to the 
latter. If clarity requires, we may refer to the former as normalized veloci-
ties, to the latter as actual velocities. 

 
2.3 Basic properties of the rest field 
 
In line with the results of Subsection 2.2, the electric and magnetic fields 
that can be associated with P by way of 0RF  and have so far been de-
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noted by E′  and H′  will be called the electric rest field and the magnetic 
rest field at P. We denote them henceforth by 

TE ),,( 0000 zyx EEE= ,     T
0,000 ),( zyx HHH=H . 

Hence, adopting for the coordinate axes the privileged choice (2.3), we 
obtain from (2.5) and(2.6),   

  
0 0 0

0 0 0

1 10, ( ), ( ),      (a)

1 10, ( ), ( ), (b)

x y y z z z y

x y y z z z y

E E E vH E E vH

H H H vE H H vE

⎫= = −μ = +μ ⎪⎪α α
⎬
⎪= = + ε = − ε
⎪α α ⎭

     (2.16) 

where                                        21 ,α = −β                                           (2.17)                           
v  and β  being as defined before (cf. (2.11)). As can be verified, the re-
sult may also be written in the form   

           0 0
1 1( ), ( ), (a),(b)⎫= +μ × = − ε × ⎬α α ⎭

E E v H H H v E            (2.18) 

which holds for any orientation of v , thus in all generality. As we had 
argued for (2.11), (2.18) reduces indeed to (2.16) if T( ,0,0)v=v  and re-
mains valid if E , H , 0E , 0H , and v  are replaced by UE , UH , 0UE , 

0UH , and Uv , respectively, where U  is  an arbitrary right-handed unit 
matrix.  Clearly, we may henceforth ignore the reference frame 0RF  and 
interpret 0E  and 0H  simply as vectors associated with the point P in 
RF.   
 
    From (2.18) we also derive, using (2.15) and (A.3), 

                    00
T =Ev ,        00

T =Hv .                                (2.19) 
Hence, v  is also orthogonal to 0E  and 0H . Since 

        }0 0 0 0, : , (a),(b)= = ×S 0 S E H                           (2.20) 
i.e., since 0E  and 0H  are parallel, it is useful to write them, equivalently, 
in the form                                          

0 0 0 0
T T

, ,           (a)
1, ( , , ) , (b)x y z

E H= = ⎫⎪
⎬= = γ γ γ ⎪⎭

E γ H γ
γ γ γ

                            (2.21)        

γ  thus being an appropriate unit vector. In view of (2.21)(a), the signs of 
the scalars 0E  and 0H  may not be chosen independently, but there re-
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mains some freedom since multiplying 0E , 0H , and γ  by 1−  does not 
affect the validity of (2.21). Due to (2.19),  

T T 0= =β γ v γ ,                                        (2.22) 
provided at least one of the quantities 0E  and 0H  does not vanish. 
 
    We can solve (2.18) for E  and H  by using (A.2) and (2.15) while leav-
ing out other details of v ; this yields 

          0 0 0 0
1 1( ), ( ). (a),(b)⎫= −μ × = + ε × ⎬α α ⎭

E E v H H H v E          (2.23) 

Similarly, we can solve (2.23) for 0E  and 0H  by using (A.2) and (2.19) 
while leaving out other details of v ; this yields (2.18). Clearly, whether 
we consider (2.18) or (2.23), (2.15) always implies (2.19) and vice versa. 
 
    It appears natural to associate with P a rest energy density 

).( 2
0

2
02

1
0 HEw μ+ε=                                       (2.24) 

Using (2.21) to (2.23), we obtain  (cf. (A.3) and (A.4)), 

  

2 2 2 T 2
0 0 0 02

2 2 2
0 0

2 2 2 T 2
0 0 0 02

2 2 2
0 0

2 ( ) | |

                                       (a)
2 ( ) | |

                                        (b)

E E
c

E H

H H
c

H E

⎫α ε = ε − × +μ × ⎪
⎪

= ε +β μ ⎪
⎬
⎪α μ = μ + × + ε ×
⎪
⎪= μ +β ε ⎭

E v H β H

H v E β E
                (2.25)                         

and thus 
2 2 2

0(1 ) (1 )w w wα = −β = +β ,                              (2.26) 
where w  is as defined by (2.9). Furthermore, we deduce first from (2.25) 
and then from (2.23) and (A.4),   
 }2 2 2 2 T T

0 0 0 0 0 0, , (a),(b)E H E H E Hε −μ = ε −μ = =E H E H       (2.27) 

respectively,  and thus also, taking into account (2.13) and (2.24),  
2 2 2 2 2
0 0 0 0 02

2 2 2 T 2
2

2 2
2

1 1( ) ( ) , (a)
4
1 1     ( ) ( ) , (b)
4

1     | | .                           (c)

w E H E H
c

E H
c

w
c

⎫= ε −μ + ⎪
⎪
⎪= ε −μ + ⎬
⎪
⎪= − ⎪⎭

E H

S

                 (2.28)                         
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Using (2.26) we derive from (2.11), 

βvS 2
0

2
0 22

α
=

α
=

wcw
.                                 (2.29)    

    So far we have been guided in our derivations by physical arguments. 
Instead, we could take a purely mathematical point of view and attempt 
to define 0E  and 0H  by means of (2.17) and (2.18), with v  required to 
be such that (2.15) and (2.20) hold. For doing this, we first substitute 
(2.18) in (2.20)(b). Using (2.9), (A.2), and (A.5), this yields, 

 
2

0
T T T

( ) ( ) ( ) ( )
        ( ) 2 ( ) ( ) ,wc

⎫α = × − ε × × −μ × × + εμ × × × ⎪
⎬

= + − + ε +μ ⎪⎭

S E H E v E H v H v E v H
S β S β β v E E v H H

 (2.30)   

and therefore, due to (2.20)(a) and (2.15), 
T( 2 ) 0wc+ − =S β S β . 

Hence, β  has to be parallel to S . This in turn implies T 2( ) = ββ S β S  and 
therefore indeed (2.11). All other results (2.19) to (2.29) then follow as 
above. Vice versa, if β , 0E , and 0H  are defined by (2.11), (2.17), and 
(2.18), respectively, (2.15) and (2.20) can be verified to hold and thus all 
other results subsequent to (2.18). Consequently, the desired solution 
exists for any choice of E  and H , thus for all 6 degrees of freedom that 
correspond to the 6 components of these two vectors, and is unique. 
 
    Alternatively, we may start by choosing any 0E , 0H , and v  that sat-
isfy (2.21) and (2.22). This also involves 6 degrees of freedom, i.e., 0E , 

0H , the 3 components of  v , and the one degree of freedom that is left 
for the unit vector γ  after requiring it to be orthogonal to v  (cf. (2.22)). 
We then introduce E  and H  by (2.23), which immediately yields, corre-
spondingly to (2.30),  

2 2

T T T
0 0 0 0 0 0 0      2 ( ) ( ) .w

α = α ×

= + − ε −μ +

S E H
S v v E E v H H ββ S

 

This in turn reduces to (2.29) if we take into account (2.21) (which im-
plies (2.20)) and (2.22). All remaining results can then be derived in a 
way similar to that used above. Unless otherwise stated, we will how-
ever formulate our subsequent discussions in terms of the original alter-
native. 
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2.4 Further properties of the rest field 
 
We can determine 2β easiest by means of (2.26), i.e. by 

2 0

0

w w
w w
−

β =
+

,                                           (2.31) 

where, due to (2.9) and (2.28), w  and 0w  are both known. As follows 
from (2.28) and (2.31), 0w  can cover the range 

00 w w≤ ≤ ,                                            (2.32) 
where both limits can indeed be reached. Accordingly, (2.31) yields val-
ues for which  

0 | | 1, 0 | |v c≤ β ≤ ≤ ≤                                 (2.33) 
Clearly, (2.31) would yield a value 1|| >β  (cf. the discussion subsequent 
to (2.14)) for 00 <w , but this would not be compatible with the defining 
equation (2.24).                         
 
    At a given point P, the field velocity can take any of the values al-
lowed by (2.33). More specifically, if it reaches the lower bound 0v = , 
to which corresponds 1=α , we say that the field is locally at rest at P. 
According to (2.11), this occurs if and only if 0S = , and according to 
(2.31), if and only if 0w w= . Correspondingly, we may say that a field is 
fully at rest if it is locally at rest everywhere. This is in particular the case 
if the field is either purely electrostatic or purely magnetostatic.   
 
    The other extreme, the upper bound cv =|| , for which 0=α , is 
reached at P  if and only if 00 =w , thus, according to (2.28), if and only 
if 

                                     2 2 T, 0 E Hε = μ =E H ,                             (2.34) 
or else, if and only if the field is locally planar (behaves at P like a planar 
wave); this agrees with what could be expected in view of classical pho-
ton concepts (cf. Section 6). As follows from (2.24), 00 =w  also implies 

0HE == 00 . 
 
    In view of (2.29) and (A.2) we also have  
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T 20
2

2 T0
2

2 ( ) ( ) , (a)

2 ( ) ( ) ,       (b)

w H

w E

⎫× = × × = − ⎪⎪α
⎬
⎪× = × × = −
⎪α ⎭

v H E H H E H H E

v E E H E H E H E
            (2.35) 

where 2E  and 2H  can be expressed by means of (2.25). Evaluating then 
the right-hand sides of (2.18) by means of (2.35) and taking into account 
(2.21), (2.25), and (2.27)(b) one finds 

20 0
0 0 0 0 0

20 0
0 0 0 0 0

2 2 ,

2 2 .

w w E E E H

w w H E H H

= = ε +μ
α α

= = ε +μ
α α

E γ E H

H γ E H
 

Provided 0E  and 0H  are not vanishing simultaneously, both equations 
yield for γ  the interesting expression 

)(
2 00

0

HEγ HE
w

μ+ε
α

= ,                                (2.36) 

which can be verified to satisfy indeed 1T =γγ . According to (2.21), the 
direction of γ  is undefined if 000 == HE , thus if = =E H 0 . 
 
2.5 Rest charge, rest current, and charge velocity 
 
For the rest current density (per unit cross area)  

T
0 0 0 0( , , )x y zi i i=i  

and the rest charge density 0q  (per unit volume) we deduce from (2.7), 
T T

0 2

T T
0 2

1 1( ) ( ) , (a)
(1 ) 1

1 1 1 1( ) ( ),                         (b)

q cq
c

q q q
c c

⎫
= − − = − − ⎪⎪α +α α +α

⎬
⎪= − = − ⎪α α ⎭

v i β ii i v i β

v i β i
         (2.37)                          

which we have directly written in the general form as had been done for  
0E  and 0H  in (2.18). For justifying (2.37)(a), it is convenient to first write 

the result deduced from (2.7) in the form 

0

/ 1
10 ((1 ) ) 0

0 0

x

y x

z

i v
qi i vq

i

α⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − = + −α −⎜ ⎟ ⎜ ⎟ ⎜ ⎟α α⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i i               (2.38) 
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We then observe that )1/(1 2 α+β=α−  and that in (2.38) we have 
T)0,0,(v=v  and therefore T

xvi = v i .  
 
    Inverting (2.37) leads to  

 

T
0

0 0 2

T
0 0

T
0 02

1 (a)
(1 )

1 ( ) ,   (b)
1

1 1( ),                (c)

q
c

q

q q
c

⎫⎛ ⎞
= + + ⎪⎜ ⎟α +α⎝ ⎠ ⎪

⎪⎪= + − ⎬+α ⎪
⎪= + ⎪α ⎪⎭

v ii i v

i v β i β

v i

                     (2.39) 

where (2.39)(b) is obtained by eliminating 0q  between (2.39)(a) and (c). 
Clearly, as should be the case, (2.37) and (2.39) can simply be deduced 
from one another by interchanging q  and 0q , i  and 0i , and by replac-
ing v  by v− , thus in a way similar to what we can observe for (2.18) 
and (2.23).  
 
    Some further useful relations can be derived from the above. Thus, 
elimination of either 0

Tiv  or 0q  between (2.39)(a) and (b) yields first 

 

0
0

T
0 0

                 (a)
1

1 , (b)
1

q q

q

+ ⎫= + ⎪⎪+α
⎬
⎪= + −
⎪+α ⎭

i i v

v i ββ i
                          (2.40)                           

respectively. If we then pre-multiply (2.40)(a) first by TE  and then by 
T
0E  we obtain,  due to (2.15) and (2.19), 

T T T T
0 0 0 0,= =i E i E i E i E , (2.41) 

 while pre-multiplying (2.40)(b) first by Tv  and then by Tγ  yields, due 

to (2.22) and 2 /(1 ) 1β +α = −α , 

 }T T 2 T T
0 0, (a),(b)v qα = − =v i v i γ i γ i .             (2.42) 

Furthermore, one can derive, for instance from (2.39)(b) and (2.40)(a), 
2 2 2 2 2 2

0 0| | | |c q c q− = −i i . (2.43) 
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As has been done for 0E  and 0H  (cf. Subsection 2.3), we may also in the 
present context ignore the reference frame 0RF  and interpret 0i  and 0q  
simply as quantities associated with the point P in RF.   
 
    Let us still define the charge velocity chv , i.e. the velocity by which a 
charge density 0≠q  is moving in order to create the current density i , 
by  

1,ch ch ch chq cq
c

= = =i v β β v . 

We obviously have chq vviv TT =  and thus from (2.37), 

            T T
0 0

1 1(1 ), (1 )
(1 )ch ch ch

qq q
⎛ ⎞

= − = − −⎜ ⎟α α +α⎝ ⎠
β β i v β β v . 

In particular, for vv =ch , thus for  vi q= , we find 
qq α=0 ,         0i =0 .                                     (2.44) 

Vice versa, if 0i =0  we deduce from (2.39), 
qq α=0 ,        vi q= ,                                    (2.45) 

thus also chvv = , and furthermore 00 =q  if we also have cv =|| . We 
also conclude from this that vi q=  is necessary and sufficient for ensur-
ing 0i =0 . If we accept that  chv  has a true physical meaning, we must 
always have 

| | , | | 1ch chc≤ ≤v β , 
which, due to (2.43), implies  

2 2 2 2 2 2 2 2 2 2
0 0 0| | ( ) | | (| | )chc q q c q q c= − + = + −i i v  

and thus is equivalent to 0 0| | | |c q≤i .                                                                
 
2.6 Classical energy velocity 
 
In view of the interpretation usually given to S  and w , the quantity cv  
defined by 

                                   cw=S v                                                (2.46) 
may be called the classical energy velocity. Comparing with (2.11)(a) we 
find, 

vv 21
2
β+

=c .                                         (2.47) 
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In particular, cv  and v  are co-parallel and 
| | | |c ≥v v , 

equality holding only for 0=v  and c=||v . For small values of β  we 
have vv 2=c , thus nowhere vv =c  as one might superficially expect, 
and the ratio | |/| |cv v  decreases monotonically for increasing values of 
| |v . 
 
    Defining 

                           T 2 2 2
c

1 , , 1c c c c c cc
= = β α = −ββ v β β ,                                         

we derive from (2.47),                                
2 2

2 2 2 2
2 1 2, ,

1 1 1
c

c c
c

α −β
= α = = =

+β +β +β α α
vvβ β .             (2.48) 

Due to (2.26) we thus also have 
0

c

ww =
α

,                                          (2.49) 

which shows that 0w  is also of interest for w . From (2.48) together with 
(2.9), (2.12), and (2.13) we obtain 

      
2 T 22

2
2 2 2 2 2 2

( ) ( )4 4
(1 ) ( )c

EH
E H c

−β
β = =

+β ε +μ
E H

.                        (2.50) 

 
2.7 Further velocity aspects 
 
All velocities encountered so far are defined only in terms of the local 
values of the original field variables E , H , q , and i , i.e., the values 
these variables admit at the point P under consideration. In other words, 
they do not depend on derivatives with respect to the coordinates and 
thus on the way E , H , q , and i  depend on x , y , z , and t . In fact, the 
specifics of such dependencies determine some further propagation as-
pects. Although one would expect that corresponding velocities are es-
sentially equal to the field velocity, one may not simply assume them to 
be identical to the latter. Furthermore, if a field that is essentially local-
ized in a small volume (particle?) is moving as a whole, the velocity of 
that movement cannot be expected to be simply equal to some specific 
field velocity. This issue will be examined further in later sections, in 
particular in Section 7. 
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2.8 Lorentz invariances 
 
We consider a Lorentz transformation as discussed at the beginning of 
Subsection 2.1 (cf. (2.3) to ( 2.7)). We continue using un-primed symbols 
when referring to quantities in RF and primed symbols for the corre-
sponding quantities in FR ′ . The two following Lorentz invariances are 
known to hold: 

}2 2 2 2 T T, . (a),(b)E H E H′ ′ ′ ′ε −μ = ε −μ =E H E H            (2.51) 

As (2.28)(b) thus shows, the rest energy density 0w  is Lorentz invariant, 
i.e., 

0
2

0
2

02
1

0 )( wHEw =′μ+′ε=′ .                              (2.52) 
This is remarkable since the classical energy density w  (cf. (2.9) is 
known not to be Lorentz invariant. Furthermore, in view of (2.27)(a) and 
(2.51)(a), 2

0
2
0 HE μ−ε  is also Lorentz invariant and so are therefore 2

0E  

and 2
0H  individually. Consequently, we can write, 

2 2 2 2
0 0 0 0,E E H H′ ′= = . 

But according to (2.27)(b) and (2.51)(b) we also have 0000 HEHE =′′ . The 
freedom for choosing the signs of 0E  and 0H  mentioned just before 
(2.22) exists correspondingly for 0E′  and 0H′ . We are thus free to require 

00 EE =′ , as will always be done hereafter, and we then obtain altogether, 

0 0 0 0 0 0, ,E E H H w w′ ′ ′= = = .        (2.53) 
 
    Another Lorentz invariance exists between i  and q , i.e., 

2 2 2 2 2 2| | | |c q c q′ ′− = −i i . 

Hence, in view of (2.43), 2 2 2
0 0| |c q − i  is also Lorentz invariant, but no 

such invariance exists for 0i  or 0q  alone. 
 
2.9 Basal electromagnetic field 
 
It appears reasonable to assume that the existence of a non-vanishing 
current density is always the result of a moving charge density. This 
justifies introducing the concept of a basal EM field. More precisely, an 
autonomous EM field will be called basal in a given reference frame RF if 

0i =0  holds everywhere in RF. The judiciousness of such an assumption 
is confirmed by counting the available number of degrees of freedom. 
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There are indeed 7 such degrees, 6 of which correspond to 0E , 0H , 0q , 
and the 3 components of v , the 7th being the degree of freedom remain-
ing in γ  after taking into account 1T =γγ  and 0T =γv . As thus 
needed, there are also exactly 7 individual equations that have to be 
verified, i.e., the 6 individual equations in (2.1) and the equation (2.2)(a). 
In that count, the remaining equation (2.2)(b) had to be ignored because 
it amounts simply to an initial condition; from (2.1)(b) we obtain indeed 

                                           0
T

=
∂

∂∇
t
H

,                                              (2.54) 

due to which 0T =∇ H  holds for all t  as soon as it does so for an arbi-
trary single time instant, for instance for the initial time 0t .  
 
    If an EM field is basal, (2.39) simplifies to (cf. (2.44) and (2.45)), 

}0 , . (a),(b)q q q= α =i v     (2.55) 
Due to this, (2.7) in turn simplifies to 

 0

0
0 0

0 0

1 ( ) , , ,

11 (1 ) .

x x 0 y y z z

x
x

i v v q i v q i v q

q q q

⎫′ ′ ′= − = = ⎪α ⎪
⎬−β β ⎪′ = −β β =
⎪α αα ⎭

          (2.56)                          

 
    It is instructive to repeat the aforementioned count by starting from 
the same equations as before but without appealing to the rest field. We 
may then express i  in terms of v  by means of (2.55)(b), express in turn 
v  by means of (2.11)(a), and eliminate q  by means of (2.2)(a). The com-
plete set of equations of a basal field then becomes 

                        

T

2

2 T T T

( ) , ,ε
t t

c
c

∂ ∂
+ ∇ = ∇× μ = −∇×

∂ ∂
×

=
+ ε +μ

E Hv E H E

v E H
v v E E H H

   

and is obviously nonlinear. It comprises 9 individual equations in the 9 
degrees of freedom contained in E , H , and v . In addition, as men-
tioned in the context of (2.54), T 0∇ =H  must be taken into account for 
instance as an initial condition. Alternatively, the above three equations 
may be replaced by  
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                        2
T

2 T T T

, ,

( ) 0, .

ε q
t t

q cq
t c

∂ ∂
+ = ∇× μ = −∇×

∂ ∂
∂ ×

+∇ = =
∂ + ε +μ

E Hv H E

v E Hv
v v E E H H

 

This set of four equations comprises 10 individual equations and corre-
spondingly involves 10 degrees of freedom, i.e. those contained in E , 
H , v , and q . The first and third of the four new equations yield indeed 
consecutively, 

                     
TT

T ( )( ) ( ) 0, 0ε qε q
t t

∂ ∇ −∂ ∇
+∇ = =

∂ ∂
EE v , 

and are thus obviously compatible with Tq = ε∇ E . Or else, if we define 

q by means of Tq = ε∇ E  at one single time instant, say again at the ini-
tial time 0t , that same definition is automatically verified for any t , as 
required.  
 
    One may conjecture that an autonomous EM field is always basal in 
some reference frame. If that should indeed be the case there would be 
no essential difference between the two classes of fields. This would 
agree with the intuitive impression that if in an autonomous field the 
current density is non-vanishing at a certain location, the charge density 
at that same location can neither be vanishing nor be at rest.  
 
    Note that substantial simplifications still occur if instead of 0i =0  one 
imposes the less restrictive requirement that 0i  and v  are orthogonal. 
We then have (cf. (2.39)), 

               T
0 0 00, thus ,q q q= = α = +v i i i v .                            (2.57) 

This is the case in particular if 00 iγi = , thus for fields that in [19] have 
been called (possibly somewhat inappropriately) intrinsic, or fully intrin-
sic if they are intrinsic everywhere. Such fields have altogether 8 degrees 
of freedom, i.e., if one adopts the same point of view as in the discussion 
preceding (2.54) above. In the light of what has been said about (2.54), 
the statement in [19] that 8 is also the number of individual equations in 
the original set (2.1) and (2.2), obviously, cannot be used for justifying 
the need for the additional parameter 0i . The issue of intrinsic fields will 
not be given major attention in the present text (except, indirectly, in the 
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sense that they are partly related to basal fields); details can be found in 
[19].   
 
2.10 Local decomposition into oppositely propagating planar  waves 
 
Assume the Poynting vector HES ×=  to be non-vanishing at the point 
P under consideration. One can then always decompose E  and H  ac-
cording to  

 
, , (a)

,             (b)q q q
+ − + −

+ − + −

= + = + ⎫
⎬= + = + ⎭

E E E H H H
i i i

                     (2.58) 

into two locally planar fields, thus into fields that satisfy 

                   
T T T T

T T

, ,
             0.

+ + + + − − − −

+ + − −

⎫ε = μ ε = μ ⎪
⎬

= = ⎪⎭

E E H H E E H H
E H E H

                      (2.59) 

The one field (characterized by subscripts +) propagates in the direction 
of S , the other one (characterized by subscripts -) oppositely to S . This 
decomposition is unique and its solution for +E , −E , +H , and −H  is 
given by (cf. Appendix  B1) 

 

1 1 1( ), ( ), (a),(b)
2 2
1 1 1( ), ( ), (c),(d)
2 2

Z
Z

Z
Z

+ +

− −

⎫= − × = + × ⎪⎪
⎬
⎪= + × = − ×
⎪⎭

E E u H H H u E

E E u H H H u E
        (2.60) 

and correspondingly for +i , −i , q+ , and q−  by 

 
, ,

, ,

q
t

q
t

+
+ + + +

−
− − − −

∂ ⎫= ∇× −μ = ε∇ ⎪⎪∂
⎬∂ ⎪= ∇× −μ = ε∇
⎪∂ ⎭

Ei H E

Ei H E
                      (2.61) 

where, u  being the unit vector in the direction of S , 

 T1 , 1,
| |

Z μ
= = =

ε
u S u u

S
.                          (2.62) 

Using (2.9), (2.60), (2.62), and the definitions 
      

    

2 2

2 2

1, ( | | | |),
2
1, ( | | | |),
2

w

w

+ + + + + +

− − − − − −

⎫= × = ε +μ ⎪⎪
⎬
⎪= × = ε +μ
⎪⎭

S E H E H

S E H E H
                 (2.63) 
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one finds, 
1 1( ) , ( | |), (a),(b)
2 2
1 1( ) , ( | |). (c),(d)
2 2

cw cw w cw
c

cw cw w cw
c

+ + +

− − −

⎫= + = = + ⎪⎪
⎬
⎪= − = − = −
⎪⎭

S S u u S

S S u u S
       (2.64) 

In particular, +S  is indeed co-parallel with u  and thus S , while −S  is 
anti-parallel with u  and thus S . 
 
    From (2.64) we immediately derive for S  and w , 

, w w w+ − + −= + = +S S S . (2.65) 
The simplicity of these relations is remarkable since the requirements 
(2.59) as well as the defining equations (2.63) are definitely non-linear. 
Using (2.28)(c) as well as (2.64)(b) and (d), the rest energy 0w  is found to 
satisfy                                    

 0 2w w w w w w+ − + −= ≤ + = .                           (2.66) 

As is to be expected, 0w  vanishes if 0w+ =  and/or 0w− = , and, for a 
fixed w , it reaches its maximum for w w+ −= .  
 
3. Field velocity and rest field: further properties 
 
3.1 Lorentz transformation of the field velocity 
 
As in Subsection 2.1, we consider again two reference frames, RF and 

FR ′ , with FR ′  moving with constant velocity 0v  with respect to RF. Let 
P be a point in RF, P′  the corresponding point in FR ′ , v  the field veloc-
ity at P , and v′  thus the field velocity  in FR ′ . For obvious reasons we 
write,  

                            T),,( zyx vvv ′′′=′v ,        T),,(1
zyxc

β′β′β′=′=′ vβ , 

                                       21 β′−=α′ ,        ββ ′′=β′ T2 . 
Our goal is to determine v′  given v , γ , 0E , 0H , and 0v , assuming 

00 >α . A direct solution to this can be obtained by first expressing v′  
in terms of E′  and H′ , these then in terms of E  and H , and the latter 
finally in terms of v , γ , 0E , and 0H . Such an approach, however, 
would be rather tedious, and we will therefore outline an indirect, but 
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simpler derivation. If 0=α , thus if at P  the field is locally planar and 
therefore as characterized by (2.34), it remains locally planar at P′  (cf. 
(2.51)), implying 0=α′ , and vice versa. We therefore assume 0>α , or 
equivalently 0>α′ . 
 
    For the Poynting vector at P′  we then have (cf. (2.29) and (2.52)), 

 βvvS ′
α′

=′
α′

=′
α′
′

=′ 2
0

2
0

2
0 222 wcww

.                           (3.1) 

If however we transform v  from P to P'  according to Einstein's 
formulas for compounding mechanical velocities and assume (2.3) 
to hold, we obtain a vector Tˆ ˆ ˆ ˆˆ / ( , , )x y zc= = β β ββ v  given by   

 

0
0

0 0

ˆˆ ( ), (a)
1
ˆ ˆˆ ˆ, ,    (b)

x
x x

x

y y z z

β −β α ⎫β = = β −β ⎪−β β αα ⎪
⎬

α α ⎪β = β β = β ⎪α α ⎭

                          (3.2) 

2 2 T 0
0

ˆ ˆˆ ˆˆ 1 , , 1
ˆx

αα
α = −β β = −β β =

α
β β ,                     (3.3) 

and we have, 

  
0 0 0

2 2

2
0 0 0

ˆ1 1 , (a)
ˆ ˆ

ˆ(1 )(1 ) . (b)

x x

x x

⎫−β β +β β α
= = ⎪

α α αα ⎬
⎪+β β −β β = α ⎭

                          (3.4) 

                                                                                                   
Since S  does in fact not transform according to the Einstein velocity 
formulas, we have to expect that usually ββ ˆ≠′ . 
 
    In order to determine the proper expression for β′  we first examine 

           
2 2

2 2
0 02 2

1 1 1( )
2

w E H w w
′ ′+β +β′ ′ ′ ′= ε +μ = =
′ ′α α

,                             (3.5)    

which corresponds to (2.26) and takes into account (2.52). Using (2.5) 
and (2.6) we obtain  

2 2
2 20 0 0

2 2 2
0 0 0

1 2 ( )x x xw w S E H
c

+β β β′ = − − ε +μ
α α α

, 

and thus, eliminating 2 2
x xE Hε +μ  by means of (2.8)(a),                                                  
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0 0
x xw S w S

c c
β β′ ′+ = − . (3.6) 

But (cf. (2.29) and (3.1)),  
0 0 0
2 2 2

1 12 , 2 2x x x x x
w w wS S

c c
′

′ ′ ′= β = β = β
′ ′α α α

.             (3.7) 

Hence, using also (2.26) and (3.5), dividing by 02w , and making use of 
(3.3) we can write, 

0 0 0
2 2

1 1
ˆ

x x′−β β +β β α
= =

′α α αα
. (3.8) 

Clearly, (3.8) is of same type as (3.4)(a). 
 
     Next we observe that the terms involving xE  and xH  in the paren-
theses on the right-hand sides of (2.8) are the entries 11 to 13 of the first 
column of T Tε +μEE HH ; for this  matrix we can derive after replacing 
E and H by (2.21) and (2.23), 

( )T T T0
2

2 ( )( )w
ε +μ = + × ×

α
TEE HH γγ β γ β γ .                   (3.9) 

But in view of (2.21)(b), (2.22), and (A.1), 
TT2T )())(( ββγγ1γβγβ −−β=×× , 

where 1  is the unit matrix (i.e., of order 3), and we therefore can write, 

)(2 T2T2
2

0TT ββ1γγHHEE −β+α
α

=μ+ε
w

.                           (3.10) 
 
    We now replace in (2.8) the components of S  and S′  by means of 
(2.29) and (3.1), take into account (2.26)  and (3.10), drop in particular the 
common factor 02w , and make use of (3.8). The result can be put into 
the compact form 

0
0

02
0

1 1 ( )
ˆ

x
x

y

z

′α β⎛ ⎞
β γ⎜ ⎟′β = − +⎜ ⎟′α αα α⎜ ⎟′β⎝ ⎠

β β γ                                 (3.11) 

or, moving the term in 0β  to the left-hand side and taking again into 
account (3.8), 
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0
0

0 02

0

0 02

1               (a)
ˆ

1     (1 ) . (b)

x

y x

z

x x

′ ⎫β +β⎛ ⎞
α ⎪⎜ ⎟′α β = +β γ ⎪⎜ ⎟′ ⎪α αα⎜ ⎟′ ⎬α β⎝ ⎠

⎪
⎪= −β β +β γ
⎪α ⎭

β γ

β γ

                 (3.12) 

If we then eliminate xβ′  between (3.8) and the first one of the three indi-
vidual equations contained in (3.11) we find, writing the result directly 
for any choice of 0β , 
  

 

2 T 2
T 20 0
02 2

2 T 2
T 20 0
02 2

(1 ) ( ) ,  (a)

(1 ) ( ) , (b)

⎫α −
= − ⎪⎪′α α

⎬
′α + ⎪′= − ⎪′α α ⎭

β β β γ

β β β γ
                      (3.13)                          

where (b) follows from (a) by replacing 0β  by 0−β  and interchanging 
primed and un-primed quantities.  
 
    Representations with the same general validity can be achieved just as 
easily for the combination of (3.4)(a) and (3.8) as well as for a corre-
spondingly simpler way of writing (3.13) (a), i.e., 

 

T T T
0 0 0 0

2 2 2

T 2
02 2 2

0

ˆ1 1 1 , (a)
ˆ ˆ

1 1 1 ( ) .                        (b)
ˆ

⎫′− + + α
= = = ⎪⎪′α α α αα

⎬
⎪= −
⎪′α α α ⎭

β β β β β β

β γ
                  (3.14)

 
Furthermore, as shown in Appendix B2, we obtain from (3.11) after 
some manipulation, 

T T0
0 0 0 0 02 2

0

T T0
0 0 0 0 02 2

0 0

1 1( ) (1 )( ) ( ) ,               (a)
1

1 1( ) (1 )( ) ( ) . (b)
(1 )

α ⎫′− = − − + ⎪′α +α α ⎪
⎬α ⎛ ⎞ ⎪′ = + − − +⎜ ⎟ ⎪′α +α α α⎝ ⎠ ⎭

T

T

1 β β β β β β β β γ γ

β 1 β β β β β β β γ γ
 

 (3.15)                          
Finally, we derive from (3.8) and (3.13),  

T T 2 2 T 2 2 T 2
0 0 0 0 0(1 )(1 ) ( ) ( ) ,′ ′ ′− + −α = α = αβ β β β β γ β γ              (3.16) 
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which reduces to an expression of the form (3.4)(b) (with ′β  replaced by 

β̂ ) if 0β  is orthogonal to γ  (and thus to ′γ , as follows from (3.16) since 
0α >  and 0′α > ).  

 
3.2 Lorentz transformation of the electric and magnetic rest fields 
 
In RF′ , the expression corresponding to (2.36) can be written, taking 
into account the Lorentz invariances (2.53),  

)(
2 00

0

HEγ ′μ+′ε
α′

=′ HE
w

,                                   (3.17) 

where α′  can be determined by (3.13)(a) and, assuming again 0β  to be 
given by (2.3), E′  and H′  thus by (2.5) and (2.6). We obtain this way 
from (2.36) and (3.17), 

                                            
1 1

x x′γ = γ
′α α

,                                             (3.18) 

0
0 0

0 0 0

1 1 ( ),
2y y z zH E E H

c w
β′γ = γ + −

′α αα α
 

0
0 0

0 0 0

1 1 ( )
2z z y yH E E H

c w
β′γ = γ − −

′α αα α
. 

These expressions can further be transformed by observing that from 
(2.21), (2.23), and (2.24) we can deduce, 

γvHE ×−=−α 000 2)( wEH . 
After some calculation, the desired relationship between γ  and ′γ  can 
therefore be expressed in the form 

Mγγ =′ ,                                               (3.19) 
where M  is the matrix 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ββ−ββ
ββ−ββ

α

αα
α′

=

xz

xy

00

00

0

0 10
01
00

M .                           (3.20) 

Since β′  and γ′  have the same significance in RF'  as β  and γ  do in 
RF, we have  

}T T0, 1. (a),(b)′ ′ ′ ′= =β γ γ γ .                (3.21) 
                                              
    Equation (3.19) can be inverted by means of ′ ′=γ M γ , where 
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0

0 0
0

0 0

0 0
1 0

0 1
y x

z x

α⎛ ⎞
α ⎜ ⎟′ ′ ′= −β β +β β⎜ ⎟′α α ⎜ ⎟′ ′−β β +β β⎝ ⎠

M ,                   (3.22) 

which is the matrix obtained from M  by replacing everywhere 0β  by 

0β−  and interchanging primed and un-primed quantities. Alternatively, 

we may use 1− ′=γ M γ . Although we then have 
1−′ ′ ′=M γ M γ ,                                          (3.23) 

1−M  differs in general from M′ . This is easily explained by observing 
that γ′  is neither independent of M′  nor of 1−M  (cf. expressions such as 
(2.22), (3.11) to (3.13), (3.21), and (3.22)). Obviously, a direct verification 
of (3.23) is tedious and will be omitted. The same is true for a direct veri-
fication of (3.21). 
 
    The desired transformation from 0E  and 0H  to  

0 0 0 0,E H′ ′ ′ ′ ′ ′= =E γ H γ                                    (3.24) 
and vice versa can now easily be achieved. In view of (2.21), (2.53), 
(3.19), and (3.24) we have indeed,  

0 0 0 0
1 1

0 0 0 0 0 0

,                ,
, .− −

′ ′= = ⎫⎪
⎬′ ′ ′ ′ ′ ′= = = = ⎪⎭

E ME H MH
E M E M E H M H M H

              (3.25) 

 
3.3 Field velocity and Einstein rules for compounding velocities 
 
We start with  (3.12)(b) where we replace 0β  by 0β−  and inter-
change primed and un-primed quantities. This yields  

                   
0

0 0 02 2

0

1 1 (1 )
x

y x x

z

β −β⎛ ⎞
⎜ ⎟ ′ ′ ′ ′α β = +β β −β γ⎜ ⎟ ′α α⎜ ⎟α β⎝ ⎠

β γ                      (3.26) 

from which, making use of (3.2), (3.8), (3.18), and (3.19), one can 
deduce,        

T

T T T T
0 0

0 0

ˆ ˆ, ( ) , (a),(b)

ˆ ˆ ˆ ˆ .                         (c)

c
′Δ ⎫′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + δ = + Δ Δ = = δ = ⎪⎪

⎬′αα α α ⎪′ ′ ′δ = − − = = =
α α ⎪⎭

vβ β γ β β β γ β γ γ

β γ β γ β γ β Mγ
 (3.27) 
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In (3.27), ′Δβ , ′Δv , and  ′δ  are defined as given, while the last two ex-
pressions for ′δ  can be obtained by pre-multiplying (3.27)(a)  by Tγ′  
and taking into account (3.19) and (3.21). Obviously, the expressions 
involving 0β  hold in general, thus not only for 0β  given by (2.3).    
 
    As follows from (3.27)(a),  β̂  consists of two components, one of 
which is equal to β′  and  the other one is parallel to γ′ , thus perpen-
dicular to β′  (cf. (3.21)). That second component is therefore the projec-

tion of β̂  onto the unit vector γ′  (cf. also the last expression for  ′Δβ  in 
(3.27)(b)). We will come back to this elegant result in Subsection 3.6. 
 
    Observe finally that from (3.27)(a) and (b) we can deduce  

T ˆ( )′ ′ ′= −β 1 γ γ β , 
but this expression cannot be inverted. In view of (A.6) we have indeed 

T Tdet( ) 1 0− = − =1 γγ γ γ .  
 
3.4 Special case: field locally at rest 
 
An interesting special case is a field that is locally at rest, i.e., for which  

, thus 1= α =β 0                                       (3.28) 
at the point P  under consideration. We then have 0 =E E  and 0 =H H , 
and therefore 

0 0, , ,E H q q= = = =E γ H γ i i . 
Let us in particular select a Lorentz transformation for which 0β  is also 
parallel to γ . We are still free to choose the orientation of the coordinate 
axes, and we do this in such a way that (2.3) holds. We  may then write 
altogether, making also use of (3.4)(a), 
 T

0 0 0ˆ, (1,0,0) ,= β = α = αβ γ γ .                         (3.29) 
As a consequence of (3.28) and (3.29), the right-hand side of (3.11) van-
ishes, thus the left-hand side, i.e., the field at P′  is also locally at rest. We 
therefore have at P′  altogether, 

0 0

0 0 0 0

, 1, , , (a)

, . (b)

q q

E H

′ ′ ′ ′ ′ ′= α = = = ⎫⎪
⎬′′ ′ ′ ′ ′ ′ ′= = = = ⎪⎭

β 0 i i

E E γ H H γ
                   (3.30) 

Furthermore, the matrix M , which is defined by (3.20), simplifies in 
such a way that (3.19) yields, 
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T(1,0,0)′ = =γ γ . 
 
    For 0′i  and 0q′ , we conclude from (2.7) and (3.30)(a), 

0 0 0 0 0 0 0 0
0

0 0 0 0
0

1 ( ), , ,

1                ( ).

x x y y z z

x

i i cq i i i i

cq cq i

′ ′ ′= −β = =
α

′ = −β
α

 

Obviously, 0 0xi′ =  if 0 0 0/xv i q= . More specifically, if 0i  is also parallel 
to γ , i.e., if it is of the form 0 0i=i γ , we have 0 0 0y zi i= =  and thus alto-

gether, 
0

0 0 0 0
0

for , :ch ch q
′ = = =

ii 0 v v v , (3.31) 

where 0chv , which can be interpreted  as a velocity (cf. chv  in Subsection 
2.5), is defined as shown. For 0v  to be physically valid, we must of 
course require 0| |v c< . This is satisfied by the solution (3.31) if 

0| |ch c<v .   
 
    We conclude from this the following: If at P  we have =β 0 , 0 0i=i γ , 
and  0| / |o q c<i , there exists a physically valid Lorentz transformation 
such that 0′ ′= =β i 0  at P′ . 
 
3.5 Lorentz transformation of rest charge and rest current   
 
The quantities to be determined are 0q′  and 0i′  but, in contrast to Subsec-
tion 3.4, we do not assume =β 0 . We do restrict ourselves however to 
cases that are of particular interest for examining basal EM fields. We 
thus first assume 0 =i 0 , in which case (2.55) and therefore (2.56) hold. 
In view of (3.2) and (3.3), (2.56) in turn can be put into the form 

0 0ˆ , . (a),(b)
ˆ ˆ

cq qq ⎫′ ′= = ⎬α α ⎭
i β              (3.32) 

Pre-multiplying (3.27)(a) by T′β  and taking into account (3.21)(a) we 
obtain first from (3.27)(a) and then from (3.32)(a), 
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2 2
T 2 T

0 0
1ˆ , . (a),(b)

ˆ ˆ
cq cq

′ ′ ⎫β −α′ ′ ′ ′= β = = ⎬α α ⎭
β β β i               (3.33) 

Applying (2.37) to RF' and writing the result in the form 
T

T
0 0

1 1, ( )
1

cq cq cq
′ ′⎛ ⎞

′ ′ ′ ′ ′ ′ ′ ′= − − = −⎜ ⎟′ ′ ′α + α α⎝ ⎠

β ii i β β i                (3.34) 

we obtain from (3.32) to (3.34), 

0
0 0 0

ˆ( ), . (a),(b)
ˆ ˆ

cq q q
′α ⎫′ ′ ′= − = ⎬α α ⎭

i β β                        (3.35) 

 
    Among the various expressions that can be derived from (3.35)(a) by 
means of (3.26) we like to point out  

T0 0
0 0 0 0 0

0

, : . (a),(b)
ˆ ˆ

q cqi i cq
⎫′α′ ′ ′ ′ ′ ′= Δ = = − δ = − ⎬α α α ⎭

i v γ β γ        (3.36) 

Hence, 0′i  is parallel to ′γ , thus to 0′E  and 0′H . 
 
    Next, let us replace 0 =i 0  by the more general requirement 

0 0i=i γ                                                   (3.37) 
where 0i  is a scalar (cf. also the last paragraph in Subsection 2.9). The 
above results (3.35)(b) and (3.36), which hold for 0 =i 0 , then generalize 
to 

T00 0
0 0 0

0

T0 0 0
0

0

, , (a),(b)
ˆ

                 ,     (c)
ˆ

cqi ii

q q i
c

′ ⎫′ ′ ′= = − ⎪′α α α ⎪
⎬′ ⎪= −
⎪′α α α ⎭

i γ β γ

β γ
                         (3.38) 

where all quantities are as used so far. For proving (3.38), one can fol-
low, broadly, the same pattern as for 0 =i 0 , but the calculations then 
needed are quite lengthy and tedious. A more elegant proof is outlined 
in Appendix B3. It is based on what is known as the group property of 
the Lorentz transformation, thus on the property that two consecutive 
Lorentz transformations are always equivalent to a single one. 
Due to this property, the result obtained in Subsection 3.4 will indeed be 
seen to ensure that 0′i  is proportional to ′γ , thus of the form (3.36)(a). In 
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there, the scalar 0i′  still has to be determined and surely must be ex-
pected to depend on 0i .  
 
3.6 Generalized field velocity 
 
We continue to denote by P an arbitrary point in RF and by P′  the cor-
responding point in FR ′ , which itself is moving with respect to RF with 
constant velocity 0v . The field velocities v  at P and v′  at P′ , say (P)v  
and (P )′ ′v , are unique, and there is associated with P a rest reference 
frame 0RF  that moves uniformly with respect to RF with constant veloc-
ity equal to (P)v . As we have seen, (P )′ ′ =v 0  if 0 (P)=v v , but there 
arises the question as to finding all 0v  for which ′ =S 0 , where S′  is the 
Poynting vector at P′ . This amounts to solving the problem defined in 
Subsection 2.2 after abandoning the first one of the three requirements 
stated there while retaining the other two. Since by definition β  is re-
lated to S  by (2.11), ′β  thus related correspondingly to S′ , requiring 
′ =S 0  is equivalent to requiring ′ =β 0 . 

 
    We first look for conditions that are necessary for 0v  to be a solution 
of the problem with 0>α  and 00 >α . Setting 0β =′ , thus 1=α′ , we 

find from (3.14)(a), 2T
01 α=− ββ , in particular thus 

T 2
0 = ββ β ,                                                 (3.39) 

and hence from (3.15)(a), 
T

0 0,= + δ δ =β β γ β γ . (3.40) 
Due to (2.21b) and (2.22), we thus have  

2 T T T 2 2
0 0 0 ( )( )β = = + δ + δ = β + δβ β β γ β γ ,                        (3.41) 

or else 22
0

22 α<α−α=δ , altogether therefore 

       }0 , | | . (a),(b)= + δ δ < αβ β γ                                (3.42) 
 
    Vice versa, let 0β  be given according to (3.42). Due to (2.21)(b) and 

(2.22), (3.41) then holds again. We thus have 2 2 2
0 0α = α −δ > , as 

needed, and 2 2 2 2
0 0α = α + δ ≥ α , where the first inequality follows from 

the restriction assumed for δ , and altogether therefore  
0 0α ≥ α > .                                            (3.43) 
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Again due to (2.21)(b) and (2.22), pre-multiplication of the equality in 
(3.42) by Tβ  and Tγ  yields  

}T 2 T
0 0, . (a),(b)= β δ =β β β γ          (3.44) 

Hence, if we take into account (3. 42)(a) and (3.44) the right-hand side of 
(3.15)(b) reduces to zero, whence indeed 0β =′ . In other words, (3.42) is 
not only necessary but also sufficient to solve the given problem with 

0>α  and 00 >α . 
     
    Let us now replace the earlier restriction α<δ||  by α≤δ|| . Due to 

(3.41), if the limit α=δ||  is reached we obtain 1222
0 =α+β=β . If then 

0>α , the vector γ  is still properly defined (cf. (2.18) and (2.21)(a)). 
This is no longer the case if 0=α  (which had formerly been excluded 
by α<δ|| ),  but then necessarily also 0=δ  (cf. (3.41)), thus ββ =0  (cf. 

(3.40)) and therefore also 122
0 =β=β . The fact that the unit vector γ  is 

then no longer precisely defined is irrelevant since all present results are 
acceptable if we interpret them as limits. In that sense, we may now re-
place (3.42) by 

0 , | |= + δ δ ≤ αβ β γ .                                  (3.45) 
 
    It is appropriate to denote by gv  any velocity 0v  that reduces v′  to 
zero and to call it a generalized field velocity. We include the limits we 
have just discussed and can thus write,  

 
1 , | |g gc

= = + δ δ ≤ αβ v β γ .                         (3.46) 

Hence, gβ  can be decomposed into a sum of two vectors, one identical 
to β  and one parallel to γ , thus perpendicular to β  (cf. (2.22)). It is con-
venient to introduce a velocity equivalence class VE that is associated with 
P in RF, and to define it as the set of all gβ  given by (3.46), where the 
vectors β  and γ  are as known from the field at P. It follows from (2.22) 
and (3.46) that 1|| ≤gβ , as it should be. Those gβ  for which 1|| <gβ  

and therefore 22222 1|| α=β−<β−=δ gβ , thus α<δ|| , may be called 
proper members of VE. 
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3.7 Velocity equivalence class and the Einstein rules for  
       compounding velocities 
 
Let now 0v  be again of general type, thus not necessarily such that 

0v =′ , and let EV ′  be the velocity equivalence class associated with P′  
in FR ′ . As known from relativity theory (and as can easily be verified), 
(3.2) together with 12 ≤β  and 12

0 ≤β  guarantee 1ˆ 2 ≤β , while from 

γββ ′δ′+′=ˆ  (cf. (3.27)(a)), we obtain, using (3.21), 222ˆ δ′+β′=β , thus for 
the scalar δ′ , 

2 2 2 2 2ˆ 1′ ′ ′ ′δ = β −β ≤ −β = α . 

Hence, β̂ , which itself derives from β  (cf. (3.2) and (3.3)), belongs in-
deed to EV ′ . 
 
3.8 Some properties for 0v c→  
 
We consider a field that we suppose to be known in RF′ . Let ′ ≠β 0  and 
| | 1′β < . In order to avoid unnecessary complications, we may also as-
sume x′β  not to change sign in RF′ , and we may therefore choose the 
orientation of the -axisx  in such a way that 0x′β ≥ .  Altogether we thus 
assume 

0, 0 1x′ ′β ≥ < α < ,                                     (3.47) 
but no further restriction is imposed, neither for x′β  nor for y′β  or z′β . We 

observe the field in the reference frame RF  with respect to which RF′  
moves with velocity 0v  as given by (2.3). We are interested in the values 
of xβ , yβ , and zβ  for 0v c→ .  
 
    From (3.13)(b) we deduce, 

2 2
2 0

2 2 2 2
0 0(1 )x x

′α α
α =

′ ′ ′+β β −α β γ
       (3.48) 

For 0 1β → , the denominator in (3.48) tends to the limit 
2 2 2(1 )x x′ ′ ′+β −α γ .                                         (3.49) 

Since due to (3.47) we have 2(1 ) 1x′+β ≥  and 2 2 1x′ ′α γ < , the limit (3.49) 
cannot vanish, while the limit of 0α  is zero. We can therefore state:  



Electrical communications, fluid dynamics, and physics 

 

45 

0 0 01 1 1
lim 0, i.e., lim| |=1, lim| | c
β → β → β →

α = =β v .                   (3.50) 

On the other hand, the first individual equation in (3.26) yields, 

( )
2

2
0 0 02 (1 )x x x x

α ′ ′ ′ ′β = β + +β β β −α β γ
′α

. 

In view of (3.50) we thus obtain, 

0 0 01 1 1
lim 1, lim lim 0x y zβ → β → β →

β = β = β = .           (3.51) 
 
    We thus arrive at an important conclusion: Irrespective of the specific 
values of ′β  (provided the very mild assumptions 0x′β ≥  and 0′α >  are 
fulfilled), the limit of the velocity observed in RF  is always equal to 

T(1,0,0)=β . In particular, whatever the lateral components y′β  and z′β  

may be, the corresponding lateral components yv  and zv always vanish 

in the limit, while the longitudinal component always reaches the speed 
of light. This will be seen to be of importance for interpreting the spin of 
a photon. 
     
4. Mechanistic properties of the electromagnetic field 
 
4.1 Flow equations 
 
From Maxwell's equations, thus from (2.1) and (2.2), two further 
useful equations can be derived, which, in our notation, can be 
written as follows: 

T T

T

( ) , (a)

0.     (b)

c ct
w
t

∂ ⎫+ ∇ + = ⎪⎪∂
⎬∂ ⎪+∇ + =
⎪∂ ⎭

T

j T f 0

S i E
                   (4.1) 

To these we add the original equations defining q  and i , thus 

T , . (a),(b)q
t

∂ ⎫= ε∇ = ∇× − ε ⎬∂ ⎭

EE i H                            (4.2) 

In (4.1)(a), 

HESj ×== 22
11
cc

                                             (4.3) 

is the classically known momentum density of the field, 
HiEf ×μ+= qc                                                  (4.4) 
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the classical Lorentz force density, and cT , i.e., 
T T

c w= − ε −μT 1 EE HH ,                                       (4.5) 
a classical stress tensor equal to the negative of what is known as Max-
well's stress tensor, while w , S , and c  are as defined throughout this 
paper. While (4.1)(b) is commonly encountered, (4.1)(a) and (4.5) are less 
well known. Note that the systematic use of the transposition operator 
has made it possible to present these equations in a very compact form. 
 
    Together, (4.1) and (4.2), to which should be added the defining equa-
tions (2.9) and (4.3) to (4.5), are essentially equivalent to the original equa-
tions (2.1) and (2.2), i.e., equivalent at least in all those points P that have 
no neighbourhood in which HET  vanishes  everywhere (cf. Appendix 
B4). 
 
    Although it is standard to interpret j  in (4.1)(a) as a momentum den-
sity and cT  as a measure for surface forces, a fully satisfactory justifica-
tion for this is not feasible and can therefore not be found in the litera-
ture. The equations (4.1) should indeed be compared to the correspond-
ing conservation equations of fluid dynamics, i.e., v  being the velocity 
of the fluid,  

T T T T T

T T

( ( )) ( ) , (a)

( ) ( ) 0, (b)

g

g

t
w w
t

∂ ⎫+ ∇ + ∇ + = ⎪⎪∂
⎬∂ ⎪+∇ +∇ + =
⎪∂ ⎭

T

j vj T f 0

v Tv v f
                     (4.6) 

which concern the rate of change of the momentum density j  and the 

energy density w  of the fluid. In (4.6)(a), the term T T T( )∇ vj  is due to 
the fact that the momentum density j , which is proportional to the ve-
locity v , is itself moving along with the same velocity v . Furthermore, 
the volume and the surface force densities are represented, respectively, 
by the vector gf  (usually due to gravitation) and the matrix (tensor) T , 

which is determined by the pressure and the viscosity forces. The corre-
sponding terms in (4.6)(b) describe the work done by these forces, while 

T ( )w∇ v  is due to the convection of the energy density. 
 
    A proper analogy between (4.1) and (4.6), clearly, is not possible. On 
the one hand, the term T T T( )∇ vj  is missing in (4.1)(a). In order to justify 
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the interpretation of j  one cannot therefore, for instance, simply inte-
grate (4.1)(a) over an arbitrary volume V of finite extent and delimited 
by a surface F  and then apply Gauss' theorem. It is therefore customary 
to argue by considering the limit when F goes to infinity and to assume 
that the field on F vanishes sufficiently fast so that the total flux of j  
across F  goes to zero.  
  
    In (4.1)(b), on the other hand, the term in S  assumes a role similar to 
that of the convection term (second term) in (4.6)(b), but while the work 
done by the volume forces is taken into account by the third term, there 
is no corresponding term involving the surface forces, or else, (4.1)(b) 
suggests that the electromagnetic surface forces cannot do any work. As 
will be seen, these dilemmas are fully overcome if we make use of the 
concepts developed in the previous sections.   
 
    Let us thus make use of the relevant results in Section 2 and, to a small 
extent, Section 3. We obtain from (4.3) together with (2.26), (2.29), (2.48), 
and (2.49),  

 c
cc

w
c

w
c

vvSj
α

=
α

== 2
0

22
0

2
21

,                                    (4.7) 

and from (3.10), (4.5), and (4.7),  
T

0 vjTT +=c ,                                               (4.8) 

where                  T T T
0 0 0: , : ( 2 )w= = = = −T T U U U 1 γγ .                  (4.9) 

Furthermore, defining iw  by  

0
2i

ww =
α

                                              (4.10) 

we derive from (2.26), 
2

2
0 02

12 , (1 ) , (a),(b)i iw w w w w w
⎫+β

= + = +β = ⎬α ⎭
          (4.11) 

and thus from again (2.29),  

0
0 02

22 i
ww w w w= = = + = +
α

S v v v v v T v .                   (4.12) 

For obtaining this result we have made use of  
 0 0w=T v v ,                                                 (4.13) 

which follows from (2.22) and (4.9). Finally, taking into account (4.8) and 
(4.12), (4.1) can be rewritten in the following way: 
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( )TT T T T

0

T T
0

( ) ( ) , (a)

( ) ( ) 0. (b)

ct
w w
t

∂ ⎫+ ∇ + ∇ + = ⎪⎪∂
⎬∂ ⎪+∇ +∇ + =
⎪∂ ⎭

T

j vj T f 0

v T v i E
                    (4.14) 

We call these the flow equations of the EM field.  
 
    Clearly, (4.14)(a) and (b), which are strictly equivalent to the original  
(4.1)(a) and (b), have the same general structure as (4.6)(a) and (b). Thus, 
the terms describing convection of the momentum density j  and the 
energy density w  are present precisely in the way needed. The same is 
true for the stress tensor 0T  that describes the surface forces and the 
work done by these forces. As can be seen by using (4.4) and then (2.15), 
(A.3), (2.18), and (2.41), the term EiT  in (4.14)(b) is related by   

0
T
0

TT EifvEi α+= c                                        (4.15) 
to the work done by the volume force cf . An additional contribution is 
due to 0i  and 0E , thus to the rest field, but this becomes irrelevant in 
the case of a basal EM field. 
 
    The stress tensor 0T , which appears in (4.14)(a) and (b), clearly differs 
from Maxwell's stress tensor cT− . As follows by comparing (4.9) with 
(4.5), 0T  is equal to the expression one obtains by replacing everywhere 
in cT  the actual field by the rest field; it therefore comprises only one 
dyadic product instead of two. The matrix U  in (4.9) is orthogonal and 
is equal to what is known in numerical mathematics as a Householder 
matrix [20]. Clearly, 0T  may be claimed to be simpler than cT , but the 
latter reduces to the former for 0=v .  
 
    An equation corresponding to (4.14)(b) can be derived also for iw . As 
shown in Appendix B5, we can indeed obtain from (4.14)(a) and (b) for 

iw the relation 

 T T T
0 0

1( ) ( ) 0i
i i

w w
t

∂
+∇ + ∇ + =

∂ α
v T v i E                     (4.16) 

                                      
where, using (4.9) and (4.10), 

 T
02

1 ( 2 )i i iw w= = = −
α

T T U 1 γγ .                        (4.17) 
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Although the first two terms in (4.16) have the same general form as the 
corresponding ones in (4.14)(b), there is an essential difference between 
the third terms; this is not surprising since iw  is not the total energy 
density of the field. From (4.10), (4.13), (4.15), and (4.16), we can now 
easily derive for 0w  the relation                                 
 

                    
2

T0
0 02

12( ) 0i c
w
t

∂ +β
+ ∇ + − =

∂ α
T TT v i E v f ,               (4.18) 

while for q  we have, as classically known, 

                                                 T 0q
t

∂
+∇ =

∂
i .                                             (4.19) 

 
4.2 Flow equations of a basal electromagnetic field 
 
The above equations simplify substantially if the EM field is basal 
( 0i =0  or, equivalently, q=i v , cf. Subsection 2.9). Due to (2.18)(a) 
and (2.55), (4.4) becomes 

0

0 0 0

( ) , (a)
: ,                        (b)

c q
q

= +μ × = ⎫
⎬= ⎭

f E v H f
f E

                        (4.20)     

 which is the same result as if we had simply evaluated (4.4) for =v 0 , 
i.e., if in (4.4) we had simply replaced q , E , i , and H  by 0q , 0E , 

0 =i 0 , and 0H , respectively, (although the value of 0H  is in fact irrele-
vant). In turn, we now derive from (2.19), (4.15), and (4.20), 

                                  T T T
0 0, 0c = = =v f v f i E ,                                  (4.21)  

Hence, the contribution of the volume forces to the work done vanishes 
for a basal field.  
 
    The equations (4.14), (4.16), (4.18), and (4.19) now read         

                        ( )TT T T T
0 0( ) ( )

t
∂

+ ∇ + ∇ + =
∂

j vj T f 0 ,                           (4.22) 

 T T
0( ) ( ) 0w w

t
∂

+∇ +∇ =
∂

v T v ,                               (4.23) 

T T( ) ( ) 0i
i i

w w
t

∂
+∇ + ∇ =

∂
v T v ,                               (4.24) 

0 2( ) 0i
w
t

∂
+ ∇ =

∂
TT v ,                                   (4.25) 
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                                         T ( ) 0q q
t

∂
+∇ =

∂
v .                                         (4.26) 

Furthermore, q  can now be eliminated between (4.2)(a) and (b), yielding 

                                     HEvE
×∇=∇ε+

∂
∂

ε T

t
.                                   (4.27) 

To these equations have to be added (2.55)(a), (4.2)(a), (4.10), and 
(4.20)(b), and furthermore equations such as (2.22) to (2.24),  which do 
indeed not explicitly contain 0i  and therefore keep their original ap-
pearance.  
 
    The results thus obtained are remarkable, as will become more evi-
dent in the course of our further analysis. Note that the contributions by 
the surface and the volume forces in (4.22) depend only on the rest field. 
On the other hand, as a result of (4.21), and as is in fact visible in (4.23), 
volume forces do not contribute to the energy balance, contrary to the 
surface forces. This expresses that in a basal field energy can be trans-
mitted only by convection (second term in (4.23)) and by work done by 
the surface forces. 
  
    As (4.23) shows, w t∂ ∂  is affected by the convection term T ( )w∇ v  

and by the term T
0( )∇ T v , which takes into account the work done by 

the surfaces forces and, in view of (4.13),  is in fact equal to T
0( )w∇ v . 

Due for instance to (2.46) and (4.12) we can write, 
                          0 0( ) cw w w w+ = + =v T v v v .                               (4.28) 

Hence, the changes w  undergoes due on the one hand to convection 
and, on the other, to the work done by the forces can be combined into a 
single energy transport phenomenon that takes place with an equivalent 
velocity cv  equal to the classical energy velocity (cf. Subsection 2.6). In 
particular, (4.23) can this way be replaced by the more compact expres-
sion 

                                     T ( ) 0c
w w
t

∂
+∇ =

∂
v .                                    (4.29) 

The interest in using cv  is further enhanced by recalling the expression 

0 / cw w= α  (cf. (2.49)) and by writing the momentum density j  in the 
form  
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                                                         2
1

cw
c

=j v ,                                          (4.30) 

as follows directly from (2.46) and (4.3).  
 
    Nevertheless, according to the second term in (4.22), the convection 
flow of j , just like that of ρ  according to (4.26), does take place with 
velocity v , not with cv . A fully meaningful analogy with fluid dynam-
ics is therefore impossible if we would attempt to build it on the basis of 

cv  instead of v . In fluid dynamics, indeed, both the velocity by which 
the fluid moves and that by which the resulting momentum density is 
transported, are identical. This is the case for an EM field if in (4.14) and 
(4.22) we express j  in terms of v . Hence, there is no way of properly 
interpreting, for instance, (4.22) by simply appealing to w  and cv . 
 
    We could clearly have made use of (4.28) also for fields that are not 
basal, but any attempt to find a proper interpretation then faces a seri-
ous obstacle: The contribution due to the work done by the volume 
forces does no longer vanish, but it cannot be combined with that of the 
surface forces either and a proper definition of an equivalent velocity is 
therefore impossible. 
 
4.3 Electromagnetic fluid and relativistic interpretation 
 
With the momentum density written in the form 

0
2 2

2 0
2

2, , (a),(b)

1                 ,    (c)
2

i i i

i i

mm m w
c

ww m c

⎫= = = ⎪⎪α
⎬
⎪= =
⎪α ⎭

j v
                          (4.31) 

where 0m  and 0w  are related by 

      2
0 0 0 02

2 1,
2i im m w w w w m c

c= = =
= = = = =v 0 v 0 v 0 ,             (4.32) 

the equations (4.22) and (4.23) assume precisely the structure of the basic 
equations of fluid dynamics, the Navier-Stokes equations (see also Sub-
section 4.4). We may therefore rightfully speak of an electromagnetic fluid 
(EM fluid). At the basic, or primary, level of observation, the essence of the 
behaviour of that EM fluid is indeed described by (4.22), (4.23), and 
(4.31), im  being some mass density, say the inertial mass density,  and v  
the local velocity.  
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    At first glance, such an attempt to interpret the flow equations seems 
to be incompatible with basic results from classical relativistic dynamics 
since 0m  visibly appears in the equations as a rest mass density and iw  as 
an inertial energy density. On the other hand, an alternative form of relativ-
istic dynamics, which has become known more recently [13-15] and is 
summarized and updated in Appendix C1 and C2, offers an answer to 
this dilemma; its results have been obtained by several distinct ap-
proaches using analogies and logical deductions. Understandably, such 
an alternative theory may appear to imply an insurmountable conflict 
with classical special relativity, whose predictions are known to have 
been confirmed with high precision by many carefully performed ex-
periments (e.g. [21-23]). As will be seen, however, a more thorough 
analysis reveals that in reality no such conflict exists.  
 
    Before addressing that issue more deeply, let us observe that (4.24) 
exhibits an obvious similarity with that specific fluid-dynamic equation 
that concerns the evolution of the internal energy density. Hence, iw  
may equally well be interpreted as an internal energy density. Just like in 
the kinetic theory of gases, we may then consider two types of kinetic 
energy, an internal kinetic energy density kiw  and an external kinetic energy 
density kew , with (cf. also (4.10), (4.11)(b), and (4.31)(b) and (c)), 

                2
0

1: , :
2ki i ke i iw w w w w w m v= − = − = .                        (4.33) 

In a fluid, the former corresponds to the hidden kinetic energy it pos-
sesses due to the thermal agitation of its molecules (thermal energy), 
while the latter is due to its more immediately observable macroscopic 
movement. One important difference exists, however: While in a con-
ventional fluid the two forms of kinetic energy can independently admit 
any reachable value, they are strictly equal in an EM fluid. As (4.11)(a) 
shows, we have indeed, 

0ke i i kiw w w w w w= − = − = , 
and therefore for the total kinetic energy kw , 

 

2

2

0 02

2 2 (a)

    2 .                        (b)

k ki ke ki ke iw w w w w m v

w w w

⎫= + = = =
⎪
⎬β

= − = ⎪α ⎭

                (4.34) 
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    In order to prepare the ground for resolving the mentioned con-
flict between classical and alternative relativistic dynamics, we 
consider next the secondary level at which the phenomena can be 
observed. At this (in a sense: dependent) level the two entirely 
different mechanisms producing changes in w  are merged into a 
single effect that amounts to a resultant energy flow taking place 
with velocity equal to cv , as has been explained above (c.f. (4.28) 
to(4.30)). With j  being strictly the same quantity as in (4.31)(a), we 
can now write 

0, , (a),(b)c
i c c c

c

mm m m
⎫

= = = ⎬α ⎭
j v v                     (4.35) 

2 2
0 0 0 0

0
0 02

1 , (a)
2

1 ,                 (b)
2

c

c

c c

c c

w w m c m c w

wm m m
c

=

=

⎫= = = = ⎪⎪
⎬
⎪= = =
⎪⎭

v 0

v 0

                   (4.36) 

2
2 20

02

2

1 (1 ) ,    (a)

2 (1 ) ,                                          (b)

c i
c

c i

ww m c w w

m m

⎫+β
= = = = +β ⎪α α ⎬

⎪= +β ⎭

                (4.37)  

where cv , w , and cα  are related to v , iw , and α  by means of (2.47) to 
(2.49) and (4.11), and where both 0w  and 0m  have the same meaning as 
before.  
 
    As will be confirmed by the results of Sections 5 and 6, it is reasonable 
to assume at this point that EM particles (electrons/positrons, photons) 
are condensed basal EM fields. They then have an inner structure that is 
fully governed by Maxwell's equations, yet behaves like a fluid, as has 
been explained. The fine details of the dynamics in that EM fluid follow 
laws that can be explained by means of the alternative form of relativis-
tic dynamics (cf. Appendix C3).  
 
    As far as the overall flow of the energy density is concerned, however, 
thus at the secondary level, laws of classical relativistic dynamics come 
into play. Indeed, the relevant results in (4.35) to (4.37) such as c cm=j v  

and 2
0 / c cw w m c= α =  are perfectly compatible with the corresponding 

ones in classical relativity. Since 0cm  is only half as large as 0m  while j  
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is unaffected by the choice of the level at which the phenomena are ob-
served, there is now no factor 2/1  multiplying 0cm  in 

2
0 0 0c cw w m c= = , and the divisor 2α  in 2

0 /α= mmi  is replaced by cα  
in ccc mm α= /0 . On the other hand, the ratios / iw w  and 2 /c im m  
increase monotonically from 1  at small velocities to 2  at the speed of 
light, while (cf. (2.48)) the ratio | |/| |cv v  decreases simultaneously 
from 2 to 1. In line with this, | |j  increases from 0  to 

                        | | for | | 1c
wm c
c

= = β =j ,                             (4.38) 

thus at the speed of light. 
 
    If an EM particle is moving as a whole, thus as some entity of its own, 
its internal structure is irrelevant. All that counts, obviously, is the resul-
tant overall movement of its energy. From what we have seen about 
movement of energy density (second level of observation), it is thus not 
surprising that the dynamics of an EM particle (third level of observa-
tion) does indeed follow the laws of classical relativity, as will be con-
firmed in Section 7. This explains why experiments made with EM parti-
cles yield results compatible with that long established theory. 
 
    In fact, it can be shown that there are only two reasonably simple 
ways of establishing a dynamics theory compatible with the require-
ments of the Lorentz transformation and therefore with relativistic 
kinematics, which indeed remains valid for the alternative theory as for 
the classical one. Any other approach that at first sight might look feasi-
ble becomes quickly very intricate and unappealing and thus unlikely to 
be of any relevance. In any case, it is not surprising to see the only two 
acceptable solutions play a definite role in describing the actual phe-
nomena: The alternative one is relevant for the behaviour of the hidden 
inner structure, thus for the dynamics at the very basic level of what can, 
at least in principle, be observed, while the classical one describes the 
behaviour at the more easily observable third level, which in a sense 
corresponds to the macroscopic behaviour of an EM particle. 
 
4.4 Beyond Maxwell's equations 
 
All results we have obtained so far have followed strictly from Max-
well's equations. This is true for EM fields that are basal as well as for 
more general, thus non-basal ones. As we have seen, equations such as 
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(4.14), (4.22), and (4.23) are of the same type as corresponding equations 
of fluid dynamics. Since (4.14)(a) and (4.22) imply that the field has iner-
tia, thus mass, it is clear that Maxwell's equations must be generalized in 
order to take into account the presence of forces that are not of EM na-
ture but act directly upon a mass density, in particular thus the forces 
due to gravitation. This holds regardless of whether the gravitational 
forces are due to the EM field itself or are imposed from the outside. 
 
    Equations such as (4.14)(a) and (4.22) point into the direction in which 
a required generalization might be attempted. The simplest would be to 
add to these equations      
further force-density terms that take into account the presence of the 
gravitational field G . Equations such as (4.14)(b) and (4.23) must then 
be modified correspondingly. It is true that gravitational forces are usu-
ally far smaller than EM forces and therefore totally negligible in an EM 
context, but it is likely that there are situations in which this is no longer 
permitted. 
 
    Of course, equations such as (4.14) or (4.22) and (4.23) are still insuffi-
cient for a complete description of an EM field. They must therefore be 
supplemented by whatever further equations are needed in order to 
arrive at a complete set, which in turn must be equivalent to the original 
set given by (2.1) and (2.2) (or proper generalizations thereof). However, 
further investigations into this challenging topic are beyond the scope of 
the present text. 
 
5.  Localized basal electromagnetic fields: rotating field 
 
5.1 Nonlinear partial differential equations describing the field 
 
We call an electromagnetic (EM) field localized if at any time instant its 
charge and its energy are essentially concentrated in a volume of small 
size. In Section 2, the concept of field velocity has been introduced and 
clearly defined. This allows us to consider hereafter a basal EM field that 
is localized and rotating around an axis. We  assume this field in par-
ticular to have circular symmetry about its axis and to have appropriate 
symmetry with respect to an equatorial plane. We use standard spheri-
cal coordinates r , θ , and. A vector, say a , can then be represented in 
terms of its spherical components by writing (cf. Appendix A2), 

T),,( ϕθ= aaara . 
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We assume the rotation to be steady, i.e. independent of time.  

    To be precise, we make altogether the following assumptions: 
1. All quantities are independent of ϕ  but may depend on r , and θ . 
2. We have 0==== θθ iivv rr , i.e., using the simplifying notation 

ϕ= vv  and ϕ= ii ,             

                           T T(0,0, ) , (0,0, )v i= =v i .                                (5.1) 
3. Both v  and i  are symmetric with respect to the equatorial plane de-
termined by  2/π=θ . 
4. The field is basal in the given reference frame. 
5. The rotation is steady, i.e., all quantities are independent of t . 
 
    Some consequences can be drawn from these assumptions: 
1. Due to (2.15), (2.19), (2.22), and (5.1), we have 

000 =γ==== ϕϕϕϕϕ HHEE .                               (5.2) 
2. In view of the 4th assumption we may write, 

0 , ,q i qv= = =i 0 i v . (5.3) 
3. The angular frequency ω  defined by 

sinv r= ω θ  
is not required to be constant; it may thus be a function of r  and θ , but 
not of ϕ . 
 
    For the further analysis, we could now proceed from (4.3) and (4.14), 
but care must then be exercised because, in the form written, (4.14) holds 
only for Cartesian coordinates. We therefore use the original equations 
(2.1) and (2.2), for which the representation in terms of spherical coordi-
nates is commonly known (Appendix A2). Taking into account the 
above assumptions and their subsequent consequences, 4 of the original 
8 individual equations in (2.1) and (2.2) are found to be identically satis-
fied. Two of them, i.e. 

qvrHH
r

Hr r =
θ∂

∂
−+

∂
∂

θ
θ ,                                    (5.4) 

qrEEE
r

Er r
r

ε
=θ+

θ∂
∂

++
∂
∂

θ
θ 1cot2 ,                           (5.5) 

contain q , which can therefore be eliminated. We thus deduce alto-
gether the following individual equations: 
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0=
θ∂

∂
−+

∂
∂

θ
θ rEE

r
Er ,                                     (5.6) 

0cot2 =θ+
θ∂

∂
++

∂
∂

θ
θ HHH

r
Hr r

r ,                           (5.7) 

θ∂
∂

−+
∂
∂

=θ+
θ∂

∂
++

∂
∂

ε θ
θ

θ
θ r

r
r HH

r
HrEEE

r
Erv )cot2( .            (5.8) 

 
    For E  and H in terms of 0E  and 0H  we obtain from (2.23) and the 
relevant individual equalities in (5.1) and (5.2), 

0 0 0 0

0 0 0 0

1 1( ), ( ),  (a)

1 1( ), ( ). (b)

r r r

r r r

E E vH E E vH

H H vE H H vE

θ θ θ

θ θ θ

⎫= +μ = −μ ⎪⎪α α
⎬
⎪= − ε = + ε
⎪α α ⎭

           (5.9) 

In view of (2.20), the components of the rest field are not independent 
but must be such that  

rr HEHE 0000 θθ = .                                     (5.10) 
The other two equations implied by (2.20) are identically satisfied. In-
verting (5.9) yields 

0 0

0 0

1 1( ), ( ),  (a)

1 1( ), ( ), (b)

r r r

r r r

E E vH E E vH

H H vE H H vE

θ θ θ

θ θ θ

⎫= −μ = +μ ⎪⎪α α
⎬
⎪= + ε = − ε
⎪α α ⎭

            (5.11) 

while substituting (5.11) in (5.10) and taking into account (5.2) results in 
, 0,r r rS E H E H S Sϕ θ θ θ= − = =  

thus, using (2.11)(a), in   

  T
2

2(0,0, ) , :
1

vwS S Sϕ= = =
+β

S ,                          (5.12) 

where 
2 2 2 22 ( ) ( )r rw E E H Hθ θ= ε + +μ + .                         (5.13) 

Clearly, (5.12) and (5.13) are as required by (2.11) and (2.9), respectively. 
We assume of course that rE , θE , rH , and θH  vanish sufficiently fast at 
infinity, and the field may then indeed be considered to be localized in 
the sense defined above. 
 



Alfred Fettweis 

 

58 

    In accordance  with the discussion given at the end of Subsection 2.3, 
we can either choose any v  and any rE0 , θ0E , rH0 , and θ0H  that satisfy 
(5.10), or any rE , θE , rH , and θH  but with v  then satisfying (5.12) and 
(5.13). If we adopt the first one of these two alternatives and substitute 
(5.9) in (5.6) to (5.8) we obtain 3 new PDEs, to which (5.10) must be 
added. We then have altogether 4 equations in the 5 unknowns v , rE0 , 

θ0E , rH0 , and θ0H , thus one equation less than the number of un-
knowns. Hereafter, we adopt a point of view closer to the second alter-
native. 
 
5.2 Use of normalized  quantities 
 
As will be seen, it is helpful to make use of various normalized quanti-
ties. They are obtained by multiplying the original quantity by a con-
stant factor such that the resulting quantity is dimensionless. Except for 

/v cβ = , they will be denoted by placing a circumflex (hat) over the 
original symbol.  
 
    Accordingly, we start by defining 

ˆ ˆ: , :r r
n n

E E E E
W Wθ θ
ε ε

= =  , 

: , :r r
n n

H H H H
W Wθ θ
μ μ

= =
) )

, 

1ˆˆ ˆ: , : , :n

n nn

r rq q S S r
cW rW ϕ ϕ= = =

ε
, 

where nW  and nr  are arbitrary normalizing constants having the di-
mension of an energy density and a length, respectively. We thus de-
duce from (5.6) to (5.8) as well as (5.12) and (5.13) the equations  

0
ˆˆ

ˆ
ˆ

ˆ =
θ∂

∂
−+

∂
∂

θ
θ rEE

r
Er ,                                         (5.14) 
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∂
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θ HHH
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       2 2 2 2
2

ˆ2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ, ( )
1 2r r r r

n

w wE H E H w E E H H
Wθ θ θ θ

β
= − = = + + +

+β
.         (5.17) 

Similarly, we obtain from (5.5),   

j θ+
θ∂

∂
++

∂
∂

= θ
θ cotˆˆˆ2

ˆ
ˆ

ˆˆˆ EEE
r

Erqr r
r .                        (5.18) 

All these equations involve only dimensionless quantities and are of 
pure mathematical nature in the sense that they are free of any physical 
parameter. Additional normalized quantities are introduced hereafter 
without further comment. 
 
5.3 Major characteristic values of a rotating field 
 
We start by defining the total energy, W , the total classical mass, cM , and 
the total charge, Q : 

   2
2

1d , d , (a),(b)c c cV V
W w V M c M m V

c
⎫= = = ⎬
⎭∫ ∫              (5.19)   

2
ˆ

ˆ ˆ ˆˆd , : dn nV V
Q q V r W Q Q q V= = ε =∫ ∫ ,                         (5.20) 

where, expressed in term of spherical coordinates, dV  and ˆdV  are 
given by 

2 2ˆ ˆ ˆd sin d d d , d sin d d dV r r V r r= θ θ ϕ = θ θ ϕ . 
The integrations have, in principle, to be extended over the entire space 
spanned by the position coordinates r , θ , ϕ  and r̂ , θ , ϕ , respectively. 
 
    In spherical coordinates the momentum density (cf. (4.3) and (5.12)) is 
given by                                                       

T T
2 2

1 1(0,0, ) (0,0, ) , : ij S j m v
c c

= = = =j S .                (5.21) 

On the other hand, the angular momentum density l , defined with respect 
to the origin, thus to the centre of the field, is related to j  by  

T T( , , ) , ( , , )x y zl l l x y z= = × =l r j r , 

where we have represented the vector l  and the position vector r  in 
terms of Cartesian components. We have,  

2sin sin /xl jr Sr c= θ = θ . 
Due to the circular symmetry of the field, the total angular momentum, 

T( , , )x y zL L L=L , is simply given by 
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T 4

ˆ

1 ˆ( ,0,0) , d ,     

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ: sin d , : .

x n nV

r rV

L L l V r W L
c

L Sr V S E H E Hθ θ

⎫= = = ⎪
⎬
⎪= θ = −
⎭

∫
∫

L
                (5.22) 

 
    The presence of the current density q=i v  causes the rotating field to 
exhibit also a magnetic moment, mL , which can be defined by [10], 

1 ( ) d
2m V

q V= ×∫L r v . 

Again due to the circular symmetry of the field, mL  is parallel to that 
axis and is given by 

 T 1( ,0,0) , : d , : sin
2m m m m mV

L L l V l qvr= = = θ∫L ;          (5.23)  

it can be evaluated once the functions q  and v  are known.  
 
5.4 Sommerfeld's fine structure constant 
 
Consider now the quantity F%  defined by 

( )2

2 2 ˆ

ˆ

ˆˆdˆ
: ˆ ˆ ˆ| | ˆ| | | sin d |

V

V

q VQ QF
L L Sr V

μ
= = =

ε θ

∫
∫

%  ,                        (5.24) 

where the last two expressions are obtained from (5.20) and (5.22). The 
right-hand side in (5.24) can entirely be determined by means of (5.14) to 
(5.18). It is thus not only dimensionless but independent of any physical 
parameter, and the same is therefore true for F% . Hence, F%  is a pure 
mathematical number, in a sense like the number π , which can also be 
determined either as ratio of two quantities obtained by physical meas-
urements, the circumference and the diameter of a circle, or by pure 
mathematical reasoning. Clearly, the most difficult step for finding F%  is 
to find an acceptable solution of the underdetermined set of nonlinear 
PDEs specified by (5.14) to (5.17). Some requirements that have to be 
imposed on any approach attempting to solve (5.6) to (5.10) are outlined 
in Appendix D. 
 
    The problem itself appears to be of considerable interest. Consider 
indeed the so-called fine-structure constant, F , which is a dimensionless 
quantity defined by 
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2 2

, ,
2 2
Q QF Z Z
h c h

μ
= = =

ε ε
                                 (5.25) 

where Q  is the electron charge, Z  the impedance of free space, and h  
the Planck constant [21, 24-26]. The values of the quantities on the right-
hand side of (5.25) are known from experiments (and by related conven-
tion), and F  can this way be determined to be quite close to 1/137. Fur-
thermore, the spin of an electron, thus its angular momentum, is known 
to be given by /2 /4h= πh . Hence, the analogy between  F  and F% is 
striking. Is this purely accidental or could it be a hint that the rotating 
EM field considered here is a valid electron model? If the latter were the 
case, the present approach would open a road to determining F  by a 
purely mathematical process, as is the case for π . According to (5.24) 
and (5.25) we would then have /8F F= π% . Furthermore, the quantities 
W  and cM  introduced in Subsection 5.3 would be those known as rest 
energy and rest mass of the electron. Or else, if from the point of view of 
an outside observer the electron is not moving, W  is its total energy 
and cM  its mass. Both these quantities do however depend on the in-
ternal field velocity of the rotating EM fluid and may not be confused 
with 0W  and 0M , from which they clearly differ, as will also be dis-
cussed in Subsection 5.6. The case of a rotating field that is moving as a 
whole will be addressed in Subsections 7.1 and 7.2.    
 
5.5 Incompleteness of the original formulation 
 
Let E , H , i , and q  be a solution of (2.1) and (2.2). If we then multiply 
these quantities by some arbitrary constant, say k , the equations (2.1) 
and (2.2) are still satisfied, but the values of v  and β  given by (2.11) 
remain unchanged. This observation is of particular interest for a basal 
field, as we are considering here. Thus, if rE , θE , rH , θH , and q  are all 
multiplied by k  while v  is kept the same as before, (5.4) to (5.11) re-
main satisfied. Furthermore, as can easily be verified, F̂  remains unaf-
fected. This amounts to saying that one of the relevant quantities, say 
Q , is arbitrary, or else, that the statement of the present problem is in-
complete. 
 
    This is an unavoidable consequence of our restricting the analysis to a 
problem exclusively specified by Maxwell's equations, as can be seen by 
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applying an elementary dimensional analysis. The only parameters in-
volved are indeed ε  and μ , and it is easily verified that the product 

1 2ν νε μ , where 1ν  and 2ν  (as well as 3ν  and 4ν  to be used hereafter) are 
real numbers, cannot possibly have the dimension of a pure charge. 
Hence, phenomena other than those of pure EM nature must play a role. 
Since according to Section 4, inertia, thus mass, is involved (cf. (4.31) and 
(4.32)), gravitation comes to mind as a candidate. This would add the 
gravitational constant G  to the EM constants, but 31 2 Gνν νε μ  cannot 
yield a pure charge either. 
 
    There thus remains an important open question: Which additional 
phenomenon could actually be responsible for fixing the value of Q , or 
equivalently that of L  in (5.24) (or that of h  in (5.25))? Purely formally, 
one can solve the dilemma by introducing a further physical constant, 

1G , such that 31 2 4
1G Gνν ν νε μ  has the needed property. It can be verified 

that such an additional constant would exist if the gravitational law 
were to be complemented by a repulsive term that decreases sufficiently 
faster than 21/r  and thus is irrelevant except at extremely small values 
of r . At present, however, such an observation is purely speculative. 
 
5.6  Nominal values of frequency, velocity, and radius 
 
It is instructive to consider, in addition to densities such as 0w , 0m , etc., 
also the corresponding total values 

0 0 0 0: d , : d ,
V V

W w V M m V= =∫ ∫  

: d , : d ,i i i iV V
W w V M m V= =∫ ∫  

: d , : d ,ke ke ki kiV V
W w V W w V= =∫ ∫  

 

2

02: d 2 d ,

 2 2 ,

k kV V

ke ki

W w V w V

W W

⎫β
= = ⎪

α ⎬
⎪= = ⎭

∫ ∫                       (5.26) 

where in (5.26) we have made use of (4.34). To the relations just listed 
should be added the characteristic values introduced in Subsection 5.3. 
Using (5.21), we do, however, rewrite L  in the following form: 
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 02d d d ,

: sin ,

iV V V

vL jR V m vR V m R V

R r

⎫= = = ⎪
α ⎬

⎪= θ ⎭

∫ ∫ ∫               (5.27)  

where R  is the cylindric (lateral) radius. Since the densities are not in-
dependent of one another (cf. (4.31) to (4.37)), the same holds for the 
corresponding total values. We thus have, for instance, 

   
 
    We next introduce for β , α , v , R , and ω  corresponding nominal 
(mean) values  β , α , v , R , and ω , which, contrary to the former, are 
independent of r , θ , (and ϕ ). We address them consecutively and con-
sider first β , thus also α  and v .  In terms of kW  and 0W , we define 
them by 

 

2 2

0 02 2

2 2

0 02 2

2 d 2 d
1 1

      2 2 ,
1

k V V
W w V w V

W W

⎫β β
= = ⎪−β −β ⎪

⎬
β β ⎪= = ⎪−β α ⎭

∫ ∫
                 (5.28) 

 2 21 , .v cα = −β = β                                         (5.29) 

We then define R  in terms of L , 0M , and β  by 

 0 0 02 2 2d d ,
V V

v v vL Rm V R m V RM= = =
α α α∫ ∫                 (5.30) 

and finally ω  by means of 
                      /v Rω = .                                                 (5.31) 

As can be verified, this yields the following interesting expressions 
2 0 0

2 2
0

,
1i

W W W WW
W W

−
β = = =

+ α + β
, 

and in particular, 
 kW L= ω ,                                            (5.32) 

which will be of interest in Subsections 6.9 and 7.2, and  

 
2

0 0
1 | | | |, : .
2| | c

c L LR R R
W cM

+ β
= = =

β
                       (5.33) 

Alternatively, we could have started from (5.26) and (5.27), which could 
have led us directly to (5.32), but the procedure adopted here appears to 
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be more instructive, although both ways of proceeding have their mer-
its. Clearly, L  always has the same sign as v  (and thus β ) and ω . 
 
    The interpretation of (5.28) and (5.30) in terms of the standard mean-
value theorem of integration calculus hinges of course on the assump-
tion that no unpermitted changes of sign occur in the integrand of the 
respective first integral. No problem can arise for (5.28). In the case of 
(5.30) it appears still plausible that v  is either always non-negative or 
always non- positive, but there is no strict guarantee so far that this is 
indeed the case. 
 
    As follows from (5.33), if one assumes L  and W  given but β  vari-
able, 0R  is the minimum value that can be achieved by R ; this mini-

mum is reached for | | 1β = . If in the definition of 0R  one sets | | /2L = h  
and W  equal to the rest energy of an electron, one finds, restricting our-
selves to 5 significant digits, 13

0 1.9308 10R −= ×  meters. For comparison, 
let cR  be the classical electron radius and BR  the Bohr radius. We obtain 

0/ 274.02BR R =  and 0 / 68.518cR R = . Hence, 0R  is substantially lar-
ger than the so-called classical electron radius but much smaller than the 
radius of, say, a hydrogen atom. We also have 02 B cR R R= , which, as 

follows from the defining expressions for 0R , BR , and cR , is in fact an 

exact relation.  These results are quite plausible. For the product Rβ  we 
find 

0 0
1 | |
2

R R R< β ≤ . 
 
    In a similar way, nominal values can also be obtained by starting from 
the integral expression (5.23), in which case a relation between the total 
magnetic moment mL , the total charge Q , and the nominal value of  
| |Rβ  is obtained. However, the latter cannot be expected to be strictly 
the same as | |Rβ  defined above, but the two should differ at most by a 
moderate amount. We do not examine this here in more detail but want 
to add at least the following observation: While both E  and H  have the 
same kind of influence upon w , q  and therefore i  are essentially de-
termined by E  alone. At the centre of the field, H  is high while =E 0  
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(cf. Appendix D) and 0q = . Furthermore, for somewhat increased val-
ues of r  and R , H  is smaller and E  larger; in particular, q  is larger 
but im  is much less affected, i.e., ml  becomes noticeably larger com-
pared to l . Consequently, the ratio /mL L  must itself be noticeably lar-
ger than for a field configuration for which /ml l  (cf. (5.22)(a) and (5.23)) 
were constant. This is in agreement with what is known to be experi-
mentally observed in the case of an electron. 
 
6.  Localized basal electromagnetic fields: planar field 
 
6. 1 Determination of the general solution  
  
We consider an autonomous EM field that is moving in the x-direction 
with field velocity T( ,0,0)c=v , in which case 0=α  and 00 =w  (cf. 
Subsections 2.3 and 2.4). According to (2.15) and (2.34) we have  

2 2 2 20, ( ) ( ),
            0.

x x y z y z

y y z z

E H E E H H
E H E H

= = ε + = μ +

+ =
 

The only two mathematical solutions the last two equations admit are 

zy HE μ±=ε , yz HE μ=ε m . For the Poynting vector they lead to   

                                   με+±=−= /)( 22
zyyzzyx EEHEHES . 

Since we must have 0xS > , the only physically admissible solution is 

                         0, ,x x y z z yE H E H E H= = ε = μ ε = − μ .           (6.1) 

If we substitute (6.1) in (2.1) and (2.2) , we find as sole requirements 

 
0, 0, (a),(b)

          0, ,            (c),(d),(e)

          

y y z z

y z x

E E E Ec c
t x t x

i i i cq

∂ ∂ ⎫∂ ∂
+ = + = ⎪

∂ ∂ ∂ ∂ ⎬
⎪= = = ⎭

                    (6.2) 

 ( ) , 0. (a),(b)y yz z
E EE Eq
y z y z

∂ ∂ ⎫∂ ∂
ε + = − = ⎬∂ ∂ ∂ ∂ ⎭

                    (6.3) 

 
    From (6.2)(a) and (b) we conclude that yE  and zE  depend on x  and t  
only via ctx − , or equivalently, via  
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xt
c

τ = − ,                                                 (6.4) 

and the same can then be seen to hold also for q  and thus for xi ; we 
may express this by writing 

( , , ), ( , , ),
( , , ),  ( , , ).

y y z z

x x

E E y z E E y z
q q y z i i y z

= τ = τ

= τ = τ
 

As for the equations (6.2) (c) to (d), they amount to stating that 
chqq vvi ==  and therefore show that the field is basal in the given ref-

erence frame (cf. the first full sentence following (2.45)). On the other 
hand, (6.3) is known to be equivalent to the existence of a function 
(negative potential) ψ  that depends on y  and z  (and, of course, on τ ) 
and is such that  

 

2 2

2 2
1 ,           (a)

 , , (b)y z

q
y z

E E
y z

⎫∂ ψ ∂ ψ
+ = ⎪∂ ∂ ε ⎪

⎬
∂ψ ∂ψ ⎪= =

⎪∂ ∂ ⎭

                                  (6.5) 

where (6.5)(a) is the two-dimensional Poisson equation. For yE  and zE  
vanishing at infinity its solution is  
  

 
2 2

1 ˆˆ ˆ ˆ ˆ( , , )ln d d , (a)
2

ˆ ˆ ˆ : ( ) ( ) , - , (b)

q y z d y z

xd y y z z t
c

∞ ∞

−∞ −∞

⎫ψ = τ ⋅ ⎪⎪πε
⎬
⎪= − + − τ =
⎪⎭

∫ ∫
                      (6.6)                          

and therefore, the differentiations under the integral in (6.6)(a) being 
permitted [27], 

 
2

2

ˆ ˆ ˆ( ) ( , , )1 ˆ ˆd d ,ˆ2
ˆ ˆ ˆ( ) ( , , )1 ˆ ˆd d ,ˆ2

y

z

y y q y zE y z
d

z z q y zE y z
d

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

− τ ⎫= ⎪πε ⎪
⎬− τ ⎪=
⎪πε ⎭

∫ ∫

∫ ∫
                      (6.7)                          

where d̂  is the distance between the points ),( zy  and )ˆ,ˆ( zy  for x  and 
t  held fixed, thus for τ  (cf. also (6.4)) constant. 
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6.2 Spectral properties   
 
Let us look more closely at a solution that occupies, essentially, a narrow 
spectral band extending, for (angular) frequencies 0>ω , from 

2/ωΔ−Ω  to 2/ωΔ+Ω , where ωΔ  is the bandwidth, Ω  the nominal 
frequency, and 0>ωΔ>>Ω . The choice of Ω  cannot rigorously be de-
fined; it should be a representative value inside of the relevant fre-
quency range and may be thought of as its centre frequency. Concerning 
their dependence on t , the functions yE , zE , yH , zH , q , and xi  are 
then of the same type as signals in communications, in fact of a general-
ized, combined amplitude- and phase-modulated type with (sup-
pressed) carrier of frequency equal to Ω  [28-30]. We assume Ω  to be 
independent of x , y , z , and t . 
 
    For ease of terminology, we will hereafter often speak about signals 
when referring to yE , zE , yH , zH , q , and xi . Since the situation is the 
same for all those signals, we represent them generically by f  and use a 
corresponding notation for all related functions of interest. In view of 
what we have seen above, f  may be defined as a function of τ  (cf. 
(6.4)), y , and z . We may express this by writing ( , , )f f y z= τ . 
 
    Let { }t fF  be the Fourier transform of f  with respect to t  (cf. (E.1)(a)) 
and { }F fτ= F  the corresponding transform with respect to τ , i.e. 

( , , ) ( , , ) djF j y z f y z e
∞ − ωτ

−∞
ω = τ τ∫ .                    (6.8) 

Due to (6.4), the two transforms are simply related by  
/{ ( , , )} ( , , )j x c

t f y z e F j y z− ωτ = ωF . 
We may therefore concentrate on F  alone.  
 
    Since the signals f  we are interested in are real and the equations we 
have to consider are linear, it is helpful to make use of suitable complex 
representations, preferably by appealing to both the analytic signal f+  

and the complex amplitude f̂  (in the literature sometimes referred to, 
although somewhat inadequately, as complex envelope) associated with 
f , as explained in Appendix E1. Both f+  and f̂  are indeed complex-

valued functions of real variables.  
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    The analytic signal ( , , )f f y z+ += τ  can easiest be defined by means of 
its Fourier transform { }F f+ τ += F , i.e. (cf. (E.2)), by 

 
2 ( , , ) for 0,

( , , )
0                  for 0,

F j y z
F j y z+

ω ω >⎧
ω = ⎨ ω<⎩

                        (6.9) 

and we have (cf. (E.3)(a)), 
 ( , , ) Re ( , , )f y z f y z+τ = τ .                           (6.10) 

As is known, Im f+ , thus the imaginary part of f+ , is the Hilbert 
transform of f . Identifying 0ω  in (E.5) with the present Ω , the 
complex amplitude f̂  that corresponds to f  is defined by 

 ˆ( , , ) ( , , )jf y z e f y zΩτ
+ τ = τ ,                                 (6.11) 

which in turn (cf. (E.5)) is equivalent to 
ˆˆ( , , ) : { } ( , , )F j y z f F j j y zτ +ω = = ω+ ΩF .                     (6.12) 

 
    Clearly, the above-mentioned narrow-band assumption refers directly 
to properties of { }fτF . For reasons of simplicity we assume for the pre-
sent purpose that the band limitation is strict, i.e., that it can be ex-
pressed by stating   

( , , ) 0 for and , ,                    (a)
1 1: { | }, 0 , (b)
2 2

F j y z I y z

I

+ ω = ω∉ ∀ ⎫
⎪
⎬

= ω Ω− Δω≤ ω≤ Ω+ Δω < Δω Ω ⎪⎭
�

         (6.13) 

or, due to (6.12), 
ˆ( , , ) 0 for | |

2
F j y z Δω

ω = ω > .            (6.14) 

Hence, the complex amplitude ˆ( , , )f y zτ  occupies only a narrow spec-
trum, which extends from 2/ωΔ−  to 2/ωΔ , and is therefore slowly 
varying in τ  compared to je Ωτ . 
 
6.3 Change of reference frame 
 
Consider again a second reference frame FR ′  as, say, in Subsection 2.1. 
We restrict ourselves to assuming that the direction of 0v  coincides with 
the one in which the field is propagating, i.e., that (2.3) holds. We may 
thus immediately combine (2.3) to (2.7) with (6.1) and (6.2)(b). This can 
be verified to yield, 
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      }, , , (a), (b),(c)y y z z′ ′ ′ ′Ωτ = Ω τ = = ,                    (6.15) 
0=′==′==′==′= zzyyxxxx iiiiHHEE , 

 0

0

1
1

y yz z x

y z y z x

E H qE H i
E E H H q i
′ ′ ′′ ′ ′ −β
= = = = = =

+β
,                   (6.16)  

where ′τ  and Ω′   are defined by 

 0

0

1, . (a), (b)
1

xt
c

⎫′ −β ⎪′ ′ ′τ = − Ω = Ω ⎬+β ⎪⎭
.                    (6.17) 

Since according to (6.16) the transformation from unprimed to primed 
quantities is the same for all six variables yE′ , zE′ , yH′ , zH′ , q′ , and xi′ , 

we may again represent all these signals generically by a same symbol, 
say f ′ , and use again a corresponding notation for all related functions 
of interest. In particular, (6.16) can be expressed in the form, 

 
( , , ) ( , , ) 1 ( , , )f y z f y z f y z
′ ′ ′ ′ ′τ τ Ω′= = τ

′Ω Ω Ω Ω
,                  (6.18) 

where the second equality follows simply by making use of (6.15)(a). 
 
    Since the expression for ′τ  is of exactly same type as that for τ  (cf. 
(6.4) and (6.17)(a)), all equations in Subsection 6.2 that are of present 
interest, in particular those up to (6.12), apply also after adding primes 
to all variable quantities. Accordingly, we conclude, first from (6.18), 

( , , ) : { } ( , , ) d

                    ( , , ) d ,

j

j

F j y z f f y z e

f y z e

∞ ′ ′− ω τ
′τ −∞

∞ ′ ′− ω τ

−∞

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ω = = τ τ

′ ′Ω Ω′ ′= τ τ
Ω Ω

∫

∫

F
 

and then from (6.8) and (6.15) (a), since the ratio /′Ω Ω  is constant,                                    

 

/( , , ) ( , , ) d

                    ( , , ).  

jF j y z f y z e

F j y z

∞ ′ ′− ω Ωτ Ω

−∞
′ ′ ′ ′ω = τ τ

Ω′= ω
′Ω

∫
                     (6.19)  

We define F+′  analogously to F+  in (6.9) and thus obtain first from (6.19), 

       
2 ( , , ) 2 ( , , ) for 0,

( , , )   
0 for 0,

F j y z F j y z
F j y z+

Ω⎧ ′ ′ ′ ′ ′ ′ω = ω ω >⎪′ ′ ′ ′ω = ′Ω⎨
⎪ ′ω <⎩

 

and then by using (6.9),  
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( , , ) ( , , ) , (a)

where .                          (b)

F j y z F j y z+ +′ ′ ′ ′ ′ω = ω ∀ω ⎫
⎪
⎬Ω′ω = ω ⎪′Ω ⎭

                       (6.20) 

 
    According to (6.13) the right-hand side in (6.20)(a) vanishes for all 

Iω∉ , and this irrespective of x , y , and z . Due to (6.20)(b), the left-
hand side of (6.20)(a) thus vanishes for all ( / ) I′ ′ω Ω Ω ∉ , or equiva-
lently,  

( , , ) 0 for and ,F j y z I y z+′ ′ ′ ′ ′ ′ ′ ′ω = ω ∉ ∀ , 
where I′  and ′Δω  are defined by (6.21)(a) and (b),  

                    

1 1{ | }, (a)
2 2

, 0 ,               (b), (c)

I ⎫′ ′ ′ ′ ′ ′ ′= ω Ω − Δω ≤ ω ≤ Ω + Δω ⎪⎪
⎬′Δω Δω ⎪′ ′= < Δω Ω
⎪′Ω Ω ⎭

�

                 (6.21) 

and where the property (6.21)(c) follows from the corresponding one in 
(6.13)(b). This confirms that ′ω , ′Ω , and ′Δω  play indeed the same role 
in RF′  as ω , Ω , and Δω  do in RF. In particular, the relative bandwidth 

/Δω Ω  is independent of the adopted reference frame, while passing 
from Ω  to Ω′  and from ω to ′ω  clearly amounts to what is known as 
the (longitudinal) Doppler effect.   
 
6.4 Charge and polarization 
6.4.1 Linear polarization 
 
We obviously still have large freedom for choosing q . In contrast to the 
rotating field considered in Section 5, we want the present field to be 
electrically neutral, i.e. such that its effective (total) charge is always zero. 
Furthermore, we would like to achieve an appropriate polarization of 
the electric field. At present (see however Subsection 6.4.2), we assume 
this to be an effective  linear polarization, say in the y-direction. An ap-
propriate way to achieve both is to assume q  to be distributed symmet-
rically with respect to the (x, y)-plane and anti-symmetrically with re-
spect to the (x, z)-plane, thus to require, with τ  given by (6.4),  
 ( , , ) ( , , ), ( , , ) ( , , ).q y z q y z q y z q y zτ − = τ τ − = − τ                 (6.22) 
In view of (6.6), (6.22) leads to 
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0 0

0 0

1 ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , , ) ( , , )d d ,
2

1 ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ) ( , , )d d ,
2

y y

z z

E y z A y z y z q y z y z

E y z A y z y z q y z y z

∞ ∞

∞ ∞

⎫τ = τ ⎪⎪πε
⎬
⎪τ = τ
⎪πε ⎭

∫ ∫

∫ ∫
         (6.23)                        

where yA  and zA  are defined by   

                            

ˆ ˆ
ˆ ˆ( , , , )

2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ

,
2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

y y y y
A y z y zy

y y z z y y z z

y y y y

y y z z y y z z

− +
= −

− + − + + −

− +
+ −

− + + + + +

                  (6.24) 

 
                            

ˆ ˆ
ˆ ˆ( , , , )

2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ

.
2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

z z z z
A y z y zz

y y z z y y z z

z z z z

y y z z y y z z

− +
= −

− + − − + +

− +
− +

+ + − + + +

                  (6.25) 

From (6.23) to (6.25) we derive the simple relations 
 ( , , , ) ( , , ), ( , , ) ( , , ),y y y yE y z E y z E y z E y zτ − = τ τ − = τ              (6.26) 

 ( , , , ) ( , , ), ( , , ) ( , , ).z z z zE y z E y z E y z E y zτ − = − τ τ − = τ             (6.27) 
 
    Let us then define effective field components by means of 

 
( ) ( , , )d d ,

( ) ( , , )d d .

y eff y

z eff z

E E y z y z

E E y z y z

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎫τ = τ ⎪
⎬
⎪τ = τ ⎭

∫ ∫
∫ ∫

                         (6.28) 

Using (6.26) and (6.27) we find 

 0 0
( ) 4 ( , , )d d , (a)

( ) 0 .                                (b)
y eff y

z eff

E E y z y z

E

∞ ∞ ⎫τ = τ ⎪
⎬

τ = ∀τ ⎪⎭

∫ ∫                        (6.29) 

Hence, the field has an effective polarization in the y-direction.  
 
    The effective field components can also be expressed in terms of the 
associated complex amplitudes ˆ

y effE  and ˆ
z effE . We have indeed (cf. 

(E.3)(a) and (E.5)(a)),  
 }ˆ ˆ( ) Re{ ( ) }, ( ) Re{ ( ) }, (a), (b)j j

y eff y eff z eff z effE E e E E eΩτ Ωττ = τ τ = τ   (6.30) 
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where, y effE +  and z effE +  being the analytic signals corresponding to 

y effE  and z effE , 
ˆ ˆ( ) ( ) , ( ) ( )j j

y eff y eff z eff z effE E e E E e− Ωτ − Ωτ
+ +τ = τ τ = τ . 

More specifically, (6.29)(b)) implies 
ˆ ( ) ( ) 0z eff z effE E +τ = τ = ∀τ . (6.31) 

Clearly, although ˆ
y effE  is not simply a constant, as would be the case if 

we were dealing with monochromatic signals, it is  slowly varying in τ  
time compared to je Ωτ . 
 
    As can be verified by means of (6.23) to (6.25), the equations (6.22), in 
particular thus the property of being electrically neutral, also have the 
important consequence that both yA  and zA , and therefore both yE  

and zE  vanish for ∞→y  and ∞→z  as 2/1 y  and 2/1 z , respectively. 
Hence, the integrals in   

 
2 2

2 2

1d ( )d
2

    ( )d , d d d d ,

V V

y zV

W w V E H V

E E V V x y z

⎫= = ε +μ ⎪
⎬
⎪= ε + =
⎭

∫ ∫
∫

                (6.32)   

where W  is the total energy of the field, are convergent, as is obviously 
required.  
 
6.4.2 Circular polarization 
 
From the above-derived solution for a planar localized EM field with 
linear polarization a corresponding solution with circular polarization 
can be achieved by following essentially a known procedure. More care 
must be taken for certain details, however, since we are not simply deal-
ing with a monochromatic signal but with one occupying a frequency 
range with non-vanishing bandwidth.   
 
    Consider indeed two linearly polarized fields that we assume to be 
both of exactly same type except that their directions of polarization are 
orthogonal to each other and that one of them is lagging the other by 

/4 /2T = π Ω . We characterize these two fields by underlining once 
and twice all relevant quantities, and we still make use of τ  as defined 
by (6.4). Let the simply underlined field, which is composed of  
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( , , )y yE E y z= τ  and ( , , )z zE E y z= τ , be identical to the one described in 

Subsection 6.4.1. The doubly underlined field can then be obtained from 
the simply underlined one by means of 

 
( , , ) ( , , ),

4

( , , ) ( , , ).
4

y z

z y

TE y z E z y

TE y z E z y

⎫τ = − τ − − ⎪⎪
⎬
⎪τ = τ− −
⎪⎭

                         (6.33) 

Combined fields may then be defined by 
 2 , 2y y y z z zE E E E E E= + = + ,                         (6.34) 

as well as by  
 2 , 2y y y z z zE E E E E E= − = − .                         (6.35) 
 
    We first consider (6.34). Due to (6.33) we can write 

 
2 ( , , ) ( , , ) ( , , ),

4

2 ( , , ) ( , , ) ( , , ).
4

y y z

z z y

TE y z E y z E z y

TE y z E y z E z y

⎫τ = τ − τ− − ⎪⎪
⎬
⎪τ = τ + τ− −
⎪⎭

               (6.36) 

According to (6.28) and (6.29)(b), which had indeed been obtained for 
linear polarization, we have 

 
( ) ( , , )d d

           ( , , )d d ,

y eff y

y

E E y z y z

E z y y z

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

τ = τ

= τ −

∫ ∫
∫ ∫

                         (6.37) 

 
( ) ( , , )d d

           ( , , )d d 0 ,

z eff z

z

E E y z y z

E z y y z

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

τ = τ

= τ − = ∀τ

∫ ∫
∫ ∫

         (6.38) 

where in both (6.37) and (6.38) the second integrals follow from the first 
by substituting y z→−  and z y→ . Let us then apply the definitions 
(6.28) to yE  and zE  given by (6.36) and make use of (6.37) and (6.38), in 

particular thus of ( ) 0zeffE τ = ∀τ . The result can be written in the form  

 2 ( ) ( ), 2 ( ) ( )
4y eff y eff z eff z eff
TE E E Eτ = τ τ = τ − .             (6.39) 

 
    It is instructive to express these results by making use of the complex 
amplitudes associated with the relevant quantities. For doing this let us 
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first replace in (6.36) to (6.39) the quantities yE , yE , y effE , y effE zE , zE , 

,zeffE  and zeffE  by their associated analytic signals, i.e. by yE + , yE + , 

y effE + , y effE + , zE + , zE + , zeffE + , and zeffE + , respectively, which is obvi-

ously permitted in view of the linear nature of (6.8) and (6.9) as well as 
(6.36) to (6.39).  In particular, (6.39) then yields 

 ( ) ( ), ( ) ( )
4y eff z eff
TE E E E+ + + +τ = τ τ = τ − ,                   (6.40) 

where E+  and the subsequently used Ê  are defined by 

 
1ˆ( ) ( ) ( )
2

j
y effE e E EΩτ

+ +τ = τ = τ .                             (6.41) 

In view of (6.10) and (6.11) we then deduce from (6.40), 

 
( /4)

ˆ( ) Re{ ( )},

ˆ ˆ( ) Re{ ( )} Im{ ( )},
4 4

j
y eff

j T j
z eff

E e E
T TE e E e E

Ωτ

Ω τ− Ωτ

⎫τ = τ
⎪
⎬

τ = τ − = τ− ⎪
⎭

         (6.42) 

where we have taken into account /4j Te j− Ω = − . While (6.42) has been 
obtained by defining yE  and zE  according to (6.34), we can equally well 

adopt the definitions (6.35). If we then proceed in the same way as above 
we arrive at the result 

 ˆ ˆ( ) Re{ ( )}, ( ) Im{ ( )},
4

j j
y eff z eff

TE e E E e E− Ωτ − Ωτ∗ ∗τ = τ τ = τ −          (6.43) 

where Ê  is as defined by (6.41) and where the asterisk denotes complex 
conjugation.  
 
    Again, like for linear polarization, ˆ( )E τ  in (6.42) and (6.43) is  slowly 

varying in τ  compared to je Ωτ . In particular, ˆ( /4)E Tτ −   differs little 

from ˆ( )E τ . Hence, (6.42) and thus (6.34) describe a right-circularly polar-
ized field, and (6.43), thus (6.35), a field that is left-circularly polarized. 
The factor 2  has been included in (6.34) and (6.35) for power/energy 
reasons etc. The convergence property mentioned at the end of Subsec-
tion 6.4.1 holds of course also for circularly polarized fields. 
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6.5 Nominal frequency, size, energy, and momentum                           
 
    As (6.17)(b) shows, the available range 1||0 0 <β≤  allows us in par-
ticular to convert any finite 0>Ω  into any finite 0′Ω >  and vice versa. 
Hence, the specific frequency that is observed is simply a matter of the 
adopted reference system. It is then instructive to replace the last term in 
(6.16) by /′Ω Ω  and to write the result in form of the following six indi-
vidual equations: 

                   
, , , (a),(b), (c)

, , , (d), (e),(f)

y y y y

z z z z x x

E E H H q q

E E H H i i

′ ′ ⎫′
= = = ⎪⎪′ ′ ′Ω Ω Ω Ω Ω Ω ⎬′ ′ ′ ⎪= = =

⎪′ ′ ′Ω Ω Ω Ω Ω Ω ⎭

               (6.44) 

where the unprimed numerators depend only on τ , y , z  and the 
primed ones only on ′τ , y′ , z′ . We may therefore conclude from (6.15) 
that the ratios in the left-hand sides of the six equalities (6.44) are inde-
pendent of the choice of RF provided we evaluate them at the same val-
ues of τΩ , y , and z . In other words, making use of the period 

Ωπ= /2T , the wavelength  Ωπ==Λ /2 ccT , and the relations 
2 ( / )/ 2 ( )/t x c T x ctτΩ = π − = − π − Λ  we may state that the field is: 1. 

stretched out proportionally to Λ  in the forward direction; 2. spread out 
independently of Ω  in the lateral directions;  3. stretched out propor-
tionally to T in the direction of time. 
 
    Of particular interest is the comparison of the total field energy W  in 
RF to that in RF′ , i.e., to W ′ . Since (6.32) is valid independently of the 
type of polarization, the same holds for W ′ , which obviously is given 
by  

        
2 2 2 21 ( )d ( )d ,

2
                      d d d d .

y zV V
W E H V E E V

V x y z

⎫′ ′ ′ ′ ′ ′ ′= ε +μ = ε + ⎪
⎬
⎪′ ′ ′ ′= ⎭

∫ ∫         ( 6.45) 

Since dx  and dx′  are defined for t  and t′  held fixed, respectively, we 
have d dx c= − τ  and d dx c′ ′= − τ  (cf. (6.4) and (6.17)(a)). Furthermore, 
since 0β  is a constant, it follows from (6.17)(b) that ′Ω  is independent of 
′τ  (thus of t′  and x′ ), y′  and z′ . In view of (6.15), we may thus write, 

 d d , d d , d dx x y y z z′ ′ ′ ′Ω = Ω = = ,                     (6.46) 
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altogether therefore d dV V′ ′Ω = Ω . Hence, we conclude from (6.32), 
(6.44)(a) and (d), (6.45), and (6.46) that / /W W′ ′Ω = Ω . In other words, 
the ratio /W Ω  is independent of the reference frame adopted. This is 
in full agreement with the three statements at the end of the previous 
paragraph.  
 
    Let us now look separately at the low-frequency and the high-
frequency constituents of yE  and zE , i.e., at their complex amplitudes 

yÊ  and zÊ , and at their behaviour in terms of Ω . In particular, defining 
the phases yχ  and zχ  by 

ˆ ˆ ˆ ˆ| | , | |y zj j
y y z zE E e E E eχ χ= = , 

we derive from (6.10), (6.11), and (6.32),  

 
( )(

( ) )

2

2

ˆ| ( , , )| 1 cos 2 2 ( , , )
2

ˆ        | ( , , )| 1 cos 2 2 ( , , ) d ,

y yV

z z

W E y z y z

E y z y z V

ε ⎡ ⎤= τ + Ωτ+ χ τ⎣ ⎦

⎡ ⎤+ τ + Ωτ+ χ τ⎣ ⎦

∫         (6.47)             

where the integrand depends on x  as determined by (6.4). Due to the 
narrow-band assumption (cf. (6.13) and (6.14)), a change in x  causes the 
cosine terms to oscillate fast compared to the changes the complex am-
plitudes are undergoing. Hence, the contributions due to the cosine 
terms may be assumed to cancel out. Furthermore, (6.47) is in fact inde-
pendent of t  while x  may be replaced by x− . The result (6.47) is there-
fore equivalent to  

 2 2ˆ ˆ| ( , , )| | ( , , )| d
2 y zV

x xW E y z E y z V
c c

ε ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ .            (6.48) 

 
    Consider next the ratio /W= Ω%h , for which we obtain from (6.48), 

 2 2

,                                                                (a)

ˆ ˆ| ( , , )| | ( , , )| d . (b)
2 y zV

W
x xE y z E y z V
c c

⎫= Ω
⎪
⎬ε ⎛ ⎞= +⎜ ⎟ ⎪Ω ⎝ ⎠ ⎭

∫

%h

%h
         (6.49) 

As is clear from the above discussion, %h  is independent of the specific 
reference system in which the field is observed. It is also found to be 
independent not only of Ω  but also of the low-frequency quantities yχ  
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and zχ , and thus of any changes these quantities may undergo due to 
the freedom still available for q .  
 
    Since T( ,0,0)v c=  and thus 1β = , the momentum density of the field 

is given by T( ,0,0)j=j , where, due to (4.38), /j w c= . For the total 
momentum we obtain, making also use of (6.49))(a),  

 d =  
V

WJ j V
c c

Ω
= =∫ %h .                              (6.50) 

 
    As we have seen in Subsection 2.3 and as is confirmed by applying 
(6.1) to (2.28)(b), the rest energy density 0w  vanishes everywhere, and 
we thus have for the total rest energy 

0 0d 0
V

W w V= =∫ . 

Hence, defining the total internal and external kinetic energies kiW  and 

keW  by 

d , and dki ki ke keV V
W w V W w V= =∫ ∫ , 

respectively, we have, due to (4.34), ki keW W=  and therefore 

 0 , 2 2ki ke k k ke kiW W W W W W W W W= + + = = = Ω = =%h ,    (6.51) 
where k ke kiW W W= +  is the total kinetic energy. 
 
    We may think of %h  in (6.49) as having been defined for circular po-
larization. If we then replace yE  and zE  by (6.34) or (6.35) and proceed 

as we have done above for arriving at (6.48) via (6.47), we may conclude 
that in the case of linear polarization (6.49) does not only hold again but, 
due to the factor 2  in the adopted definition, the resulting %h  is, within 
the narrow-band approximation, the same as for circular polarization. 
 
6.6 Uncertainty properties     
 
In order to obtain an appropriate uncertainty relation we start from a 
well-known result in the theory of the Fourier integral. More precisely, 
we use an extension of the more commonly encountered result to the 
case of an analytic signal and to the related concept of a complex ampli-
tude. As explained in Appendix E2, we may thus introduce an appro-
priate definition of the duration tΔ  (spread in time) and of the bandwidth 
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Δω  (spread in frequency) of a signal.  Such definitions of tΔ  and Δω  
are not strictly the same as those adopted in (6.18) and (6.19), but they 
have the known advantage of remaining meaningful even if no sharp 
limits for the relevant ranges can be given, and of lending themselves to 
convenient mathematical analysis. In particular, we can write (cf. (E.15)), 

                                   2tΔ ⋅Δω ≥ .                                            (6.52) 
To tΔ  corresponds a spread in position 

tcx Δ=Δ , 
and in view of (6.49)(a), ωΔ  corresponds to a spread in energy 

WΔ = Δω%h  
and thus, in view of (6.50), to a spread in  momentum  

WJ
c c

Δ
Δ = = Δω

%h
. 

Hence (6.52) is equivalent to  

                  
1 1

2 2 4 2
x J tΔ Δ⎛ ⎞⎛ ⎞ = Δ ⋅Δω ≥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
% %h h ,                             (6.53) 

where /2xΔ  and /2JΔ  are the root mean square (RMS) deviations of 
x  and J . 
 
    In view of these various results one is obviously tempted to set 
= =%h h  Planck's constant. The localized field under consideration then 

exhibits classical photon properties. Furthermore, in view of the pres-
ence of fluctuating positive and negative charges, which are balancing 
each other in the field, it is not surprising that a photon can split into a 
pair of an electron and a positron (instead of, for instance, two photons 
of lower energy) once the energy exceeds a certain threshold. On the 
other hand, it is likely that the field configuration would also become 
unstable if Ω  is getting too small, thus Λ  too large, or else, if the length 
of the field configuration becomes too large compared to its lateral ex-
tension and to the size of the other relevant physical objects involved. 
Furthermore, a solution for 0Ω =  is not feasible since according to 
(6.17)(b) (where ′Ω  assumes the role  of the present Ω ) this would re-
quire 0 1β = , which has explicitly been excluded (cf. beginning of Sub-
section 6.5). 
 
   To be precise, (6.52) and (6.53) do not express a true uncertainty but 
rather give, in a sense, a lower bound for the degree of non-compactness 
of the field. If one accepts that nature follows some principle of economy 
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(due to which for instance stability can be achieved) one may suspect 
that an actual photon is indeed such that an appropriate bound is 
reached. This would imply that the dependence of any field component 
on x  and thus on t could be of the form of one of the functions dis-
cussed in Appendix E2. The most general such function is that given by 
(E.23). Identifying  thus Ω  with 0ω  and assuming the field to be centred 
at 0τ = , we may replace 0tt −  in (E.23) by /t x cτ = − . For fixed values 
of y  and z  the dependence on x  and t  should thus be of the form 

( )cos ( )AC e B− τ Ωτ − τ − γ . 
 
    The dependence on y  and z  could then also be similar to a Gauss 

function, thus to a function somewhat of the form 
2
0

22 /)( rzye +− , where 0r  
is also a constant. If that is the case we obtain altogether for f  (cf. Sub-
section 6.2) an expression of the form 

 
2 2

0( ) ( )/
0 cos ( ),

( ) ( ) ,

A y z rf f e
B

− τ − + ⎫= ϕ τ ⎪
⎬

ϕ τ = Ωτ− τ − γ ⎪⎭
                           (6.54)                        

where 0f  is a positive constant. In a sense, the classical concept of a pho-
ton is the limit of the present model for 0→ωΔ  and, possibly, 00 →r . 
 
6.7 Properties as a wave packet 
 
Clearly, the solution we have explained forms a true wave packet. In the 
sense of communications theory [28, 29], the complex amplitude con-
tains the information while Ω  is simply the frequency of the carrier. 
Interpreted as a function of t , a signal such as (6.54) is simultaneously 
amplitude modulated with envelope ( )Ae− τ  and frequency modulated 
with instantaneous frequency  

( )( ) ( ) sin ( )B k b∂ϕ τ
ϕ τ = = Ω− τ = Ω− τ τ

∂τ
&& , 

where b  is as occurring in (E.21). The dot on top of a letter denotes 
/ t∂ ∂ , as usual, but due to (6.4) this is equivalent to /∂ ∂τ .  

 
    Consider next a dispersive medium presenting a linear dispersion in 
the relevant range 2/2/ ωΔ+Ω<ω<ωΔ−Ω . We assume the medium 
to be uniform and the signal to be travelling in the -directionx  so that 
the -y  and -directionsz are irrelevant.  We may then immediately draw 
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from the results presented in Appendix E3. We make use of the notation 
defined there, i.e., we denote by ( )f t  the signal at the beginning of the 
medium, say at 0x = , and by ( , )g t x  the resulting signal at position 

0x ≥ , with thus ( ) ( ,0)f t g t= .  
 
    If the signal we are analysing were indeed a photon, it would be either 
fully absorbed in the medium or fully transmitted. Since only the latter 
alternative is of interest to us, we may set 0 0a = , in particular in 
(E.32)(a). If (E.32)(b) is also fulfilled, at least with sufficient accuracy, we 
may apply in particular (E.33) and (E.34), with 0 0a = , 0ω  replaced by 
Ω , and g  standing for any of the presently relevant field quantities. It 

follows then clearly from (E.34) that the "carrier signal" j te Ω  propagates 
with the phase velocity ( )phv Ω  (cf. (E.35)), while the propagation of the 

complex amplitudes does take place with the group velocity gv . But 

according to (6.48) the total energy depends solely on the moduli of such 
complex amplitudes. Hence, as follows from (E.36)(b) and 0 0a = , the 
energy does indeed travel with the  group velocity gv . As recalled in 

Appendix E, however, the definition d /dgv k= ω  (cf. (E.37)), where k  

is the wave number, is an appropriate choice only under restrictive cir-
cumstances that are commonly ignored.  
 
    A last comment concerns the cancellation of the oscillatory terms in 
(6.47). As discussed for arriving at (6.48), that cancellation is not perfect 
and h~  is therefore not strictly constant. This puts a limit on the accuracy 
by which h~  can be specified, and in that sense, a limit on the validity of 
the Planck and Einstein laws, the error being apparently of the order of 

2)/( ΩωΔ . 
 
6.8 Further problems 
 
As we have seen, the localized fields discussed in Sections 5 and 6 are 
described by sets of equations that are, at least originally, underdeter-
mined. Some of the resulting indeterminacy like the one for yχ  and zχ  
(Subsection 6.5) is irrelevant, at least in as far as energy is concerned.   
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    It could well be, however, that any freedom that may finally remain 
must be used for ensuring stability of the field configuration (assuming 
that stable configurations indeed exist). Approaching this important 
aspect requires examining not simply the configuration at equilibrium, 
i.e., the steady-state behaviour, as we have done, but the full underlying 
dynamical problem. This is a truly difficult and mathematically chal-
lenging issue that must be left for future studies. Helpful for addressing 
it could be the concept of multidimensionally passive systems. The the-
ory of such systems has been developed in the context of finding a ro-
bust method for numerically integrating PDEs that describe physically 
passive dynamical systems [18]. This method is based on a physically 
motivated approach for constructing mathematical algorithms that are 
suitable for robust one-dimensional and multidimensional digital filter-
ing [16]. Of particular relevance for our purpose could be the concept of 
local internal multidimensional passivity that is briefly addressed in 
[18].  
 
    Alternatively, or complementary to the interpretation just given, it 
could also be that there is indeed some true indeterminism in the precise 
configuration of the fields we have examined. This would, for instance, 
appear to facilitate the known interaction between particles and thus the 
reconfiguration of the fields after such an interaction has taken place.  
 
6.9 Relation between electron, positron, and photon 
 
A reasonable relation between an electron, a positron, and a photon ap-
pears possible only if the latter is circularly polarized. This will therefore 
be assumed hereafter. We also assume the fields analysed in Sections 5 
and 6 to be indeed valid models of an electron/positron and a photon, 
respectively, in which case we may set in particular, =%h h .  
 
     It is instructive to observe both types of fields in their respective basic 
reference frame, RFB . For an electron or positron, RFB  is the reference 
frame we have adopted in Section 5, i.e., the one in which the field, al-
though internally rotating, is at rest as a whole, thus if simply observed 
from the outside. A photon, on the contrary, always moves with the 
speed of light and thus can never be at rest in the sense just defined. It is 
appropriate therefore to define the basic reference frame RFB  of a pho-
ton as being that RF  in which the total energy, BW , is equal to the 
threshold beyond which the photon can produce an electron-positron 
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pair, thus for which BΩ = Ω , with /2B BWΩ = h . Obviously, a photon 
may be assumed to be unique in the same sense as an electron and a 
positron provided all particles are observed in their respective basic ref-
erence frame. 
 
    Consider thus a photon in its specific RFB . We may assume it to con-
sist of an electron and a positron whose charges are interleaved. The 
total energy is equal to the combined original energies. We may also 
assume that the positive and negative charges are rotating in the same 
direction, which amounts to a doubling of the angular momentum, thus 
of the spin. Although the existence of such an angular momentum re-
quires the internal presence of non-vanishing lateral (i.e., with respect to 
the direction of propagation) velocity components, these are, as ex-
plained in Subsection 3.8, undetectable for an external observer for 
whom the photon is moving at the speed of light (cf. (3.51)), . On the 
other hand, due to the opposite signs of the electron and positron 
charges, the resulting currents are oppositely equal. Thus if observed 
from a distance, the total magnetic moment appears to sum up to zero in 
the same way as the total electric charge.  
 
    Finally, let us still write the relation (5.32), which we had obtained for 
the kinetic energy of an electron, more specifically in the form 

k elW L= ω , where elL  is the spin of the electron and ω  its nominal angu-
lar velocity. Assume that (5.32) expresses in fact a more universal law. 
Since for a photon the rest energy 0 0W = , its kinetic energy coincides 
with its total energy W  and we therefore could write k phW W L= = Ω , 

where phL  is the photon spin. Due to (6.49)(a) we could thus conclude 

that phL = h , as is indeed known to be the case. On the other hand, the 

doubling of the spin mentioned in the previous paragraph allows us to 
state 2ph elL L= , which leads immediately to /2elL = h . Such results are 

compatible with the assumption that the energy of the photon, thus its 
kinetic energy, does in fact consist completely of its inner rotational en-
ergy. In other words, the entire photon energy would be due to a 
movement that is unobservable from the outside. 
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7. Moving particles 
 
7.1 Electron-like particle observed in different reference frames 
7.1.1 A first general relation 
 
Let there be given, in a reference frame RF, a field that is described by 
equations precisely as discussed in Section 5. We consider such a field to 
be an entity of its own, refer to it by calling it a particle, say Pa, and say 
that Pa is at rest in RF. There is of course internal rotational movement, 
but at any fixed position , ,x y z  the field is independent of t . 
 
    Let us first determine the total momentum of Pa (cf. (4.7)), 

T T 0
2

2( , , ) d , ( , , )x y z x y zV

wJ J J V j j j
c

= = = =
α∫J j j β . 

For this it is convenient to express the Cartesian components of j  in 
terms of those in spherical coordinates. Since 0rj jθ= =  and j jϕ =  (cf. 
(5.21)) we derive from (A.13), 

0, sin , cos ,x y zj j j j j= = − ϕ = ϕ  

and since j  is independent of ϕ  we obtain 
T 2(0, sin , cos ) sin d d d

V
jr r= − ϕ ϕ θ θ ϕ =∫J 0 .                (7.1) 

Hence, J  is strictly zero. 
 
    Next, let us observe Pa in a further reference frame RF′  such as the 
one in Sections 2 and 3, thus with RF′  moving with constant velocity 

T
0 0( ,0,0)v=v (cf. (2.3)) with respect to RF. We may then make use of 

(3.8), or better directly of the previous equation (3.6), from which (3.8) is 
derived. Taking into account (4.3) and the corresponding relation for xS′  
we may express (3.6) in the form 

T T
0 0w c w c′ ′+ = −β j β j ,                                        (7.2) 

which we have written in such a way that it is valid for any 0v . Choos-
ing then an arbitrary fixed value of t′ , integrating (7.2) over the entire 
relevant volume V ′  in RF′ , and taking into account (3.7), we obtain  
 T T

0 0d d ,
V V

W c w V c V
′ ′

′ ′ ′ ′+ = −∫ ∫β J β j                          (7.3) 

where 
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0
2

d , d d d d , (a)

2d d .            (b)

V

V V

W w V V x y z

wV V
c

′

′ ′

⎫′ ′ ′ ′ ′ ′ ′= =
⎪
⎬

′ ′ ′ ′ ′ ⎪= =
′α ⎭

∫

∫ ∫J j β
                   (7.4) 

 
    Let us then replace the two integrations that appear explicitly in (7.3) 
by integrations over the corresponding volume V  in RF . In view of the 
last equality in (2.4)(a), we have indeed 

0 0
xt t
c

′= α +β ,                                        (7.5) 

where t′  is fixed. As is known, we then have 
0d d , d d d dV V V x y z′ = α = . 

Hence, considering w  and j  to be functions of x , y , z , and t , we may 
write 

 
0

0

d ( , , , )d ,

d ( , , , )d ,
V V

V V

w V w x y z t V

V x y z t V
′

′

⎫′ = α ⎪
⎬

′ = α ⎪⎭

∫ ∫
∫ ∫j j

                         (7.6) 

where t  has to be chosen according to (7.5), i.e., with t′  constant  and 
x  variable. 
   
    Since we assume the particle to be at rest in RF , thus to be there as 
mentioned above, we obtain from (7.6),  

 
0

0

d , ( , , , )d , (a),(b)

d , ( , , , )d ,          (c),(d)
V V

V V

w V W W w x y z t V

V x y z t V
′

′

⎫′ = α = ⎪
⎬

′ = α = ⎪⎭

∫ ∫
∫ ∫j J J j

           (7.7) 

where ( , , , )w x y z t  and ( , , , )x y z tj  are in fact independent of t . Conse-
quently, W  and the components of J  are true constants. In view of 
(7.1), (7.3) yields 

T
0 0W c W′ ′+ = αβ J .                                   (7.8) 

 
    For an observer in RF′  the particle Pa is moving with velocity 0−v  
with respect to RF′ . From the point of view of this observer it is there-
fore appropriate to rewrite (7.8) in the form 

 T
0p p p p pW c W− = αβ J ,                               (7.9) 
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where pW W ′=  is the total energy of the particle, 0pW W=  its rest en-

ergy, p ′=J J  its momentum, and 0p = −v v  its velocity. Let 0pM  be its 

rest mass. According to classical relativistic dynamics we should have 

 

2
0 0 02

2 2 T

1 , , , (a),(b),(c)

1 , , .                         

p
p p p p p p

p

p
p p p p p p

W W W W c M
c

c

⎫
= = = ⎪α ⎪

⎬
⎪

α = −β β = = ⎪⎭

v
J

v
β β β

       (7.10) 

As can easily be verified, (7.10) is indeed a solution of (7.9). On the con-
trary, (7.9) can  be shown to be violated if instead of (7.10) we would 
assume the alternative relativistic dynamics to hold. 
 
7.1.2  A second general relation 
 
We start from (3.13)(a), which has indeed been written in such a way 
that it holds for any 0v . Using 

2 2

2 2 2 2
2 1 2 11 , 1

′+β +β
= + = +

′ ′α α α α
, 

it can be expressed in the form, 
T T 22 2

2 2 T 20 0
0 0 02 2 2 2

( )1 1 4 2 2( )
′+β +β

α = β + − + −
′α α α α

β β β β β γ , 

which, after multiplying it by 0w  and taking into account (2.26) and 
(3.5), gives rise to 

T T 2
2 2 T 20 0
0 0 0 0 0 0 02 2

( )4 2 2 ( )w w w w w w′α = +β − + −
α α
β β β β β γ . 

Integrating this over the entire volume V ′  and proceeding as done for 
passing from (7.2) to (7.8) we obtain after taking into account (7.1) and 
dividing by 0α , 

 
T 2

2 T 20
0 0 0 0 0 02

( )2 d 2 ( ) d
V V

W W W w V w V′α = +β + −
α∫ ∫
β β β γ ,      (7.11) 

where W ′  and W  are as defined by (7.4)(a) and (7.7)(b), and where 0W  
is the total energy of the rest field in RF , i.e.,  

0 0dV
W w V= ∫ .                                         (7.12) 
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    The vectors β  and γ can each be decomposed into the sum of two 
respective parts, a longitudinal vector that is co-parallel with 0β  and a 
lateral vector that is orthogonal to 0β . We denote the former by β�  and 

γ� , and the latter by ⊥β  and ⊥γ . Let β� , γ� , ⊥β , and ⊥γ  be the lengths 
of those partial vectors. We have, 

 
T 2 2 2 T 2 2 2
0 0 0 0

2 2 2 2 2

( ) , ( ) ,

,   1.⊥ ⊥

⎫= β β = β γ ⎪
⎬

β +β = β γ + γ = ⎪⎭

β β β γ� �

� �

                       (7.13) 

Hence, we derive from (7.11),   

 
2

0 0 0 0

2
0 0 0

( ) (a)

         (2 ), (b)
k

k

W W W W W

W W W W
⊥

⊥

′ ⎫α = +β − + ⎪
⎬

= +β − + ⎪⎭

� �

�

                   (7.14) 

where (cf. (7.12))  
2 2

0 0 0 0 0 0d , d
V V

W w V W W W w V⊥ ⊥ ⊥= γ = − = γ∫ ∫� � ,           (7.15) 

 
2

0 22 dk V
W w V

β
=

α∫ �
� .                                     (7.16) 

Clearly, 0W �  and 0W ⊥  may be interpreted as the rest-field energies that 

are due, respectively, to the longitudinal and the transversal components 
of the electric and the magnetic rest fields in RF , while kW �  is the longi-

tudinal part of the kinetic energy of the actual field in RF (cf. (4.34)). 
 
    Let us now assume more specifically that the axis of rotation of the 
field is parallel to 0v , say coincident with the x − axis. The equations 
derived in Section 5 then apply directly to the present field in RF . In 
accordance with (5.1), which is written in terms of spherical coordinates,  
we therefore have 0β =�  everywhere and thus 0kW =�  (cf. (7.16)). If we 

then adopt again the same notation as we have done above subsequently 
to (7.8), we derive from (7.14) and (7.15), 

2
0 0 0( )p p p p ra axW W W Wα − = β − ,                            (7.17) 

where 0raW  and 0 axW are rest field energies that are inherent to the par-

ticle Pa itself. More precisely, 0 axW  is the axial part of 0W , i.e. that part 

of 0W  that is due to the components of 0E  and 0H  parallel to the axis of 
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rotation of Pa. Furthermore, since 0ϕγ =  (cf. (5.2)), 0 0 0ra axW W W= −  is 

due to the components of 0E  and 0H  perpendicular to that axis and 
may therefore be called the radial part of 0W . If  

0 0 0
1
2ra axW W W= = ,                                    (7.18) 

(7.17) would agree, and this irrespective of the value of pβ , with (7.10)(a) 

and thus, in view of (7.9), also with (7.10)(b). If (7.18) must indeed hold, 
it might have to be added to the requirements listed in Appendix D.  
 
7.1.3 Some further details 
 
    We want to evaluate again the expressions appearing between paren-
theses in  (7.14), but this time without requiring the axis of rotation of 
the field to be parallel to 0v . For doing this we adopt for RF simultane-
ously a spherical and a Cartesian coordinate system. We assume the 
former to be just like the one in Section 5. As for the latter,  we choose it 
in such a way that the positive x − axis coincides with the positive axis 
of rotation ( 0θ = ), that the plane 0z =  coincides with the one deter-
mined by the x − axis and the vector T

0 0 0( , , )ox y z= β β ββ , in which case 

we have 0ozβ = , and that 0 0yβ > , due to which we have 00 < θ < π  for 

the angle 0θ  between the positive x − axis  and the positive direction of 

0β . In particular we may write, 
               0 0 0 0 0 0 0cos , sin , 0x y zβ = β θ β = β θ β = .                    (7.19) 

 
    On the other hand, since 0r θ ϕβ = β = γ =  and ϕβ = β , we obtain from 
(A.13), 

0, sin , cosx y zβ = β = −β ϕ β = β ϕ ,                        (7.20) 

, cos , sinx ax y ra z raγ = γ γ = γ ϕ γ = γ ϕ ,                      (7.21) 

where  

2 2 2 2

cos sin , sin cos ,
1.

ax r ra r

ax ra r

θ θ

θ

γ = γ θ− γ θ γ = γ θ+ γ θ ⎫⎪
⎬

γ + γ = γ + γ = ⎪⎭
            (7.22) 

As can be verified, axγ  is indeed the axial component of γ , and raγ  its 
radial component. From (7.19) to (7.21) we deduce 
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T
0 0 0
T
0 0 0 0

sin sin ,                         (a)
( cos cos sin ). (b)ax ra

⎫= −β β θ ϕ ⎪
⎬

= β γ θ + γ ϕ θ ⎪⎭

β β
β γ

                  (7.23) 

These expressions remain valid in the limits 0 0θ =  and 0θ = π . 
 
    We now proceed to achieving our present goal. Instead of starting 
from (7.14), to which we have referred above, it is more convenient to 
make use of the original expression (7.11). The integrals in this depend 
on ϕ  only via the factors sinϕ  and cosϕ  appearing in (7.23). Hence, 
replacing 2sin ϕ  by (1 cos 2 )/2− ϕ  and 2cos ϕ  by (1 cos 2 )/2+ ϕ  one 
derives from (7.23), 

T 2
2 20

0 0 02
( ) 12 d sin

2 kV
w V W= β θ

α∫
β β

, 

T 2 2 2 2
0 0 0 0 0 0 02 ( ) d (2 cos sin )ax raV

w V W W= β θ + θ∫ β γ , 

where (cf. (4.34)(b)) 
2

2
0 0 0 02

2
0 0 0 0

2 d , d , (a)

d ,                                       (b)

k ax axV V

ra ax raV

W W W w V W w V

W W W w V

⎫β
= − = = γ ⎪α ⎬

⎪= − = γ
⎭

∫ ∫
∫

   (7.24) 

and where (7.24)(b) can be verified by means of (7.22). Consequently, 
(7.11) and thus (7.14) may be written in the form 

2 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0 0

1( sin 2 cos sin )
2

1         [ sin ( )(2 cos sin )].
2

k ax ra

ra ax

W W W W W W

W W W W

′α = +β + θ − θ − θ

= + β θ + − θ − θ
 (7.25) 

More specifically, if (7.18) holds, (7.25) simplifies to  

 2 2
0 0 0

1 sin
2

W W W′α = + β θ .                             (7.26) 
 
    According to (7.26), thus if (7.18) holds, (7.17) generalizes to  

0 2 2
0

0

1 sin
2

p p p
p

p

W W
W

α −
= β θ .                            (7.27)  

In (7.27), the left-hand side represents the relative error by which 
(7.10)(a) is satisfied. In view of the right-hand side of (7.27), that error is 
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extremely small if | |pβ  and 0|sin |θ  are both small. However, if all 

terms in (7.25) must be retained, (7.27) has to be replaced by  
0 0 02 2 2 2

0 0 0
0 0

( )1 [sin (2 cos sin )]
2

p p p ra ax
p

p p

W W W W
W W

α − −
= β θ + θ − θ .  (7.28) 

If 2
0sin θ  increases from 0 to 1, the expression between brackets in (7.28) 

varies monotonically from 2ρ  to 1−ρ  where 0 0 0: ( )/ra ax pW W Wρ = − . 

It is thus always non-negative if 0 1≤ ρ ≤ . Since 0pW  corresponds to 

W  in Subsection 5.3 and is thus given by (5.19)(a), where 0 /w w= α , 
we have, 0 0 0 0p ra axW W W W> = +  and therefore definitely | | 1ρ < , but 

0ρ ≥  requires 0 0ra axW W≥ . In any case, the modulus of the entire right-

hand side of (7.28) is always 1< . 
 
7.1.4 Charge and current densities 
 
Referring to the discussion just above we first assume 0 0θ = , i.e., we 
assume the axis of rotation and the direction of 0v  to be both parallel to 
the x − axis. According to (A.13) and to what we have seen in Section 5, 
we may then write for the current density in RF, T

,( , )x y zi i i=i , 

0, sin , cosx y zi i i i i= = − ϕ = ϕ , 

where i  is independent of ϕ . Hence, 

d
V

V =∫ i 0 .                                         (7.29) 

This relation remains true of course for any orientation of the axis of 
rotation.  
 
    Independently of that orientation, we may continue choosing 0v  ac-

cording to (2.3). For the current density in RF′ , T
,( , )x y zi i i′ ′ ′ ′=i , we then 

find from (2.7) and (7.29), making again use of 0d dV V′ = α , 

}0 0d d , d . (a), (b)
V V V

V V Q Q q V
′
′ ′ ′= α = − =∫ ∫ ∫i i v         (7.30) 

In view of the definition 0p = −v v  adopted in the previous subsections, 

the result of (7.30)(a) can be written in the form  
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d pV
V Q

′
′ ′ =∫ i v . 

The quantity Q  defined by (7.30)(b), clearly, is the total charge. As is 
known (and as is easily verified by means of (2.7)(d)) it is independent 
of the selected reference frame. 
 
7.2 Behaviour in the presence of an external electrostatic field 
7.2.1 Dynamic equations of an electron-like model 
 
We consider again an EM field, say EF, that occupies a relevant volume 
V  in a reference frame RF. We want to examine the influence a super-
posed external EM field EFe, thus a field characterized in principle by, 
say, eE , eH , eq , and ei , has upon EF. We do restrict ourselves to a 
purely electrostatic EFe and assume furthermore that the charges associ-
ated with EFe are sufficiently far removed from the region of interest so 
that they vanish everywhere inside of V . For all points of relevance we 
may therefore write, 

             T, , 0,e
e e e e eq

t
∂

= ∇× = ∇ = = = =
∂
E 0 E 0 E H i 0 .          (7.31)                          

If we then replace E , H , q , and i  in (2.1) and (2.2) by an additive com-
bination of EF and EFe, and take into account (7.31), we find that inside 
of V the original equations (2.1) and (2.2) are simply restored. This 
shows that the configurations the field EF, thus the field characterized 
by E , H , q , and i , can admit are indeed the same as in the absence of 
EFe.  
   
    We now assume more specifically that EF constitutes in fact a particle, 
Pa, obviously of small size. We may therefore further idealize the exter-
nal field EFe and require eE  to be uniform, thus to be independent not 

only of t  but also of T( , , )x y z=r . We may then assume the coordinate 
axes to be chosen in such a way that  

T( ,0,0) ,e exE t= ∀E r ,                              (7.32) 
with exE  independent of t  and r . As in Subsection 7.1, we are inter-
ested more precisely in a particle Pa originating from a field EF such as 
the one analysed in Section 5. We adopt again the terminology defined 
in Subsection 7.1. We therefore say again that Pa is at rest in a given ref-
erence frame if it is there exactly as described in Section 5 (which obvi-
ously still implies the presence of internal rotational flows of the EM 
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fluid), thus as assumed to be the case in the reference frame RF consid-
ered in Subsection 7.1.1. We restrict the analysis to the case where the 
axis of rotation of Pa is coincident with the x − axis of RF and thus paral-
lel to eE  (cf. the discussion in Subsection 7.1.2).  
 
    Let Pa indeed be at rest in RF at some initial time 0t . For 0t t>  we 
assume it be subject to EFe and, as a consequence, be travelling as a 
whole, thus as an entity of its own, with velocity ( )p p t=v v  in the direc-

tion of eE , thus with 

 T( ,0,0)p pv=v .                                     (7.33) 

Since, as we have seen, the equations describing EF are independent of 
EFe  we may assume that for any 0t t>  the field EF admits in RF that 
configuration that one obtains after Lorentz transforming the field from 
a reference frame RF′  where Pa is at rest. The constant velocity by 
which RF′  is moving with respect to RF must then be chosen according 
to 0 ( )p t=v v  where t  is indeed the specific time  instant  under consid-

eration in RF. We may therefore refer to Subsection 7.1 for determining 
the relevant quantities characterizing Pa. We must be careful however, 
when doing this because the roles of RF and RF′  are now exactly inter-
changed. Our present notation has been adopted in order not to burden 
it by having to add primes to all expressions of major interest; the same 
kind of consideration had led to the opposite choice in Subsection 7.1.  
 
    Since in RF, EF satisfies (2.1) and (2.2), it also satisfies there equations 
such as (4.14)(a) where all quantities are as defined in Subsection 4.1. We 
may however not simply interpret the derivative / t∂ ∂j , thus the first 
term in (4.14)(a), as being the actual rate of change of the momentum 
density j . In fact, (4.14)(a) only states how large that rate would be if 
EFe were absent while the other three terms were as is actually the case; 
the first one of these three terms is due to the convection of the EM fluid 
that corresponds to EF, while the remaining two represent the effect of 
the internal forces acting in EF. In reality, the full rate / t∂ ∂j  is also in-
fluenced by the external force EFe exerts upon EF. The density of that 
external force is known to be e eq=f E . Hence, in order to obtain the full 
rate we must replace (4.14)(a) by  
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( )TT T T T
0( ) ( ) c eq

t
∂

+ ∇ + ∇ + =
∂

j vj T f E .                      (7.34) 

Clearly, the volume force density eqE  is analogous to qE  in (4.4). 
 
    Let us then integrate (7.34) over a sufficiently and adequately large 
volume V . For calculating the result we may make use of (4.8) and thus 
replace the contribution of the second and third terms in the left-hand 
side of (7.34) by  

T T( ) dcV
V∇∫ T                                        (7.35) 

where cT  is given by (2.9) and (4.5). Since E  decreases as fast as the 
square of the distance from, roughly, the "centre" of EF, and since H  
decreases even faster, application of Gauss' theorem shows that the total 
contribution of the second and third terms in the left-hand side of (7.34) 
is zero. As will be proved in Subsection 7.2.2, the last term in the left-
hand side of (7.34) does not contribute either, and this as a consequence 
of the circular and equatorial symmetries Pa has in RF′ . 
 
    In RF, let then pJ  be the total momentum of Pa, pW  its total energy, 

and 0pW  its rest energy, i.e.,  

0d , d , |
pp p p pV V

V W w V W W == = =∫ ∫ v 0J j . 

Since eE  is assumed independent of r ,  the total force eF  that EMFe 
exerts upon Pa is given by  

de e eV
q V Q= =∫F E E ,                                  (7.36) 

where Q  is the total charge, as before. Altogether, finally, the simple 
relation  

d
d

p
et

=
J

F                                            (7.37) 

is deduced by integrating (7.34) as stated, eF  being as given by (7.36). 
 
    Consider now (4.14)(b). We can make about the role of /w t∂ ∂  exactly 
the same kind of general remarks as previously about that of / t∂ ∂j . 

Hence, we must now complement the term Ti E  by a corresponding 
term that takes into account the work done by EFe and therefore replace 
(4.14)(b) by  
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T T T
0( ) ( ) e

w w
t

∂
+∇ +∇ + =

∂
Tv T v i E i E ,                      (7.38) 

where in fact we have T
e x exi E=i E . As will be seen in Subsection 7.2.2, 

the x − component of i  is actually given by x pi qv= , where pv  is as in 

(7.33). Although q≠i v  ( yi  and zi  are indeed not vanishing), we may, 

due to (7.32), nevertheless write T
x ex p ei E q= v E  and thus replace (7.38) by 

T T T T
0( ) ( ) p e

w w q
t

∂
+∇ +∇ + =

∂
v T v i E v E .                    (7.39) 

 
    Next, we integrate (7.39) over the volume V , as we have done for 
(7.34). According to (4.12), the two inner terms in the left-hand side of 
(7.39) may be replaced by T T ( )∇ =∇ ×S E H  and thus yield zero, and this 
for the same reason as for (7.35). As will be seen in Subsection 7.2.2, the 
last term in the left-hand side of (7.39) also yields zero. We thus obtain 
altogether 

Td
d

p
p e

W
t

= v F ,                                        (7.40) 

where eF  is the total external force acting on Pa, as defined by (7.36).  
 
    As already pointed out by Einstein [1] in the classical context, the 
movement of a particle under the influence of some other field (for in-
stance gravitation) must follow the same general rules as in the case of 
an electric field. Hence, (7.37) and (7.40) must hold also if eF  is not sim-
ply given by (7.36) but is a force of more general nature. This explains 
why all known experiments with EM particles are in agreement with the 
predictions of classical relativistic dynamics, contrary to what one might 
expect after taking a first look at the role of the alternative theory at the 
basic level. There remains of course an open question concerning the 
inclination 0θ  introduced in Subsection 7.1.3. Does this have an effect 
and, if so, can such an effect be observed experimentally? 
 
7.2.2 Outline of supplementary proofs 
 
We assume RF and RF′  to be as defined in Subsection 7.2.1, thus with 
the roles of RF and RF′  interchanged compared to the notation adopted 
in Subsection 7.1. Hence, for the same reasons as explained there, we 
may now replace integrations in RF by integrations in RF′ , but with 
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0d dV V ′= α . We will make intensive use of Appendix D2, but, without 
further mentioning it, we assume systematically that primes have been 
added as needed to the equations listed there. We also refer to the fol-
lowing equations obtained by inverting (2.5) and (2.6), i.e., 

0 0
0 0

0 0
0 0

1 1( ), ( ), (a),(b)

1 1(H ), ( ). (c),(d)

y y z z z y

y y z z z y

E E v H E E v H

H v E H H v E

⎫′ ′ ′ ′= +μ = −μ ⎪α α ⎪
⎬
⎪′ ′ ′ ′= − ε = + ε
⎪α α ⎭

        (7.41) 

 
    Consider first the term qE  that occurs in cf . Since Pa is at rest in RF′ , 
we have there, 0xi′ = , and we therefore deduce from (2.7) the first four 
of the following equalities, 

0
0

, , , ,x y y z z x x
qi qv i i i i q E E
′

′ ′ ′= = = = =
α

,              (7.42) 

the last one holding in view of (2.5)(a). Hence, we obtain for the 
x − component, 

d dx xV V
qE V q E V

′
′ ′ ′=∫ ∫ .                               (7.43) 

Due to the symmetry the field admits in RF′  that last integral can be 
seen to vanish (cf. (D.13)(a)). For the y − component we find, making use 
of (7.41)(a),  

0 0d d dy y zV V V
qE V q E V v q H V

′ ′
′ ′ ′ ′ ′ ′α = +μ∫ ∫ ∫ , 

where both integrals to the right vanish for similar symmetry reasons, 
and the same result holds correspondingly for the z − component (cf. 
(D.13)(b)) and (c) as well as (D.14)(b) and (c). 
 
    For the x − component of the second term in cf  we are led, using 
(2.7)(b) and (c) as well as (7.41)(c) and (d), to the integration 

0

0

( )d ( - )d

                                       ( )d .

y z z y y y z zV V

y z z yV

i H i H V i H i H V

v i E i E V
′

′

′ ′ ′ ′ ′α − =

′ ′ ′ ′ ′− ε +

∫ ∫
∫

             (7.44) 

Consider first the term y yi H′ ′ . According to (D.12)(b) and (D.14)(b), it is 

positive or negative depending on the sign of x y zε ε ε , thus equally often 

for the same value of | |y yi H′ ′ , and the same holds for z zi H′ ′ . Hence, the 
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first integral in the right-hand side of ((7.44) vanishes. As for y z z yi E i E′ ′ ′ ′+ , 

we conclude from (D.15)(b) and (D.17)(a) that for each pair of positions 
(cf. the sentence following (D.17) in Appendix D) the value of y zi E′ ′  is 

equal to minus the value of  z yi E′ ′  at the complementary position. Hence, 

the second integral in the right-hand side of (7.44) also vanishes. 
 
    We can now be brief about the term Ti E  in (7.39), for which we have, 
due to (2.5)(a), (7.41)(a) and (b), and (7.42),  

T
0 0 0 0( ) ( )x y y z z z yv q E i E v H i E v H′ ′ ′ ′ ′ ′ ′ ′α = + +μ + −μi E .            (7.45) 

Integrating (7.45) over V , as before, the first term to the right in (7.45) 
leads to an integral as in the right-hand side of (7.43) and thus vanishes. 
Determining the contributions by the other terms amounts to evaluating 
the integrals 

( )d and ( )dy y z z y z z yV V
i E i E V i H i H V

′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ −∫ ∫ . 

The first one of these vanishes due to (D.12)(b) and (c) together with 
(D.13)(b) and (c), while the second one is zero due to (D.12)(b) and (c) 
together with (D.14)(b) and (c). 
 
7.2.3 Comments 
 
The movement of an electron Pa in a shell of an atom also occurs, in a 
sense, under the influence of an external electrostatic field, i.e., the one 
created by the charge of the nucleus. Due to the strong forces involved 
one must expect, however, that the field of which Pa consists will be 
quite torn apart and thus correspondingly spread out. We will not exam-
ine this issue in the present text but want to make at least a few related 
remarks.  
 
    In the conventional elementary approach to wave mechanics one uses 
expressions that involve, in particular, a unique frequency, Ω , a unique 
wave number, K , and the kinetic energy kW  . Using the de Broglie rela-
tion and equating kW  with Ωh , the velocity of Pa is then found to be 
equal to d /dKΩ , and that derivative is therefore interpreted as a group 
velocity. As follows from the discussion in Appendix E3, such an inter-
pretation is not permitted. From the point of view adopted in this text, 
however, Ω  is simply a nominal frequency, say the appropriately de-
fined centre of a non-vanishing frequency band, K  the correspondingly 
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defined nominal wavelength, and, as follows from the discussion in the 
last paragraph of Subsection 6.9, the kinetic energy of an electron is 
given by /2kW = Ωh . This way, the velocity of Pa is found to be given 
by /KΩ , and no conflict arises with a correct use of the group-velocity 
concept. This agrees with a multidimensional (sufficient in practice: two-
dimensional) Fourier analysis of a uniformly travelling particle that is 
definitely not point-like but consists of a distributed field and thus gives 
naturally rise to non-vanishing ranges of wavelength and frequency. 
 
8. Concluding remarks 
 
1. Starting from Maxwell's equations in vacuum (the only ones considered 
in this paper) and based on physical reasoning involving relativistic 
principles, such concepts as field velocity v , rest field, rest energy,  rest 
charge density and rest current density of an electromagnetic (EM) field 
have been mathematically defined. By a thorough analysis of a variety of 
their properties, the relevance and consistency of these concepts, in par-
ticular that of field velocity, have been confirmed. The prime interest of 
the paper concerns autonomous EM fields, i.e. fields that are self-
sustaining in the sense that all charges and currents are properties, not 
sources of the field. 
 
2. Using those concepts, the known equations that involve momentum 
and field energy densities and are a consequence of Maxwell's equations 
have been remodelled using rigorous mathematical deductions. The 
resulting equations exhibit remarkable analogies with fundamental 
equations of fluid dynamics. They lend themselves to a consistent 
mechanistic interpretation, which justifies designating them as flow equa-
tions of the EM field. These become particularly attractive if we assume 
the EM field to be basal, i.e. to be such that the rest current density van-
ishes everywhere in the given reference frame. It appears reasonable to 
assume that any autonomous EM field is basal in some reference frame. 
As the flow equations clearly show, an EM field possesses inertia and 
thus, equivalently, mass. 
 
3. These results make it highly plausible to consider EM particles such as 
electrons and photons as having an inner structure that is still fully de-
scribed by Maxwell's equations in vacuum, thus down to the smallest 
dimensions. From a mechanical point of view, that inner structure may 
be considered to be that of a fluid, say that of an EM fluid. We must then 
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clearly distinguish between three levels of observation: At the primary or 
basic level, the fine details of the behaviour are relevant, in particular 
such important aspects as the flow of charge and momentum densities. 
The behaviour at this basic level is like in a mechanical fluid. In particu-
lar, changes of the energy density are caused by two entirely different 
mechanisms: transportation by convection (with velocity v ) and contri-
butions due to the work done by the forces acting in the field. At the 
secondary level, both these mechanisms are considered to be combined 
into a single overall energy migration. The result is a pure flow of the 
energy density with an equivalent, overall velocity cv  that is in fact 
equal to what may be called the classical energy velocity. For small veloci-
ties we have, vv 2=c , while vv =c  at the speed of light. At the tertiary 
level, finally, the movement of an EM particle as a whole is observed, thus 
when ignoring its inner structure and registering only the overall 
movement visible from the outside. 
 
4. As the mathematical expressions derived from Maxwell's equations 
show, the detailed behaviour of the structure at the basic level is gov-
erned by rules that are better compatible with the alternative relativistic 
dynamics that has become known in recent years. On the contrary, at the 
secondary level, some of the mathematical results, although obtained in 
the same rigorous way from Maxwell's theory as for the basic level, cor-
respond to laws known from classical relativistic dynamics. The values of 
the momentum density j  and the field-energy density w are exactly the 
same at both levels of observation, but the crucial difference is that be-
tween v  and cv , in terms of which both j  and w  can indeed be ex-
pressed. Convection terms, however, thus terms representing flow of 
charge, momentum, and energy, can even then be properly interpreted 
only by means of the alternative theory.  
 
5. The issue addressed in item 3  is strengthened by examining two spe-
cific field configurations. The first one is reminiscent of an electron. In-
deed, the concept of a flowing field has lent itself to examining proper-
ties of a rotating EM field that is localized, i.e. contained in a volume of 
small effective size. It is described by a set of nonlinear partial differen-
tial equations (PDEs) that have been rigorously derived from Maxwell's 
equations. Provided the equations obtained for such a field have indeed 
a stable solution, two quantities can be defined that correspond essen-
tially to the known fine structure constant and the magnetic moment. The 
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former is a purely mathematical number because its evaluation, which 
would involve solving three nonlinear PDEs and subsequently calculat-
ing two integrals, is independent of any physical property. An analytical 
solution of these PDEs is difficult and has not been found, at least not so 
far, while a numerical solution faces some difficulties and has not yet 
been attempted. 
 
6. The second specific field is reminiscent of a photon. Since a photon 
must also be contained in a volume of small size it cannot be modelled 
by an EM field in which the charge density q  and the current density i  
vanish everywhere, but the effective (total) charge must of course be 
strictly zero. The field thus obtained as a rigorous solution of Maxwell's 
equations possesses all properties one could expect to be associated with 
a photon; these are: 
a) It propagates along a straight line in a single direction, with the speed of 
light.  
b) The field is transversal and exhibits effective polarization (linear, circu-
lar). 
c) The energy W  is proportional to the nominal frequency Ω . 
d) Its momentum is equal to /W c  
e) It has zero rest energy and zero rest mass. 
f) The total  charge of the field is zero. 
g) Its magnetic moment is zero. 
h) It exhibits the known relativistic Doppler effect. 
i) While the charges are oscillating, the total positive charge as well as the 
total negative charge remain individually constant. This could be of inter-
est for understanding the annihilation of an electron and a positron as 
well as the corresponding pair production. 
j) Its spread in position and momentum satisfies the classical uncertainty 
relation.  
k) The field is concentrated in a small volume, thus localized and there-
fore like a particle. 
l) It is like a general modulated signal, although with suppressed carrier, 
the carrier frequency corresponding to the nominal frequencyΩ .  
m) In a dispersive medium the carrier travels with phase velocity and the 
energy with group velocity.  
 
    These results strongly support the view that the field that has been 
described is indeed a valid model of a photon.  In particular, it is simulta-
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neously wave and particle and thus offers a natural interpretation of the 
wave-particle duality. A key to this is to consider a wave not simply as a 
pure sinusoid but as a modulated signal like in communications, al-
though of a general amplitude and phase/frequency modulated type 
[28-30], the frequency of the (suppressed) carrier corresponding to the 
nominal frequency of the wave. 
 
7. Since the movement of a particle is intimately tight to that of its en-
ergy (second level of observation), it becomes understandable why clas-
sical relativistic dynamics is the one that governs the movement of an 
EM particle as a whole, i.e. the behaviour at the third level of observa-
tion (cf. item 3). This is supported by results obtained in Section 7 from 
observing an electron-like field distribution in a second reference frame 
and by examining its movement in an external uniform field, electric or 
non-electric (for instance, gravitational). This explains why all known 
experiments with EM particles appear to be in agreement with the pre-
dictions of classical relativistic dynamics, contrary to what one might 
expect after taking a first look at the role of the alternative theory at the 
basic level.  
 
    Both the classical and the alternative relativistic dynamics are thus of 
relevance for arriving at an acceptable understanding. Each of these 
theories possesses its individual elegance, but it can be shown that any 
other attempt to develop a dynamics theory consistent with Einstein's 
kinematics soon becomes so unwieldy that it cannot possibly have the 
simplicity and flexibility any concept with broad and deep physical sig-
nificance must possess. In any case, the distinction between classical and 
alternative relativistic dynamics is very helpful for finding meaningful 
interpretations of results such as the flow equations of an EM fluid etc. 
Nevertheless, such a distinction is not really necessary for justifying re-
sults such as those summarized under items 5 and 6. These results fol-
low indeed rigorously from Maxwell's equations and assume thus noth-
ing but the strict validity of these equations. 
 
8. Some further reaching questions arise: As has just been explained, 
there exist strong arguments in favour of interpreting photons and elec-
trons as condensed fields held together essentially by their own EM 
forces. Could something like this hold also for other elementary particles, 
surely with some other field forces involved? Could thus quantum 
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jumps involve highly complex dynamic phenomena, somewhat like what is 
known to be the case in digital electronics, or even far more so?  
 
    In computers, digital communications, digital control etc.,  in particu-
lar in the meanwhile ubiquitous internet, a gigantic number of jumps is 
indeed taking place every second in flip-flops, memory devices etc. all 
over the world. For planning all this and for assuring reliable operation, 
the existence of dynamic phenomena behind the jumps may be totally 
ignored by systems designers (except for the restrictions these phenom-
ena impose on the operating speed), and this holds in fact for the entire 
field of computer science. Yet, in order to ensure proper operation of the 
many highly complex devices they are designing, IC experts must be 
very much aware of the intricate phenomena that take place in the myr-
iad of individual circuits. If quantum jumps involve reconfigurations of 
fields (obviously in all three position coordinates), their dynamics would 
be even far more complex than that in ICs, which would contribute to 
explaining why many aspects in particle physics etc. can classically be 
reasonably assessed only by statistical approaches.  
 
    Furthermore, if other strong forces are present in the neighbourhood 
of a particle, its field configuration could become quite spread out or 
even torn apart (possibly only temporarily), in which case it would in-
deed be impossible to assign meaningful values to location and speed. 
This could be the case for the electrons in the shells of an atom and could 
also explain such odd phenomena as observed in two-slit experiments. 
Present quantum theory would in a sense concern only the tips of the 
icebergs, ignoring the underlying dynamical phenomena in the four-
dimensional systems actually at stake.  
 
    On the other hand, most EM fields in the cosmos might in fact be 
vagabonding rather than be compressed into particles, and thus be unde-
tectable on earth (dark matter?). We may even assume that the entire 
space is penetrated by an EM field that is extremely faint almost every-
where but is highly condensed in isolated small volumes. In particular, 
electrons (and positrons) would appear as vortices in the omnipresent 
EM sea, which would agree with an existing concept that elementary 
particles are in fact turbulence phenomena [37]. Such field condensa-
tions, however, cannot occur anyplace, but only in the neighbourhood of 
areas in which the charge density is non-vanishing, or better, where the 
divergence of the electric field is non-vanishing. 
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9. More generally, one may raise the question whether the only thing 
real in the cosmos are the fields. Elementary particles would then be 
nothing but condensations in the fields, in particular vortices. All the 
rest would be hierarchically ordered coagulations and agglomerations 
of, say, vortices. Like in the EM case, one would expect that condensa-
tions into elementary particles can take place only in the neighbourhood 
of domains in which some critical property of the field is non-vanishing. 
 
10. Related to the present concern is also the question of group delay 
(group velocity). It plays a fundamental role in communications engineer-
ing, and its significance there is well understood [28-30]. It would there-
fore not be surprising that the importance of group velocity in physics is 
closely akin to that in communications, which in turn would be far eas-
ier to understand if there were some truth behind the ideas just dis-
cussed. An immediate conclusion would be that monochromatic waves 
and, more generally, monochromatic phenomena cannot have any true 
physical meaning. In full agreement with these observations, the pho-
ton-like field (wave packet) discussed under Item 6 has precisely the 
properties needed for our present arguments to be applicable. This is 
further enhanced by the role played in physics and engineering by so-
called δ -functions and the systematic physical interpretation that can be 
given to these in communications [29] and thus, likely, also in physics 
itself. 
 
11. In short: Could it be that some deeper physical insight can be gained 
by looking beyond the formalism by which the laws of quantum physics 
and also those of relativity theory are presently usually justified? The 
issue touches the conflict that exists between what is called realism and 
locality in quantum physics [38-41] and that opposed Einstein to other 
leading physicists of his time (Bohr, Heisenberg etc.). While the view-
point of the latter is now widely accepted, Bell's inequalities [25], which 
indeed appear to confirm that conviction, appear to rest on assumptions 
(at least implicitly) that are not satisfied by the rather complex structures 
of the electron and photon models described in Section 5. Hence, the 
results of the present paper lend some support to Einstein's point of 
view. In any case, within the present theory there exists full compatibil-
ity between relativity theory and the quantum principle. 
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Appendix A: Reminders  
 
A1. Some vector and matrix properties 
 
Throughout this paper we use familiar algebraic vector/matrix notation, 
a superscript T  meaning transposition. Unless otherwise stated, vectors 
are 3-dimensional, thus 

T( , , )
x

x y z y

z

a
a a a a

a

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

a  

and we employ a notation according to which 
2 T| |, , | | 0.a a= ± = ≥a a a a  

In this text, two vectors a  and b  are said to be parallel if × =a b 0 , 
which includes the possibilities =a 0  and/or =b 0 . If either k=a b  or 

k=b a , where k  is a scalar, they are called co-parallel if 0k >  and anti-
parallel if 0k < . 
 
    For vectors a and b  in general one finds by simply expanding and 
rearranging, 

2 2 2 T 2 2 2 2 2 T( ) ( ) 2 ,y z z y x x x xa b a b a b a b b a a b− = − − − +a b a b  

           2 2 T( )( ) ( )z x x z y z z y x y x y x y y xa b a b a b a b a a b b b a a b a b− − = − − + + a b .            

Further expressions follow by circular permutation, leading altogether 
to 
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T 2 2 T 2 T 2 T 2

T T T

( )( ) [ ( ) ] ( ) ( )
                         ( )( )

a b b a× × = − − −

+ +

a b a b a b 1 aa bb
a b ab ba

         (A.1)            

where 1 is the unit matrix (of order 3) and ×  stands for the cross prod-
uct. This relation, although not widely used, is quite helpful for our 
purpose. 
 
    Recall also the relations and implications for up to four vectors of the 
above type: 

T T( ) ( ) ( ) ,× × = −a b c a c b a b c  (A.2) 
T T T( ) ( ) ( ),× = × = ×a b c b c a c a b       (A.3) 
T T T T T( ) ( ) ( )( ) ( )( ),× × = −a b c d a c b d a d b c                (A.4) 

T( ) ( ) ( )× × × = ×a b a c aa b c .                         (A.5) 
                                                                                
    For arbitrary n -dimensional vectors a and b , where n  is any integer 

1,≥  we have 
 T Tdet( ) 1 ,+ = +1 ab a b                             (A.6) 

 T 1 T
T

1( ) .
1

−+ = −
+

1 ab 1 ab
a b

                      (A.7) 
 
    The following results are from vector analysis. A familiar one is 

 T T T( ) ( ) ( )∇ × = ∇× − ∇×a b b a a b .                   (A.8)                          
Of the next two ones, the first is known for instance in fluid dynamics 
and the second is a generalization of the first. They hold in Cartesian 
coordinates: 
 T T T T 21

2( ) [ ( )] a× ∇× + ∇ = ∇ + ∇a a aa a a                  (A.9)                         
T T T T

T T T

( ) ( ) [ ( )]
                          ( )
× ∇× + × ∇× + ∇ +

= ∇ + ∇ +∇

a b b a ab ba
a b b a a b

.             (A.10)           

The fourth one holds in fact not only for ∇  but for any n -dimensional 
differential operator T

1(D ,...,D )n=D , 1D  to Dn being scalar (partial) 
differential operators, any n m×  matrix A  , and any  matrix B  with m  
rows:  
 T T T T( ) ( ) ( )= +D AB D A B A D B .                      (A.11) 
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A2. Spherical coordinates 
  
In order to be consistent with the special role we are assigning (in line 
with an old tradition [1]) to the axisx −  ((cf. 2.4)), we consider spherical 
coordinates , ,r θ ϕ  in terms of which the Cartesian coordinates are given 
by 

cos , sin cos , sin sinx r y r z r= θ = θ ϕ = θ ϕ ,           (A.12) 
where                          0, 0 , 0 2r ≥ ≤ θ ≤ π ≤ ϕ ≤ π . 
Writing in general diva  and rot a  rather than the Cartesian forms 

T∇ a  and∇×a , we have in spherical coordinates , ,r θ ϕ , thus with 
T( , , )ra a aθ ϕ=a , 

 ,cot2
sin
11

sin
1)sin(

sin
1)(1div 2

2

θ
ϕθ

ϕ
θ

θ
++

ϕ∂
∂

θ
+

θ∂
∂

+
∂
∂

=

ϕ∂
∂

θ
+θ

θ∂
∂

θ
+

∂
∂

=

a
rr

aa
r

a
rr

a

a
r

a
r

ar
rr

rr

ra

 
T

r r
1rot (rot , rot , rot ) , rot ( sin )

sin
aa

r
θ

θ ϕ ϕ

⎛ ⎞∂∂
= = θ −⎜ ⎟θ ∂θ ∂ϕ⎝ ⎠

a a a a a , 

1 1 1rot ( ) , rot ( )
sin

r ra ara ra
r r r rθ ϕ ϕ θ

⎛ ⎞∂ ∂∂ ∂⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟θ ∂ϕ ∂ ∂ ∂θ⎝ ⎠⎝ ⎠
a a , 

2d sin d d d .V r r= θ θ ϕ  
Consider any point P with spherical coordinates r (arbitrary), θ , and ϕ , 
let a  be a vector located at P, and let xa , ya , and za  be its Cartesian 

components. We have 

 
cos sin ,
sin cos cos cos sin ,
sin sin cos sin cos .

x r

y r

z r

a a a
a a a a
a a a a

θ

θ ϕ

θ ϕ

⎫= θ− θ
⎪

= θ ϕ+ θ ϕ− ϕ ⎬
⎪= θ ϕ+ θ ϕ+ ϕ ⎭

               (A.13) 

 
Appendix B:  Outlines of proofs of some results in main body 
  
B1. Proof of (2.60) 
 
Sufficiency is easily proved by substituting (2.60) in (2.58) and (2.59), 
taking into account (2.62), and using (A.3) and (A.4). Let us thus concen-
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trate on necessity. The requirement for +S  to be co-parallel with u , −S  
to be anti-parallel with u , and the two superposed fields to be individu-
ally locally planar (condition (2.59)) can equivalently be expressed by 

,Z Z+ + − −= × = − ×H u E H u E . 
Due to (2.58)(a) we must thus also have  

( ) ( ),Z Z Z+ + − − +− × = − = = − × = × −H u E H H H u E u E E  
therefore 2 Z+× = + ×u E H u E , and hence, after cross-multiplying from 
the left by u , 

2 ( ) ( )Z+× × = × + × ×u u E u H u u E . 
Making use of (A.2), this yields the expression for +E  in (2.60)(a) and 
then also (2.60)(c) to (d). 
 
B2. Proof of (3.15) 
 
Since 

2
0

0 0
0

( 1)
1x x x x x
β′ ′ ′ ′ ′α β = β + α − β = β − β
+α

 

and due to (2.3), we can consecutively write for the vector shown be-
tween parentheses in the left-hand side of (3.11),  

0
T

0 0 0
0

T
0 0

0

1
1( 1) 0 ( )

1
0

1( ) .
1

x

y x

z

′α β⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′β = + α − β = −⎜ ⎟ ⎜ ⎟ + α⎜ ⎟ ⎜ ⎟′β⎝ ⎠ ⎝ ⎠

′= −
+α

β β β β β

1 β β β

 

Hence, (3.11) can be written in the general form (3.15)(a), where the 
right-hand side follows easily from that of (3.11) together with (2.3). Fur-
thermore, applying (A.7), we have 

T 1 T
0 0 0 02

00
0

0

T
0 0

0 0

1 1( )
1 (1 )(1 )

1
1                             ,

(1 )

−− = +
β+α

+α −
+α

= +
+α α

1 β β 1 β β

1 β β

. 
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which immediately leads to (3.15)(b). Finally, (3.15) remains unchanged 
if β , 0β , ′β and γ  are replaced by Uβ , 0Uβ , ′Uβ and Uγ , where U  is 
an arbitrary orthogonal matrix.     
 
B3. Proof of (3.38) 
 
    Let 0RF  the rest reference frame associated with the point P  under 
consideration in RF . If we assume 0 0| / |q c<i  and apply to 0RF  the 
result of Subsection 3.4 (cf. (3.31)), we are led to a reference frame 0RF′  in 
which the rest current and the field velocity are both equal to zero. Due 
to the group property, the Lorentz transformation from RF  to RF′  can 
equivalently be replaced by the following three consecutive transforma-
tions: first from RF  to 0RF , then from 0RF  to 0RF′ , and finally from 

0RF′  to RF′ . Hence, as shown in Subsection 3.5 (cf. (3.36)(a)), the rest 
current 0′i  is of the form of (3.38)(a).  
 
    The scalars 0i′  and 0q′  in (3.38) are still unknown and will be deter-
mined next. Due to (2.22), (3.21), (3.37), and (3.38)(a) we can first write  
                                            T

0 0 0′ ′= =Tβ i β i ; 
then, applying (2.57) to RF and RF', 

 0 0

0 0

, ,      (a)
, ; (a)

q q i q
q q i q

= α = + ⎫
⎬′ ′ ′ ′ ′ ′ ′ ′= α = + ⎭

i γ v
i γ v

                         (B.1) 

pre-multiplying (B.1)(a) by γ  and ′γ , respectively, and taking into ac-
count (3.19), 

 
T T

0 0
T T T

0 0

,                  (a)
; (b)

i
i

⎫= = ⎪
⎬

′ ′ ′ ′ ′ ′= = = ⎪⎭

γ i γ i
γ i γ i i Mγ

                       (B.2) 

and finally, pre-multiplying i  in (B.1)(a) by Tβ , 
         T 2 2(1 )cq cq= β = −αβ i .                                 (B.3) 
In view of (2.7)(a) to (c) and (3.20) we therefore obtain from (B.2)(b), 

( )T T
0 0 0

0

( ) (1 )( )x x x x x x xi i cq i i
′α ⎡ ⎤′ = −β − +β γ + −β β − γ⎣ ⎦αα

β i γ i  

whence (3.38)(b) follows by making use of (B.2)(a) and (B.3). 
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    By means of (2.7)(d) and the expression for xi  that can be extracted 
from (B.1)(a) we find 

0 0 0 0(1 )x xcq cq i′α = −β β −β . 
From there, (3.38)(c) follows easily by means of (B.1)(b) and (3.8). 
 
B4. An equivalence proof for Subsection 4.1 
 
Substitute first (4.2) in (4.4) and then (4.3) to (4.5) in (4.1)(a).  Recalling 
the definition (2.9), the result can be written in the form 

( )

( )

T2 T T T
2

T2 T T

1 1D ( )
2

1   ( ) ( ) .
2

t E
c

H

⎡ ⎤× + ε ∇ − ∇ + ∇⎢ ⎥⎣ ⎦
⎡ ⎤+μ ∇ − ∇ − × ∇× =⎢ ⎥⎣ ⎦

E H EE E E

HH H H 0
 

Due to (A.9) this yields 
T( D )tε × μ +∇× −μ ∇ =E H E H H 0 .                          (B.4) 

Similarly, using (4.2)(b) as well as (A.8) and referring again to (2.9),  we 
deduce from (4.1)(b), 

T ( D ) 0tμ +∇× =H H E .                                    (B.5) 
We then form the cross product of H  and (B.4) and make use of (A.2) 
and (B. 5). This yields, 

T( D )tμ +∇× =H E E H 0 . 

Thus, if 0T ≠HE , (2.1)(b) holds and then, in view of (B.4), also (2.2)(b). 
Furthermore, even if 0T =HE  at the point P under consideration the 
result still holds by continuity if in every neighbourhood of P there exist 
points where 0T ≠HE . The issue is trivial for (2.1)(a) and (2.2)(a). 
 
B5. Proof of (4.16) 
 
    For outlining the proof of (4.16) we first pre-multiply by Tv  the indi-
vidual terms in the left-hand side of (4.14)(a). The result for the last one 
can be evaluated by means of (4.15). For the other three terms we can 
write, in short, 

 

2
T T 20 0 0

2 2 2

2 20 0
2 2

2 2( ) ( )

( ) ( ),

w w w
t t t t

w w
t t

⎫∂ ∂ ∂ ∂β
= = β − ⎪⎪∂ ∂ α ∂ α α ∂ ⎬

∂ ∂ ⎪= β +β
⎪∂ α ∂ α ⎭

jv β β
               (B.6)             
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T T T T T T0
2

2
T T 20

02 2

T T T 20 0
02 2

T T 2 T0 0
02 2

2[ ( )] ( ( ))

    = ( 2 ) ( )

2    = ( ) 2 ( ) ( )

2  ( ) ( ) ( ),

w

ww

w ww

w ww

⎫∇ = ∇ ⎪α ⎪
β ⎪∇ − ∇ β ⎪α α ⎬

⎪∇ − ∇ + ∇ α
⎪α α
⎪
⎪= ∇ −∇ −α ∇

α α ⎭

v vj vβ β

v v

v v v

v v v

                  (B.7) 

vTvTvTTv TT
00

T
0

TT
0

TT )()()()( ∇−∇=∇=∇ .                 (B.8) 
The proof of (4.16) is then completed by indeed pre-multiplying (4.14)(a) 
by Tv , subtracting the result from (4.14)(b),  making use of (B.6) to (B.8) 
and (4.15), combining suitable terms, and dividing by 2α . 
 
Appendix C:  Alternative relativistic dynamics 
 
C1. Summary of results on alternative relativistic dynamics 
 
The basic results of the alternative relativistic dynamics have been ob-
tained by several distinct approaches [13-15]. They are based on the 
same four essentials as the classical theory, i.e., 
 
1. Einstein's criticism of Newtonian time and space, 
2. Einstein's postulates, 
3. the Lorentz transformation, 
4. the Einsteinian kinematics. 
 
    In order to present some of the key results let F  be the force acting on 
a point mass of rest mass 0M  and travelling with velocity v . According 
to the alternative approach to relativistic dynamics [13-15] the classical 
expression 

D( )c cM=F v ,       0
c

MM =
α

                             (C.1) 

should be replaced by 

)D)(D(
2
1)(D vvvF MMMM +== ,    2

0

α
=

MM           (C.2) 

where in both cases, 
dD
dt

= ,     21 β−=α ,      
c
v

=β ,      vvT2 =v ,             (C.3) 
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both expressions for F  in (C.2) being strictly equivalent. From (C.2) one 
finds for the kinetic energy 

2
02

2

2
1 MvWWk =

α
β

= ,        2
00 2

1 cMW = ,                  (C.4) 

while 0W  rather than the classical 2
0 0cW M c=  is the preferred choice 

for the rest energy and thus 
2

2
0

0 2
1 McWWWW k =

α
=+=                             (C.5) 

that for the total energy.  
 
    The expression for F  given by (C.2) is identical to that of the so-called 
world force or Minkowski force. The 4-tuple formed by F  and c/TFv  is a 
true four-vector. Due to this, F  also appears in modern presentations of 
relativity theory but only as a simplifying mathematical tool, thus with-
out being given any specific physical meaning. Hence, while momentum 
and reduced energy (i.e., energy divided by c ) form a four-vector in 
classical relativity, the same is true for force and reduced power in the 
alternative theory. 
 
    Adopting (C.2) requires Newton's third law, which is taken over un-
questioned in classical relativity, thus in the form 21 cc FF −= , to be re-
placed by 

2 2 T
1 1 2 2 , 1 , , , 1, 2i

i i i i i i
v v i
c

α = −α α = −β β = = =F F v v .   (C.6) 

These equations refer to two interacting objects numbered 1 and 2, iv  
being the velocity of object i  and iF  the force exerted on object i  by the 
other one. Let then the momentum J  be defined by 

0M
=

α
J v ,                                         (C.7) 

i.e., in exactly the same way for the alternative as for the classical theory. 
The definitions (C.2) and (C.2) can then be written 

 
1 1D , Dc c= = =
α α

F J F J F .                           (C.8) 

As a consequence of this and (C.6), conservation of momentum holds in 
exactly the same way as in the classical theory. This implies in particular 
that in the equations expressing conservation of momentum the expres-
sions for the forces acting upon a point mass are the same as those in the 
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absence of movement, thus those that would hold if the velocity of the 
point mass were zero. 
 
    In the case of a field, the analysis presented for instance in [15] is in-
complete and thus does not properly cover the subject. In particular, 
only the action of external forces had been taken into considerations, 
thus neither the specifics concerning internal surface and volume forces 
in an autonomous field nor the possibility of energy transmission by 
other mechanisms (cf. the term T

0 0αi E  in (4.15)). It appears best, there-
fore, to take a more pragmatic attitude and to concentrate on ad hoc in-
terpretations of strictly valid results, making sure of course that such 
interpretations do not violate formerly established principles. We pro-
ceed accordingly in Section 4.  
 
C2. Comparison with classical derivations 
 
An interesting issue is to compare key results of the alternative theory 
with original derivations published by Einstein. In order to obtain an 
expression for the kinetic energy kW  he had considered a particle of rest 
mass 0MΔ  and charge QΔ that is  exposed to an electrostatic field of 
constant strength E  acting solely in the x-direction, is travelling with 
velocity v , and is at rest at 0=x . Using rules that follow strictly from 
the Lorentz transformation, one has,  

                                        
2

0
3 2

d
d

M xE Q
t

Δ
Δ =

α
,                                    (C.9) 

as derived in [1,4]. Let F  be the actual force acting on the particle and 
cF E Q= Δ  its classical expression. Einstein takes it for granted that 

cFF =  and thus obtains for the kinetic energy the classical expression  

2
0 030 0 0

1d d d ( 1)
x x x

kc
vW F x E Q x M v c M= = Δ = Δ = Δ −
α α∫ ∫ ∫ . 

This is fully compatible with the result of Subsection 4.3. As we have 
seen there, the movement of a particle as an entity of its own is a phe-
nomenon at the tertiary level of observation and thus follows the laws of 
classical relativistic dynamics. 
 
    This would be different if we could single out from inside of an EM 
fluid an elementary charge, say Q q VΔ = Δ , and subject it to an external 
field E  as just considered. This would be a phenomenon at the primary 
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level and would therefore be governed by the laws of the alternative 
relativistic dynamics, thus with α= /cFF . Consequently, we would 
obtain 

2
0

0 4 20 0 0 0
d d d d

2
x x x vc

k
F v ME Q vW F x x x M v ΔΔ

= = = = Δ =
α α α α∫ ∫ ∫ ∫ , 

which corresponds precisely to the result given by (C.4).  
 
    The situation is more subtle concerning the relation between mass and 
energy. Einstein himself [1, 2, 4] uses a thought experiment (Gedanken-
experiment) that, in a sense, may be said to be over-idealized. It becomes 
more realistic if one replaces the uniform planar field considered by Ein-
stein by the compact planar field described in Subsection 5.3. If one then 
still assumes, like tacitly done by Einstein, that the loss of mass suffered 
by the emitting object is exclusively due to the energy gained by the 
emitted radiation, one arrives again at his famous conclusion, in agree-
ment with what we have seen for the energy properties at the secondary 
and tertiary levels. In particular, since the object emitting the radiation 
in Einstein's Gedankenexperiment is composed of particles, its mass 
decrease must follow the rules of classical relativistic dynamics.  
 
C3. Flow equations of a basal EM field: mechanistic derivation 
       of (4.22) 
 
We restrict ourselves to basal EM fields. It is instructive to examine how 
a flow equation such as (4.22) can be derived by essentially mechanistic 
arguments, i.e., under the assumption that the alternative relativistic 
dynamics is the one that has to be used at the basic level. We postulate 
conservation of momentum, i.e., the existence of an equation such as 
(4.6)(a) in which the momentum density j  appears in the first two addi-
tive terms and is itself proportional to the velocity v , which in turn is 
pre-multiplying Tj in the second additive term. In other words, we start 
by assuming that v  and a   scalar im , called in this text inertial mass 

density, exist such that im=j v  (cf. (4.31)(a)) holds. Let 0 im m
=

=
v 0

 be 
the associated rest mass density, and let us determine an appropriate 
relationship between these quantities.               
 
    For doing this, we consider an elementary volume VΔ  that contains 
in its interior the specific point P  under consideration in RF . Let 0VΔ  
be the corresponding elementary volume in the rest reference frame 
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0RF , and ΔJ  the elementary momentum in VΔ , with 0V VΔ = αΔ , α  
being related to v  as always in this text (cf. (2.11)(b) and (2.17)).  The 
elementary rest mass in 0VΔ  is given by 000 VmM Δ=Δ  where, accord-

ing to the alternative relativistic dynamics, 2
00 /2 cwm = , 0w  being the 

rest energy density. Since P  is moving with velocity v  with respect to 
0P , which is the point in 0RF  that corresponds to P , we can write 

0( / )MΔ = Δ αJ v  and thus for the momentum density, 

0 0 0 0
2 2

2M m V w
V V V c

Δ ΔΔ
= = = =
Δ αΔ αΔ α

Jj v v v , 

which is precisely as required by (4.7). This way the first two additive 
terms in (4.22) can be expressed by means of v  and 0w . The specific 
expression (2.24) for 0w  cannot, of course, be obtained by mechanistic 
arguments, and the same kind of observation holds for the forces.  
 
    The next two terms in (4.22) are indeed due to the surface and volume 
forces acting in the field. The volume force density 0f  has been found to 
be given by (4.20)(b). As mentioned there, this is the value to which cf  

reduces for =v 0 . The fourth term in (4.22) is thus explained if we 
assume that in an equation expressing conservation of momentum, with 
momentum density j  appearing as in (4.22), the force densities are those 
that would exist at P  if the field were there at rest, i.e., if at P  we had 

=v 0  (as is compatible with properties of the alternative relativistic 
dynamics mentioned in C1). For properly understanding this assump-
tion note that it amounts to stating that the volume force density in the 
conservation equation is equal to the value of cf  at 0P , but this is not the 
same thing as saying that cf  is obtained by determining it at 0P  and 
then transforming the result from 0RF  to RF .  
 
    Although less immediately visible, the third term in (4.22), which 
takes into account the surface forces, can be interpreted by essentially 
the same type of arguments. Accordingly, there must exist, for =v 0 , 
a tensor 0T  that occurs in (4.22) in the way shown there. For justifying 
the expression given by (4.9), let us offer the following argument: We 
observe first that the criticism of the classical tensor cT  mentioned in 
Subsection 4.1 (cf. the paragraph comprising (4.6)) does not apply to 
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electrostatic and magnetostatic fields, where the classical derivations are 
indeed unobjectionable. In both these cases we have =v 0 , i.e., 

0w w= . Furthermore, if the field is electrostatic we have 0=E E  and 

0= =H H 0 , and if it is magnetostatic, 0 0= =E E , 0=H H , in both 
cases thus altogether 0c =T T , with cT  given by (4.5) and 0T  by (4.9). 
Hence, if we apply the classical derivation we find indeed for the surface 
forces the tensor 0T  defined in (4.9) and thus for their contribution to 
(4.22) the third term in that equation. It therefore appears at least plausi-
ble to assume that the result obtained for an electrostatic or a magne-
tostatic field holds, more generally, at all P  where =v 0 . 
 
Appendix D: Symmetry requirements for a rotating field 
 
D1. Requirements in spherical coordinates 
 
We list hereafter some properties that an acceptable solution of (5.6) to 
(5.10) must, or at least, might exhibit: 
1. For reasons of symmetry, rE  and Eθ  must vanish for 0r = . 
2. For large values of r , the electric field must approach that of a 
    point charge. Hence, rE  must then decrease like 21 r and must 
    become independent of θ . 
3. For large values of r , Eθ  must decrease at the rate of 41 r . This 
    can indeed be shown to be the case for the component Eθ  of the  
    electric field produced by two equal point charges located sym- 
    metrically on the 0θ =  axis.  
4. For small  values of r  the magnetic field must essentially be-  
    have like that of a circular current loop near 0r = , for which  
    corresponding results can, for instance, be found in [9, Section 
    5.5]. In particular, neither rH  nor Hθ  may vanish for 0r = , and 
    we must have 

0 /20 0
lim limrr r

H Hθθ= θ=π→ →
= − . 

5. For the same reason as for small values of r , rH  and Hθ  must, for 

    large values of r , decrease like 31 r . More precisely, for large values 

    of r , rH  must behave like 3cos rθ and Hθ  like 3sin /rθ . 
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6. For reasons of symmetry, Eθ  must vanish everywhere for 0θ = ,  
    /2θ = π , and  θ = π . This is achieved if Eθ  contains the factor 
    sin cosθ θ . 
7. Again for reasons of symmetry, we must have 0rH =   for all r if 
    /2θ = π  but not if 0θ =  or θ = π , while 0Hθ =  for all r  if 0θ =   
     and θ = π  but not if  /2θ = π . These properties are all achieved 
     if rH  contains the factor cosθ  and Hθ  the factor sinθ .  
8. For reasons of continuity and physical appropriateness, the field  
    velocity v  must vanish for all θ  if 0r =  or r = ∞ , and further- 
    more for all points on the axis of rotation, i.e., for all r  if 0θ = . 
    It must not vanish, however,  for /2θ = π  and all r  except if 
    0r =  or r = ∞ . The requirements for θ  are achieved if v  con- 
    tains the factor sinθ . That factor appears automatically if we ex- 
    press v  in terms of the angular velocity ω  according to  
    sinv r= ω θ . 
9. In addition to containing the factors in θ  we have been consid- 
    ering,  rE , Eθ , rH , Hθ , q , and v  may still be dependent on θ . 
    Again for reasons of symmetry, this must be such that no 
    changes occur if θ  is replaced by either π−θ  or−θ . This is 
    achieved if the remaining dependence on θ  is in terms of  
                                                           2sins = θ ,                                   (D.1)                          
    in which case we may write 

                                        2 sin cos
s

∂ ∂
= θ θ

∂θ ∂
.                           (D.2)                          

 
    In view of some of the properties we have addressed it might appear 
tempting to try solving (5.6) to (5.10) by requiring  

000 == θθ HE . This would satisfy (5.10) and, in view of (5.9a) and 
(5.9b), would be equivalent to  

                     0 0, , ,r r
r r r r

E HE H E vH H vEθ θ= = = −μ = ε
α α

.                        

A solution on that basis, however, would not be acceptable because the 
last one of these equations would not be compatible with the require-
ments 0lim 0r H→ θ ≠  and 0 0lim lim 0r r rE v→ →= = . Hence, a more gen-
eral approach is needed.     
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    In view of the various requirements mentioned above, it is appropri-
ate to define , , , ,  and r rg g h h b sθ θ  by means of  

, sin cos , sin ,

cos , sin .
r r

r r

E g E g b

H h H h
θ θ

θ θ

⎫ε = ε = θ θ β = θ ⎪
⎬

μ = θ μ = θ ⎪⎭
            (D.3)      

together with (D.1) and (D.2). This way, (5.6) to (5.8) can be written  

2 0rg gr g
r s
θ

θ

∂ ∂
+ − =

∂ ∂
,                                     (D.4) 

2 2 2 0r
r

h hr h s h
r s

θ
θ

∂ ∂
+ + + =

∂ ∂
,                               (D.5) 

      
( 2 2 (1 ) (2 3 ) )

                 2(1 ) ,

r
r

r
r

g gb r g s s s g
r s

h hr h s h
r s

θ
θ

θ
θ

∂ ∂
+ + − + −

∂ ∂
∂ ∂

= + − − +
∂ ∂

                 (D.6) 

while we deduce from (5.12) and (5.13), 

                       2
2 (1 )

1 r r
bw g h s g h
sb θ θ= − −

+
,                             (D.7)   

2 2 2 2(1 ) (1 )r rw g s s g s h shθ θ= + − + − + .                       (D.8) 
The quantities , , , ,r rg g h hθ θ and b , clearly, are functions of r  and s .  
 
D2. Some symmetry properties in Cartesian coordinates 
 
For applications in Section 7 the details presented above are irrelevant. 
Only some more general properties that strictly follow from the circular 
and equatorial assumptions are needed, and it is convenient to have 
them available in Cartesian coordinates. For achieving this, let xε , yε , 

and zε  be auxiliary parameters defined by 

,1, 1, 1,x y zε = ± ε = ± ε ±                                 (D.9) 

where the three double-signs can be chosen independently of one an-
other. This way a single position ( , , )x y z  gives rise to an octuplet 
( , , )x y zx y zε ε ε  of symmetrically placed positions, one in each octant of 

the three-dimensional space. For all ( , , )x y z  and all permitted choices of 

xε , yε , and zε  the wanted symmetries can then be expressed as follows: 

( , , ) ( , , ),x y zq x y z q x y zε ε ε =                                (D.10) 
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( , , ) 0, ( , , ) ( , , ),
( , , ) ( , , ),

x y x y z z y

z x y z y z

v x y z v x y z v x y z
v x y z v x y z

= ε ε ε = ε ⎫⎪
⎬ε ε ε = ε ⎪⎭

          (D.11) 

( , , ) 0, ( , , ) ( , , ), (a), (b)
( , , ) ( , , ),                                    (c)

x y x y z z y

z x y z y z

i x y z i x y z i x y z
i x y z i x y z

= ε ε ε = ε ⎫⎪
⎬ε ε ε = ε ⎪⎭

       (D.12) 

( , , ) ( , , ), (a)
( , , ) ( , , ), (b)
( , , ) ( , , ), (c)

x x y z x x

y x y z y y

z x y z z z

E x y z E x y z
E x y z E x y z
E x y z E x y z

⎫ε ε ε = ε
⎪

ε ε ε = ε ⎬
⎪ε ε ε = ε ⎭

                      (D.13) 

( , , ) ( , , ),           (a)
( , , ) ( , , ), (b)
( , , ) ( , , ),  (c)

x x y z x

y x y z x y y

z x y z x z z

H x y z H x y z
H x y z H x y z
H x y z H x y z

⎫ε ε ε =
⎪

ε ε ε = ε ε ⎬
⎪ε ε ε = ε ε ⎭

                   (D.14) 

 
    Full circular symmetry implies the additional identities 

( , , ) ( , , ),q x z y q x y z=  

}( , , ) ( , , ), ( , , ) ( , , ), (a),(b)y z z yv x z y v x y z i x z y i x y z= − = −      (D.15) 

}( , , ) ( , , ), ( , , ) ( , , ), (a),(b)x x x xE x z y E x y z H x z y H x y z= =      (D.16)    

}( , , ) ( , , ), ( , , ) ( , , ). (a),(b)y z y zE x z y E x y z H x z y H x y z= =      (D.17) 

This way the number of positions of interest is even further increased to 
a total of 16, a pair of complementary positions appearing now in every 
octant. Further useful expressions can be obtained by combining (A.13) 
with (D.3). 
 
Appendix E: Analytic signals and related results 
 
E1. Analytic signal  
 
Let )(tf  be a real or complex-valued function of t  and )( ωjF  its (com-
plex-valued) Fourier transform, j  being the imaginary unit. Using a nota-
tion that is convenient in communications (where the related concepts of 
complex frequency and Laplace transform play an important role) [28, 
29], we have,  
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{ }

{ }1

( ) ( ) ( ) d ,              (a)

1( ) ( ) ( ) d . (b)
2

j t

j t

F j f t f t e t

f t F j F j e

∞ − ω

−∞

∞ ω−

−∞

⎫ω = = ⎪
⎬
⎪= ω = ω ω

π ⎭

∫

∫

F

F
               (E.1)     

More specifically, if )(tf  is a real function of t  we have )()( ω=ω− ∗ jFjF  
where the asterisk denotes complex conjugation. It is helpful to associate 
with a real )(tf  a so-called analytic signal )(tf+ , which is a complex-
valued function of the real variable t  [28, 29, 31 - 34, 43 - 45]. It can easi-
est be defined by requiring for its Fourier transform  

 
2 ( ) for 0

( ) { ( )} (0) for 0
0  for 0,

F j
F j f t F+ +

ω ω >⎧
⎪ω = = ω =⎨
⎪ ω <⎩

F� �                   (E.2) 

and (E.1) then yields,  

             
0

( ) Re ( ),                                                       (a)
1 1( ) ( ) d ( ) d , (b)

2
j t j t

f t f t

f t F j e F j e

+

∞ ∞ω ω
+ +−∞

= ⎫
⎪
⎬

= ω ω = ω ω ⎪π π ⎭∫ ∫
          (E.3) 

where Re is the operator that selects the real part of the subsequent ex-
pression. Obviously, even if )( ωjF  is continuous everywhere, as we 
always assume, ( )F j+ ω  is discontinuous at 0ω =  unless (0) 0F = . In 
practical applications that latter condition is usually strictly satisfied, in 
idealized theoretical context (for instance Gauss function in the next 
subsection) at least with a very high degree of accuracy. 
    We are interested in particular in real functions )(tf  of band-pass 
type. Assume thus that for some 00 >ω  and some ωΔ  with 

020 ω<ωΔ<  we have  
 1 1

0 02 2( ) 0 for | | and for| |F jω = ω > ω + Δω ω < ω − Δω .      (E.4) 

The complex amplitude of )(tf  with respect to 0ω , )(ˆ tf , or equivalently, 

its Fourier transform ˆˆ { }F f= F� , are then defined by 

 }0
0

ˆ ˆ( ) ( ), ( ) ( ). (a),(b)j tf t e f t F j F j jω
+ += ω = ω + ω .            (E.5) 

In view of (E.2) and (E.4), (E.5) implies 0)(ˆ =ωjF  for ωΔ>ω 2
1|| . Hence, 

if 0ω<<ωΔ ,  )(ˆ tf  is slowly varying compared to tje 0ω . 
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    In applications such as in Subsection 5.3 there is more than one vari-
able involved. In order to avoid confusion it may then be appropriate to 
add a subscript in order to specify which one of the independent vari-
ables is intended, thus to write tF  and 1

t
−F  instead of simply F  and  

1−F  as in (E.1) etc. 
 
E2. Uncertainty relation 
 
    While for signals in communications theory the precise formulation of 
the equivalent of Heisenberg's uncertainty relation is often discussed only 
for signals of low-pass type centred at 00 =t  [29, 34, 35], meaningful 
results for signals )(tf  of band-pass type are easiest obtained by replac-
ing )( ωjF  by )( ω+ jF  and thus, in order to assure a proper transforma-
tion pair, )(tf  by )(tf+  [31, 43, 44]. The question sometimes raised 
whether such a replacement doesn't falsify the outcome [43, 45], how-
ever, is irrelevant in our case. Firstly, indeed, since no strict physical 
argument exists for imposing a specific precise definition of duration 
and bandwidth, the crucial point is to select definitions that are, on the 
one hand, physically meaningful and easy to interpret and, on the other, 
sufficiently easy to handle mathematically. Secondly, as will be briefly 
discussed below, the replacement of f  by f+  does not affect the out-
come for band-pass signals f  such as those that are of interest in our 
context. Although the present derivation of the wanted inequality (E.15) 
is based on arguments essentially similar to those used by Gabor [31] in 
his extension of the Pauli-Weyl [42] approach, all salient steps are briefly 
included for sake of completeness.  
    Convenient measures for the duration tΔ  and the bandwidth ωΔ  are 
now given by 

 

2 22
0-

2

222
0-

2

-

( ) | ( )| d
,       (a)

2 | ( )| d

( ) | ( )| d
, (b)

2 | ( )| d

t t f t tt

f t t

F j

F j

∞

+∞
∞

+−∞

∞

+∞
∞

+∞

⎫−Δ⎛ ⎞ ⎪=⎜ ⎟ ⎪⎝ ⎠ ⎪⎪
⎬
⎪ω−ω ω ωΔω⎛ ⎞ ⎪=⎜ ⎟ ⎪⎝ ⎠ ω ω ⎪⎭

∫
∫

∫
∫

                  (E.6)     
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where the constants 0t  and 0ω  should assume the role of time centre 
and frequency centre and where we want 2/tΔ  and 2/ωΔ  to be in a 
sense the "radii of gyration" of the "mass distributions" 2| ( )|f t+  and 

2| ( )|F j+ ω , respectively. For achieving this, 0t  and 0ω  must be such that 
(E.6) defines the smallest possible values of both tΔ  and ωΔ . This is 
precisely the case if                              

 
2 2

0 0 22

| ( )| d | ( )| d
, , (a),(b)

| ( )| d | ( )| d

t f t t F j
t

f t t F j

∞ ∞

+ +−∞ −∞
∞ ∞

+ +−∞ −∞

⎫ω ω ω ⎪= ω = ⎬
ω ω ⎪

⎭

∫ ∫
∫ ∫

        (E.7) 

i.e., if 0t  and 0ω  are the respective "centres of gravity", or centroids, with 
/2tΔ  and  /2Δω  then becoming the root mean square (RMS) devia-

tions from the mean values of t  and ω , respectively. 
 
    The function 0( ) ( )f t f t t= +%   coincides with ( )f t  except for a shift 
that brings the time centroid to the position 0t = . Its Fourier transform 
is given by 

0
0( ) { ( )} ( )j tF j f t t e F jωω = + = ωF% , 

and that of the analytic signal associated with ( )f t%  thus by 
0( ) ( )j tF j e F jω

+ +ω = ω%  (cf. (E.2)). We therefore have, 
01

0( ) { ( )} ( )j tf t e F j f t tω−
+ + += ω = +F% . 

For ease of notation let us denote the associated complex amplitude, 

defined with respect to 0ω , simply by ψ  instead of f̂% , as a strict adher-
ence to the adopted notation would require (cf. (E.5)). Hence, we can 
write,  

 
0

0 0

0
( )

0

( ) ( ),                                (a)
(j )= { ( )} ( ). (b)

j t

j t

t e f t t
t e F j j

− ω
+

ω+ω
+

⎫ψ = + ⎪
⎬

Ψ ω ψ = ω+ ω ⎪⎭F
               (E.8)              

We then derive from (E.6),                                

 
2 2 2 22

0- -

2 2
0

| ( )| d | ( )| d

2 | ( )| d | ( )| d

t f t t t t t tt

f t t t t t

∞ ∞

+∞ ∞
∞ ∞

+−∞ −∞

+ ψΔ⎛ ⎞ = =⎜ ⎟
⎝ ⎠ + ψ

∫ ∫
∫ ∫

,              (E.9) 
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2 | ( )| d

| ( )| d | ( )| d
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| ( )| d | ( )| d
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F j j

j j t t

j t t

∞

+∞
∞

+−∞

∞ ∞

∞ −∞
∞ ∞

−∞ −∞
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⎝ ⎠ ω + ω ω

ωΨ ω ω ψ
= =

Ψ ω ω ψ

∫
∫

∫ ∫
∫ ∫

&
             (E.10)             

where the last step in (E.10) can be justified by observing that ( )j jωΨ ω  
is the Fourier transform of d ( )/d ( )t t tψ = ψ&  and by applying Parseval's 
equation. The resulting expression                                        

 

( )
2 2 22 2

-
2

2

| ( )| d | ( )| d

2 2 | ( )| d

t t t t tt

t t

∞ ∞

∞ −∞

∞

−∞

ψ ψΔ Δω⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ψ

∫ ∫

∫

&
                 (E.11)                          

has now the same general structure as the one classically encountered, 
with ψ  replacing the real-valued function f , but the function ψ  is nec-
essarily complex valued. 
 
    We can now make use of the Schwarz inequality in any of the forms 
resulting from                        

 
( )2

2 2

2 2

| | d | | d | |d

      | d | | Re( )d | ,

g t h t gh t

g h t g h t

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞∗ ∗

−∞ −∞

⎫
≥ ⎪

⎬
⎪≥ ≥ ⎭

∫ ∫ ∫

∫ ∫
                 (E.12)                 

where ( )g g t=  and  ( )h h t=  are complex-valued functions of the real 
variable t . In (E.12), assuming ( )g t not to vanish identically, all three 
inequalities become equalities simultaneously if and only if  

( ) ( ) 0 ,h t kg t t+ = ∀  where k  is any real constant, the first two inequali-
ties become equalities simultaneously if and only if ( ) ( ) 0 ,h t kg t t+ = ∀  
where k  is any complex constant, and the first inequality becomes an 
equality if and only if | ( )| | ( )| t, h t kg t= ∀  where k  is again any com-
plex constant. If we choose  

dg( ) ( ) and ( ) ( ) ( )
d

t t t h t t t
t

= ψ = ψ = ψ& ,                (E.13) 

 (E.12) yields,   
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      (E.14)                          

where, integrating by parts as in standard presentations, we have made 
use of  

2

1Re( )d [ ]d
2

1 1         d( ) | | d
2 2

t t t t

t t

∞ ∞∗ ∗ ∗

−∞ −∞

∞ ∞∗

−∞ −∞

ψ ψ = ψ ψ +ψψ

= ψψ = − ψ

∫ ∫

∫ ∫

& & &

 

and of the obvious assumption that )(tf+  and thus ( )tψ  vanish suffi-
ciently fast for  t →±∞ . Using (E.11) and exploiting the inequality be-
tween the first and the last term in (E.14), we can now immediately write 
the inequalities                                         

 
1 2, i.e.,

2 2 2
tt Δ Δω⎛ ⎞⎛ ⎞Δ ⋅Δω ≥ ≥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
,                     (E.15) 

the first one holding for the measures of the spread in time, tΔ , and the 
spread in frequency, Δω , the second one for the corresponding "radii of 
inertia" /2tΔ  and /2Δω  .                                               
    Due to (E.13), the three mentioned requirements for achieving equali-
ties can be written, respectively:  

             2
d( ) ( ), i.e., ln ( ) ,

d 2
kt kt t t k

t
ψ = − ψ ψ = − ∈& R ;            (E.16) 

 2
d( ) ( ) , i.e., ln ( ) ,

d 2
, , ;

kt kt t t
t

k k jk k k

⎫ψ = − ψ ψ = − ⎪
⎬
⎪′ ′′ ′ ′′= + ∈ ⎭

&

R
              (E.17) 

 
2

( )
2

d| ( )| | ( )| | ln ( )| | |
d 2

d ln ( ) , , ( ) ,
d 2

jb t

kt kt t t
t

kt e k b t
t

⎫ψ = ψ ⇒ ψ = − ⎪⎪
⎬
⎪⇒ ψ = − ∈
⎪⎭

&

R
                 (E.18) 

where the last result is obtained by observing that 2d ln ( )/dt tψ  must 
be equal to a real constant times a function of modulus one, which we 
may write as k−  and ( )jb te , respectively, ( )b t  being an arbitrary real 
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function of t . Of the solutions of (E.16) to (E.18) only those are accept-
able that vanish for t →±∞ , i.e., respectively, 

 
2 /2( ) , 0ktt Ce k−ψ = > ,                                 (E.19) 

                           
2( ) /2( ) , 0,k jk tt Ce k k′ ′′− + ′ ′′ψ = > ∈R ,                    (E.20) 

 

( ) ( )

0

0

( ) , ( ) cos ( )d ,

( ) sin ( )d , 0,   

tA t jB t

t

t Ce A t k t b t t

B t k t b t t k

− − ⎫ψ = = ⎪
⎬
⎪= >
⎭

∫

∫
             (E.21) 

where in all three cases | | jC C e γ=  is an arbitrary complex constant and 

where b  in (E.21) must be such that ( )A te−  vanishes for t →±∞ . We may 
also assume (0) (0) 0A B= =  since any (0) 0A ≠  and/or ` (0) 0B ≠  could 
be absorbed in C . 
 
    Clearly, the solution given by (E.19) has the remarkable feature to be 
the only one to which corresponds a bound that is independent of any 
signal property. On the other hand, (E.21) is the solution that exhausts 
most completely the freedom offered by (E.12). It makes the first one of 
the three inequalities in (E.14) become an equality without requiring the 
same to hold also for the other two, and it reduces to (E.20) if ( )b t  is an 
appropriate constant, say 0b , and to (E.19) if 0 0b = . This justifies paying 
some attention to the general solution given by (E.21), for which we ob-
tain, using (E.8)(a),  

 
0 0 0 0 0 0

0

( ) ( ) ( ) ( )
0( ) ( )

ˆ        ( )

j t t A t t jB t t j t t

j t

f t t t e Ce

f t e

ω − − − − − + − ω
+

ω

⎫= ψ − = ⎪
⎬

= ⎪⎭
           (E.22)                        

and thus in particular,                       

 
0( )

0 0 0

( ) Re ( )
| | cos( ( ) ( ) ).A t t

f t f t
C e B t t t t

+

− −

= ⎫⎪
⎬

= − + − ω − γ ⎪⎭
               (E.23)                   

For the spectral function corresponding to f+  (cf. (E.22)) we find, using 
the second equality in (E.8),                                                     

0 0( )
0( ) ( ) j tF j j j e ω −ω

+ ω = Ψ ω− ω , 
which can be evaluated if ( )jΨ ω  is known. The integration required for 
this cannot in general be carried out explicitly, but for a Gauss function 
as in (E.19) it is again given, as is well known, by again a Gauss function, 
i.e., by                      
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2 /22( ) kj Ce

k
−ωπ

Ψ ω = .                            (E.24) 

In fact, the same expression remains valid in the more general case of 
(E.20) provided we choose k k jk′ ′′= +  and select that square root of k  

for which Re 0k > , as can for instance be shown by proceeding in the 
following way: Adopt /2 / 2z t k j k= + ω  instead of t  as integration 

variable and the sequence of segments /2 / 2T k j k− + ω  

→ /2T k−   → Re /2T k−  → Re /2T k  → /2T k →  

/2 / 2T k j k+ ω as integration path, take the limit T →∞ , and ob-

serve that 2 2(Re ) (Im ) Re 0k k k k′− = = > .  
 
    Obviously, (E.24) extends over the entire frequency range 
−∞ < ω< ∞ . It cannot therefore be expected that the resulting ( )F j+ ω  
(cf. (E.8)) vanishes completely for 0ω< , but this is irrelevant since for 

0Δω ω� , as is always the case in practice, ( )F j+ ω  will be totally negli-
gible except in a small band centred at 0ω , and the same can be expected 
to hold in the general case of (E.21). 
 
    Let us still point out some results one obtains by substituting (E.19) to 
(E.21) in (E.11). Firstly, we note that we obtain from (E.20), 

22 2 2| ( )| | | k tt C e ′−ψ =  
22 2 2 2 2 2 2 2 2 2| ( )| | | ( ) ( ) | ( )|k tt C k k t e k k t t′−′ ′′ ′ ′′ψ = + = + ψ&  

and therefore after some calculation,                                          

 
2 2 1( )( )

2 2 2 2
t k k

k
′ ′′Δ Δω +

= ≥
′

.                         (E.25) 

In there, the limit 1/2  is reached for 0k′′ = , thus for the solution (E.19), 
as must be the case. Similarly, one finds for the solution (E.21),                                             

2 ( )2

2 ( )

d
( )( )

2 2 d

A t

A t

t e tt k
e t

∞ −

−∞
∞ −

−∞

Δ Δω
=
∫
∫

, 

but the required integrations cannot in general be carried out explicitly. 
However, (E.15) obviously remains valid, although equality can hold 
only in the case of (E.19), as we have seen. Remarkably, the limit 1/2 in 
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(E.15) and (E.25) is independent of any property of ψ . Since this limit is 
actually reached if and only if ψ  is as given by (E.19), none of the more 
general solutions can satisfy a tight bound that is equally independent of 
ψ  but different from 1/2.  
  
    Finally, let us briefly address the issue of f+  versus f  in defining tΔ . 

Since 0
0{ ( )} ( )j tf t t e F jω

+ ++ = ωF� , we have 
0

0{ ( )} d( ( ))/dj ttf t t j e F jω
+ ++ = ω ωF� . Due to (E.2), d( ( ))/dF j+ ω ω  com-

prises the impulse 2 (0) ( )F δ ω , which is disturbing but vanishes if 
(0) 0F = , i.e., if ( )F j+ ω  is continuous also at 0ω = . If that is the case, we 

derive from the first equality (E.9), making use of Parseval's theorem,              

( )

( )

0

0

22

2

2

0

2

0

d| ( ) | d
d

2 | ( )| d

d| ( ) | d
d           .

| ( )| d

j t

j t

e F jt

F j

e F j

F j

∞ ω
+−∞

∞

+−∞

∞ ω

∞

ω ωΔ⎛ ⎞ ω=⎜ ⎟
⎝ ⎠ ω ω

ω ω
ω=

ω ω

∫
∫

∫
∫

 

This is exactly the same result as the one we obtain if we use f  instead 
of f+  in the definition of tΔ  in (E.6), as in fact is known [43, 44]. The 
requirement (0) 0F =  simply states that the signal does not contain any 
zero-frequency component, which indeed is always fulfilled for usual 
signals of band-pass type. It is true that this is not strictly the case for the 
ideal solutions (E.19) to (E.21), but even then it holds with extremely 
good accuracy due to the narrow-band assumption.  
 
E3. Group delay and group velocity 
 
We first consider the transmission of a signal by a linear constant system 
N having one input and one output. The full behaviour of N involves 
not only pure forward transmission but also backward transmission 
coupled with reflections at both input and output. Altogether, a 2 2×  
scattering matrix [46] is thus needed in order to fully characterize N. 
Nevertheless, the overall transmission effect can be described by a single 
transfer function that we may represent in the form 

,      ,    ( ) ( ) ( )e A jB j A jB−Γ Γ = + Γ ω = ω + ω , 
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the loss ( )A ω  and the phase ( )B ω  being real functions of ω . These quan-
tities, which  depend on ω , may not be confused with the t −dependent 
quantities ( )A t  and ( )B t  used in Appendix E2 and defined by (E.21). 
Since in the present context N is necessarily passive (a consequence of 
conservation of energy), and if the transfer function is properly defined, 
we have ( ) 0A ω ≥ ∀ω . We denote by ( )f f t=  the signal available at the 
input and by ( )g g t=  the signal finally received at the output. Let f+ , 

f̂ , F , F+ , and F̂  be defined as so far, and let g+ , ĝ , G , G+ , and Ĝ  be 
the corresponding functions defined for g . We have,                                   

 }ˆ ˆ, , . (a),(b),(c)G e F G e F G e F−Γ −Γ −Γ
+ += = =              (E.26)                         

 
    The transmission is ideal if ( ) ( )gg t f t t= −  where gt  is a constant. If 

there is dissipation (absorption) inside of N and/or if there are reflec-
tions at the input and output accesses, the functions ( )A ω  and ( )B ω  
may cause ( )g t  to differ substantially from ( )f t . On the other hand, if 
there is neither dissipation nor reflection we have ( ) 0A ω = ∀ω ; al-
though there is then no amplitude distortion there may remain a disturb-
ing phase distortion.   
 
    Of special interest is the case that 
 }0 0( ) 0, ( ) , , (a),(b)gA A B B t Iω = ≥ ω = +ω ω∈             (E.27)                          

where 0A , 0B , and gt  are real constants and where the interval I  is the 

relevant range of positive frequencies. In view of that restriction to 
0ω >  we must be careful when applying (E.27) to (E.26). Obviously, 

(E.26)(b) and (c) do not cause any problem. In particular, (E.26)(b) di-
rectly yields 

 
0 0 0 00

0 0

( )

( )

ˆ( ) ( ) ( ),
ˆˆ( ) ( ),

A jB j t jBA
g g

A jB
g

g t e f t t e e f t t

g t e f t t

− − ω − ω−
+ +

− − ω

⎫= − = − ⎪
⎬

= − ⎪⎭
            (E.28)   

 0 00 ( ( )) ˆ( ) Re ( ) Re{ ( )}phj t tA
gg t g t e e f t tω − ω−

+= = − ,               (E.29)                         

where we have made use of (E.5, first equality) and (E.27), and where 
the phase delay pht  is defined by                                                        

( ) ( )/pht Bω = ω ω . 
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The presence of 0B  in (E.28) will usually still cause ( )g t  to be not only 
delayed (and damped if 0 0A > ) but also distorted. In communications, 
this distortion does not affect the information contained in f  provided 
proper modulation methods have been used [28, 29]. For our present 
application (Subsection 6.7), however, the relevant quantity is not the 
information content but ˆ| ( )|f t , thus ˆ| ( )|g t  , in which case 0B  has no 
effect either. Clearly, if (E.27) strictly holds, the constant gt  satisfies 

                                              
d ( )

dg
Bt ω

=
ω

.                                        (E.30) 

Since gt  is also the delay that affects the complex amplitude ˆ( )f t , (E.29) 

explains why d /dB ω  is often referred to as the group delay of the sys-
tem. 
 
    Although the results we have described are rigorously valid only if 
(E.27) strictly holds, it is often sufficient in practice that (E.27) is satisfied 
with a sufficiently good approximation. The constant gt  should then be 

chosen in such a way that the function 0 gB t+ω  is the best possible lin-

ear approximation of ( )B ω  in Iω∈ . One is then tempted to evaluate 
d /dB ω  at the centre, 0ω , of the interval I  and to consider that result as 
the actual delay, but this may lead to substantial errors. Altogether, it 
should be clear that a proper interpretation of the derivative d /dB ω  as 
a delay is dependent on a number of requirements that must be fulfilled 
with sufficient accuracy. We come back to this point after defining the 
velocities corresponding to pht  and gt .  
 
    Assume indeed the system N to be stretched uniformly along the 

-axisx , and 0x =  to correspond to the location of the input. Assume 
furthermore that there are no reflections at the input and the output, i.e., 
that in N pure transmission from the input to the output is taking place, 
thus pure forward transmission. We then have,   
 , , ( ), ( )A ax B kx a a k k= = = ω = ω ,                   (E.31) 
where k  (not to be confused with the parameter k  in Appendix E.2) is 
in fact identical to what is called the wave number. We may then replace 
(E.27) by the requirement 
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 0 0( ) 0, ( ) , , (a),(b)
g

a a k k I
v

⎫ω ⎪ω = ≥ ω = + ω∈ ⎬
⎪⎭

             (E.32) 

where 0a , 0k , and gv  are real constants and where I  is again the rele-

vant range of positive frequencies.  
 
    In order to make clear the dependence of g  on x  we now use the 
notation ( , )g t x  instead of simply ( )g t , and we have ( ) ( ,0)f t g t= .  We 
may then again apply (E.28) and (E.29) where, in view of (E.31) and 
(E.32), we now have 

0 0 0 0, , / , ( ) ( )/g g ph phA a x B k x t x v t t xk= = = = ω = ω ω . 

For the analytic signal and the complex amplitude that are associated 
with ( , )g t x , and for that signal itself, we obtain from (E.28) and (E.29), 

 0 0 0 0( ) [ ( )] ˆˆ( , ) ( ), ( , ) ( ),a jk x a jk x

g g

x xg t x e f t g t x e f t
v v

− + − + ω
+ += − = −     (E.33)                          

 0 00 [ / ( )] ˆ( , ) Re ( ) Re{ ( )}phj t x va x

g

xg t x g t e e f t
v

ω − ω−
+= = − ,           (E.34)                          

where the phase velocity is defined by 

 ( )
( )ph ph

ph

xv v
t k

ω
= ω = =

ω
                           (E.35) 

and where we have made use of the relation between an analytic signal 
and the associated complex amplitude (cf. (E.5)). More specifically, we 
obtain from (E.33), 

 

0

0

| ( , )| | ( )|, (a)

ˆˆ| ( , )| | ( )|.      (b)

a x

g

a x

g

xg t x e f t
v

xg t x e f t
v

−
+ +

−

⎫= − ⎪
⎪
⎬
⎪= −
⎪⎭

                        (E.36) 

 
    According to (E.34), f̂  propagates with velocity gv , and the factor 

0j te ω  with velocity 0( )phv ω . In addition there is also a damping effect if 

0 0a >  and, possibly, a distortion due to the presence of 0k  in (E.32) and 
thus in phv  (cf. (E.35)). As (E.36) shows, however, we have pure propa-

gation with constant velocity gv  if 0 0a =  and if for the issue under ex-
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amination only the modulus of the analytic signal or, equivalently, that 
of the complex amplitude is of relevance. 
 
    If  ( )k ω  is indeed given by (E.32)(b), with 0k  and gv  strictly inde-

pendent of ω  in I , we have, 

 
d 1 d, thus , (a),(b)
d dg

g

k v
v k

⎫ω ⎪= = ⎬ω ⎪⎭
                    (E.37)           

where (E.37)(b) assumes ω  to be expressed in terms of k . In view of the 
result expressed by (E.37) the derivative d ( )/dk kω , which in general is 
a function of k , or equivalently, of ω ,  is usually called the group veloc-
ity. This definition is actually adopted even if k  is any given function of 
ω , thus even if d /dkω  is any function of ω , and gv  therefore itself a 

non-constant function of ω .  
 
    It must be emphasized, however, that this is in general only a rather 
formal definition, not one having a definite, universal physical signifi-
cance. A proper interpretation of d /dkω  as a meaningful velocity is 
indeed again dependent on a number of requirements that must be ful-
filled, as we have seen to be the case for the group delay. Unfortunately, 
it is common practice to ignore these requirements, or at least their full 
implications. This appears to be one of the reasons for the many miscon-
ceptions that exist, in communications as well as in physics, about group 
delay and group velocity. On the other hand, it should be mentioned 
that the requirement 0 0a =  is not a handicap in physical applications 
such as the one addressed in Section 6. As we have pointed out before, 
we have indeed ( ) 0A ω = ∀ω , thus ( ) 0a ω = ∀ω , if there is neither re-
flection nor dissipation involved. 
 
    In presentations of the concepts of group delay and group velocity it 
is traditionally assumed, at least implicitly, that the bandwidth of the 
signal is narrow (which justifies breaking off the Taylor-series expansion 
of ( )B ω after the linear term) and that the quantity of final interest is the 
signal envelope. Both these assumptions are neither sufficient, as follows 
from the above analysis, nor necessary, as is well confirmed in the field 
of electrical communications, thus in a discipline whose core task is the 
faithful transmission of the information contained in EM signals [28, 29]. 
In that discipline, the concepts of group delay and group velocity play 
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indeed a major role, and this nowhere only for narrow-band amplitude-
modulated signals. They are equally important for wide-band signals 
(e.g. in television) and for frequency-modulated signals (where speaking 
about propagation of an envelope is meaningless). In any case, like we 
have seen for gt , instead of defining gv  by (E.37)(b) it is more correct to 

define it in such a way that 1 / gv  is the slope of an optimal linear ap-

proximation of ( )k ω  in, again, the relevant frequency range (cf. 
(E.32)(b)). Claims of having achieved superluminal signal transmission 
involve experiments in which, in the relevant frequency range, the loss 

( )A ω  is large and far from being a constant, and similar observations 
might also hold for claims concerning the (mathematically related) tun-
nelling effect. 
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