

Faculty of Mechanical Engineering Institute of Materials Science, Chair "Materials Science and Nanotechnology"

Bio-Chemical Functionalisation of Silicon Surfaces

L. Römhildt¹, C. Kühn¹, H.-G. Braun², S. Matys¹, J. Opitz^{1,3}, G. Cuniberti¹

enter of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany enter of Biomaterials, 01069 Dresden, Germany

Aim: study surface functionalisation

- → from wafer to nanowire
- immobilisation of biomolecules

ĊH₃

 NH_2

Results - Reactive Groups

Static contact angle, labelling with charged gold nanoparticles (AuNPs)

investigation of the reactive surface groups to show the successful binding of molecules to the surface

static contact angle:

- the binding of -NH₂-terminated molecules increases the CA of ddH₂O on the substrate from <10° to appr. 65°
 -COOH-terminated surface after succinic anhydride binding: reduced CA of appr. 40°

-OH: <10°

bare Si

-NH₂: 64-66°

Results - Monolayer

AFM topography, ellipsometry

Monolayer formation of organosilanes is proven by AFM and ellipsometer analysis

Results - Receptor Binding

Fluorescence microscopy

optical detection of anti-Thrombin aptamer bound to reactive carboxy surface with FAM*modified aptamer

amino-terminated surface

-COOH: 40-41°

succinic anhydride: carboxy-terminated surface

organosilane (APTES) + AuNPs: amino-terminated surface

Acknowledgements

This work was supported by the European Union (European Social Fund) and the Free State of Saxony (Sächsische Aufbaubank) in the young researcher group 'InnovaSens' (SAB-Nr. 080942409).

bare Si

This work was also supported by the WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (Project No. R31-2008-000-10100-0). The experimental help of Taiuk Rim, POSTECH, Pohang, South Korea, is greatfully acknowledged.

- no fluorescence on non-functionalised Si wafer (left)
- successful aptamer binding to functionalised reactive surface (right: high density of fluorescent dots)
- *FAM carboxy-fluorescein dye

References

[1] W.M. Weber *et al.*, Nanotechnology 2008, NANO '08. 8th IEEE Conference on, 580-581 [2] Schultze *et al.*, J.Mol. Biol. 1994, 235, 1532-1547 [3] G.T. Hermanson (ed.), Bioconjugate Techniques, Academic Press, 2008

DPG Dresden - 2011/03/15