

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Thermal conductivity behavior in double-stranded molecular systems

Elena Díaz, Rafael Gutierrez and Gianaurelio Cuniberti

DPG, 14 March 2011

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

OUTLINE

Introduction

Ladder-model Hamiltonian: Langevin Stochastic Baths

Signatures of normal heat transport

A model of thermal rectifier

Conclusions

Introduction: Fourier's Law

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Fourier's law in one-dimensional systems $\mathbf{J}(\mathbf{x},t) = -\kappa \nabla \mathbf{T}(\mathbf{x},\mathbf{t})$ Diffusive energy transport $\mathcal{H} = \sum_{n=1}^{N} \frac{1}{2} m \dot{y}_{n}^{2} + \frac{k}{2} (y_{n} - y_{n-1})^{2} + V(y_{n})$ Harmonic Local - Anharmonic No thermal gradient Linear thermal gradient Size-dependent κ к remains finite **Anomalous heat transport** Normal heat transport

Introduction: Thermal Rectifiers

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Thermal rectification: previous models

$$V_0 \quad V_1 \quad V_0$$

M. Terraneo, M. Peyrard, and G. Casati PRL 88, 094302 (02) Nonlinearity + Symmetry breaking

B. Hu, L. Yang, and Y. Zhang PRL 97, 124302 (06)

Double-stranded molecular systems DNA α- helix in proteins

Hamiltonian of a ladder-model

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Potential Terms

$$W(x_n, x_{n-1}) = \frac{1}{2}(x_n - x_{n-1})^2$$

$$V(x_n) = \frac{-V_0}{4\pi^2} \cos 2\pi x_n$$

Heat Baths – Thermal Properties

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Heat Reservoirs – Langevin Stochastic Baths

$$\frac{d^2 y_n}{dt^2} = -W'(y_n, y_{n-1}) - W'(y_n, y_{n+1}) \\ \langle f_n(t) f_n(t') \rangle = 2T\gamma \delta(t - t') \\ T_{H,C} = T_M \pm 0.05 \qquad \gamma = 0.5$$

 y_1

Thermal properties

$$T_{n} = \langle \dot{x}_{n}^{2} + \dot{y}_{n}^{2} \rangle$$

$$J = \langle J_{1} \rangle = \dots = \langle J_{N} \rangle$$

$$J_{n} = \dot{x}_{n} \left(\frac{\partial W'(x_{n}, x_{n-1})}{\partial x_{n}} + k_{int} \frac{\partial W'(x_{n}, y_{n})}{\partial x_{n}} \right)$$

$$\kappa = JN/(T_{C} - T_{H})$$

$$+ \dot{y}_{n} \left(\frac{\partial W'(y_{n}, y_{n-1})}{\partial y_{n}} + k_{int} \frac{\partial W'(x_{n}, y_{n})}{\partial y_{n}} \right)$$

Interchain Coupling Effects

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Normal heat transport if $k_{int} > k_{int}^*$

Critical Coupling k_{int}^*

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Thermal Rectification

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Thermal Rectification

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

Maximum rectification rates

 $k_{int} < k_{int}^*$

Institute for Materials Science, Chair 'Materials Science and Nanotechnology'

CONCLUSIONS

* A harmonic lattice supports **<u>normal heat transport</u>** when strongly interacts to an anharmonic one.

SCPT + Harmonic ladder-model

$$k_{int}^* = \frac{U(T_M) - 2}{2}$$

* The ladder-system has revealed as a thermal rectifier.

The maximum rectification rates:

- increase with the system size
- shift to higher couplings for larger V_0

(Submitted to cond-mat-0211630)

