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Motivation

Why are nanowires interesting?

e Nanoelectronics
3

e Solar Cells
e Sensing

Why grow them with dielectrophoresis (DEP)?
e CMOS-compatibility
e Cheap and easy setup

By means of theory and experiment we aim to
e grow straight and thin wires

e clucidate the effect of process parameters on
nanowire growth

Experimental method

Lithographically manufactured electrodes with
thin asperities are covered with a K,PtCl, solution
(Fig. 1). In the electric field nanowires grow from
the electrodes (Fig. 2).
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Figure 1: Experimental setup Figure 2: Pt-nanowire  grown
by dielectrophoresis

Modeling of nanowire growth

Our model includes the following particle trans-

port mechanisms [1], where ; is the particle flux
and c iIs the particle concentration:

. Dlelectrophoretlc forces (DEP)
7 bep = —3E¢ grad E?

e Diffusion of Pt-complexes (Diff)
—
J pift = —Dgradc

e lons in an ac-field move on periodic trajectories.
Collisions due to Brownian motion cause them
to change to other trajectories, briefly called tra-
jectory hopping (TH). This leads on average to a
net particle flux.

The nanowire tip Is ap-
proximated by a sphere
and the problem is treated
radially. We mainly focus
on transport of uncharged
particles.

Nanowire
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Dielectrophoretic and diffusive flux contributions:
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Within this model we compute the molecule veloc-
ity, the particle flux towards the nanowire tip, and
the growth velocity of the nanowire.
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Results

Complex dissociation behavior of K,PtCl,

Based on dissociation rates by Elding et al. [2], we
calculated the dissociation of K,PtCl, at 25°C.
After 28-87 hours, a concentration peak of cis-PtCl,

appears in case of a 0.01 mmol K,PtCl, solution.
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Figure 3: Time-dependent dissociation of KoPtCl,

Height and duration of the cis-PtCl, concentration

peak change with the K,PtCl, concentration.
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Figure 4: Time-dependent dissociation of K,PtCl,

Comparison of transport mechanisms

Particle velocities due to different transport mecha-

nisms strongly depend on distance from electrode.
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Figure 5: Particle velocities corresponding to different transport
mechanisms vs. distance from tip surface

Steady-state particle concentration
profile
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Figure 6: Concentration profile vs. distance from tip surface with
applied voltage as parameter. Tip radius: Ry = 50 nm

The unexpected crossing of concentration pro-
files for different voltages at about 3nm distance
from the nanowire tip is obviously due to dielec-
trophoretic forces which cause two effects with in-
creasing voltage

¢ larger concentration gradient at the electrode

e larger particle depletion far from the electrode
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Simulation vs. experiment
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Figure 7: Measured growth velocities compared to calculated
steady-state growth velocities for a 0.1 mM K,P1tCl, so-
lution

The measurements show no significant correla-
tion between nanowire growth velocity and ap-
plied voltage, in agreement with model prediction.
The difference between the calculated growth ve-
locity and the measured values could be due to

e poorly known diffusion coefficient and polariz-
ability of the particles

® neglect of transient concentration evolution
e additional presence of ions and the TH effect

The large scatter of measured growth velocities re-
sults probably from varying dissociation states of
Ky PtCl, caused by differences in

¢ solution age

* K,PtCl, concentration

Conclusions

¢ Tetrachloroplatinate exhibits complex dissocia-
tion behavior where high amounts of uncharged
cis-PtCl, can appear under suited conditions.

e o ensure wire growth to occur solely by di-
electrophoresis, optimum process parameters
should be chosen, e.g. 10 uM K,PtCl, and 28-

87 h solution age.

¢ Particle transport is governed by dielectrophore-
sis near the tip and by diffusion farther away.

e The steady-state concentration profile was cal-
culated.

* The derived nanowire growth velocity in steady-
state I1s iIn modest agreement with experimental
findings.
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