Current Transport in nanoscale molecular junctions

Artur Erbe

FWIN • Artur Erbe • <u>www.fzd.de/fwin</u> • Mitglied der Leibniz-Gemeinschaft

Outline

- Mechanical break junctions in liquid environment
- Resonant tunneling model for *I-V* curves
- Current through molecules with varying anchoring groups
- Transport through single DNA molecules
 - linker groups
 - DNA Quadruplex

Molecular electronics

Typical molecules

- Alkanes
- Conjugated molecules
- "Complicated" molecules

Contacting techniques

Tao et al. Nano Lett (2004)

Imaging molecules by STM

J. Repp et al. Science (2006)

Contacting techniques

Silicon nanopores on Alkanethiols

metallic clusters bound to molecular linking groups

Dadosh et al. Nature (2005)

Contacting techniques

molecules deposited on closely spaced electrodes

Kubatkin et al. Nature (2003)

Mechanically Controllable Break-junction

Realization of Single-Atom: Bending by δx results in a lateral stretching of δu = r δx, where

$$r = \frac{6tu}{L^2}$$

$$r \approx 10^{-4} \dots 10^{-5}$$

⇒ Atomic resolution possible with "simple" mechanics

Characterization of the gold break junction

 Conductance steps due to atomic configuration Tunneling regime is used for calibration of the displacement

$$R \propto \exp\left(\frac{2}{\hbar}\sqrt{2m\Phi} \cdot d\right)$$

Mechanically controllable break junctions

Characterization of molecules in liquid environment

Kontaktierdrähte Pipette Gefederte Kontaktstifte Aufsteckvorrichtung Bolzen Probe PDMS-Dichtung

Characterization of pure solvent

- No clear steps visible
- Rearrangements of the gold contacts possible
- Distance calibration only qualitatively

IV-curves in pure solvent

- linear (direct tunneling or metallic contact)
- hysteretic effects due to solvent (small current)

Contacting "simple" molecules

HS

SH

- Basic molecule: Conjugated => highly conductive
- Change of linker groups
- Traditional: thiol-gold bond
- Nitrogen based chemistry more reliable?

Characterized molecules

• Various anchoring groups on the same short and conjugated center

Characterization of molecular junctions

Steps below 1G₀ (BCT in Toluol)

Th. Kirchner, Diploma Thesis (2008)

Characterization of molecular junctions

- *IVs* vary from
 - purely metallic to
 - resonant tunneling through molecules to
 - tunneling through solvent

Understanding *I-V-*curves

- Toy model: Single level between metallic leads
- coupling to leads: level broadening

$$I(V) = \frac{2e}{h} \int_{-\infty}^{\infty} dE \ T(E, V) \left[f_L - f_R \right] \qquad T(E) = \frac{4\Gamma_L \Gamma_R}{\left(E - \epsilon_0 \right)^2 + \left(\Gamma_L + \Gamma_R \right)}$$

Resonant tunneling

Resonant case: Transport
 through molecular level

Off resonant case:
 Molecules as tunneling junctions

J.C. Cuevas (2007)

$$\Gamma_{L} = \Gamma_{R} = 0.065 \text{eV} \quad \Gamma_{L} = \Gamma_{R} = 0.094 \text{eV} \quad \Gamma_{L} = \Gamma_{R} = 0.85 \text{meV}$$

$$E_{0} = 0.4 \text{eV} \quad E_{0} = 0.29 \text{eV} \quad E_{0} = 0.54 \text{eV}$$
BTT BNT BCT
$$HS \longrightarrow SH \quad N_{2}O \longrightarrow SH \quad N_{2}O \longrightarrow O_{2} N \longrightarrow O_{2} N$$

$$\Gamma_{L} = \Gamma_{R} = 0.065 \text{eV} \quad \Gamma_{L} = \Gamma_{R} = 0.094 \text{eV} \quad \Gamma_{L} = \Gamma_{R} = 0.85 \text{meV}$$

$$E_{0} = 0.4 \text{eV} \quad E_{0} = 0.29 \text{eV} \quad E_{0} = 0.54 \text{eV}$$
BTT BNT BCT
$$HS \longrightarrow SH \quad N_{2}O \longrightarrow SH \quad N_{2}O \longrightarrow O_{2} N \longrightarrow O_{2} N$$

- largest coupling for BNT
- smallest coupling for BCT

largest coupling for BNT

BNT

- largest coupling for BNT
- sm

largest coupling for BNT

- largest coupling for BNT
- smallest coupling for BCT

Conclusions

- Influence of anchoring groups clearly visible
 - thiol most stable
 - nitro most conductive
 - cyano unstable and poorly conducting
- IV-curves fit resonant tunneling through single level
- Comparison with DFT calculations

DNA structure and charge transfer

P. Maragakis et al. Phys. Rev. B **66** 241104 (2002)

- conformational change:
 - normal DNA overstretched DNA
 - relevant for transport properties of DNA
- experimental test:
 - stretching DNA during *I-V-* measurement
 - control of other parameters
- DNA in mechanical breakjunction (MCB)

Binding molecules to gold

- Thiol linkers immobilize molecules on gold
- Standard method for DNA: coupling through thioalkyl linkers

TAT GCA GAA AAT CTT AG-3'-C3H6-SH

H. Cohen et al. PNAS (2005)

Thiolated Nucleotides

- Goals:
 - Improved conductivity by better coupling to πsystem
 - Higher reliability of immobilization

Fluorescence microscopy

- Comparison thiolated (ON2b) vs.non-thiolated (ON1b)
- gold pads fabricated by shadow-mask evaporation
- fluorescence of the molecules observed

ON1b: 5'-FAM-CGT TGG TCC TGA AGG AGG AT ON2b: 5'-FAM-CGT TGG TCC TGA AGG AGG A1

AFM measurements

- Topography (left) and phase contrast
- protected thiol binds
- thiophene binds
- no binding for
 - unprotected thiol (not shown)
 - un-thiolated

ON1a: 5'-CGT TGG TCC TGA AGG AGG AT

ON3: 5'-CGT TGG TCC TGA AGG AGG A2

IVs in liquid environment

- complex sequence
 - 5'thiol-dG GGCGGCGACCTTCCCGCAGCTGGTACGGAC

degradation while continuously sweeping voltage

Kang et al., New J. Phys. (2008)

NDR in liquid environment

- nonlinear behavior at V_{sd} > 0.5V
- step-like behavior at V_{sd} > 1V
- hysteretic negative differential resistance (NDR) at large voltages

Kang et al. APL (2010)

NDR in vacuum

- multiple peaks in forward direction
- no peaks in **backward** direction

Formation of polarons?

Polaron formation can lead to multiple NDR peaks

DNA Quadruplexes

- Poly-GC wires show higher conductance than DNA with AT
- G4 quadruplexes stack G-bases
- thiol groups to bind to electrodes

 $5'-(T^*G_3[TTAGGG]_3T^*)-3'$

Opening and closing curves

 large plateaus if quadruplex with thiol endgroups are present

Control sample

- transport measurement on structure that does not form Quadruplexes:
 5'-d(T*C₃[TTACCC]₃T*)-3'
- no long plateau observed

IV-characteristics

Conclusions

- Electrical coupling to DNA by short linker groups
- Mechanical stability proven by fluorescence microscopy and AFM
- Electrical measurements show resistance of 10 100 $M\Omega$
- *IV*-curve can be modeled by single level model
- DNA quadruplex shows extraordinary stretching behavior

Thanks

- Uta Eberlein, Thomas Kirchner, Christian Kreuter, Stefan Bächle
- Bernd Briechle, Simon Verleger, Shoupeng Liu
- Thomas Huhn, Ulrich Groth, Jannic Wolf
- Fabian Pauly, Linda Zotti, Carlos Cuevas
- Tang Zhuo, Benjamin Bornemann, Andreas Marx
- Elke Scheer