

The growth mechanism of carbon nanotubes within the "cluster volume to surface area" model

J. Kunstmann¹, S. Mandati^{1,2}, F. Börrnert³, R. Schönfelder³, M. H. Rümmeli³, K. K. Karb², G. Cuniberti¹

- ¹ Institute for Materials Science, TU Dresden, 01062 Dresden, Germany
- ² Indian Institute of Technology, Kanpur, 208016, India
- ³ IFW Dresden, P.O. Box 270116, 01171 Dresden, Germany

T = temperature

C = composition of catalysts

Abstract

The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a "Catalyst Volume to Surface Area" (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1,2]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations.

Experiments

synthesis of carbon nanotubes (CNTs) by laser ablation with mixed catalysts

TEM images

(C)

characterization of CNTs by optical absorption spectroscopy (OAS) [1]

Motivation

Want to understand the growth mechanism.

Strategy

- use "cluster volume to surface area" (CVSA) growth model [1,2]
- formulate the model mathematically
- fit measured data to the model and determine the model parameters
- interprete the model parameters in terms of microscopic quantities

Growth Mechanism of Carbon Nanotubes (CVSA)

- after laser evaporation carbon dissolves into the catalyst particle and a liquid metal-carbide is formed
- the bigger the particles the more carbon is inside
- during the condensation carbon precipitates via the surface
- for CNT nucleation, formation of hemispherical cap is necessary
- the catalyst particle size increases with furnace temperature. Why?
 - during cooling the catalyst particles condensate
 - the higher the temperature the longer is the cooling time

Results: Mathematical Formulation of the CVSA model

- n(d): nucleation window = rectangular function
- s(d): catalyst particle diameter distribution
 - = Gaussian distribution
- $g(d) = n(d) \cdot s(d)$: growth function

• yield:

- $N_{CNT}(T,C) = \int_{-\infty}^{\infty} g(d^{CNT}, T, C) \delta d^{CNT}$
- $d_0^{CNT}(T,C) = \frac{1}{N_{CNT}} \int\limits_{-\infty}^{\infty} d^{CNT} g(d^{CNT},T,C) \delta d^{CNT}$ mean diameter:
- d^{C N T} = d^{CP}: catalyst particle diameter = CNT diameter assumptions:
- $d_0^{S}(T) = a + bT$: position of s(d) shifts linearly with T
- model parameters: σ^s = spread (standard deviation) of s(d) N^{cp} = area below s(d) = number of catalyst particles
 - d_{min} , d_{max} = boundaries of n(d)
 - a, b = parameters of $d_0^S(T) = a + bT$

Results: Fit of the CVSA Model to Measured Data

High yield catalyst mix Ni:Co:Mo = 5:4:1

 $a = 0.143 \text{ nm} \mp 9.4\%, b = 0.001 \text{ nm/°C (fixed)}$

Catalyst mix with **different Ni:Co fractions** [1]:

the position of n(d) shifts towards smaller diameters

Results: with increasing Ni:Co fraction

- the spread of s(d), σ^s , changes very little
- the number of catalyst particles, N^{cp}, changes strongly
- Problems:
 - fitting procedure needs to have the maximum of the yield in the measured range
 - some model parameters are correlated
 - measurements at low yields are very noisy = very hard to fit

Outlook

- more measurements are necessary to improve the data density
- unbiased data processing for OAS spectra needed
- improve the model and the fitting procedure (resolve correlated parameters and maximum yield problem)
- test reliability of model parameters to allow for a physical interpretation
- interplay of model and mesurements to improve our understanding of the CNT growth mechanism

References

- S. Tetali et al., "Unravelling the Mechanisms Behind Mixed Catalysts for the High Yield Production of Single-Walled Carbon Nanotubes", ACS Nano 3, 3839 (2009).
- M. H. Rümmeli et al., "Catalyst Volume to Surface Area Constraints for Nucleating Carbon Nanotubes", J. Phys. Chem. B 111, 8234 (2007).