

Electronic Properties of DNA-CNT molecular junctions

M. Lee, S. Avdoshenko, R. Gutierrez, and G. Cuniberti

Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, D-01062 Dresden, Germany.

Motivation:

- Electrical detection of point mutations in DNA possible?
- Develop effective approach to combine dynamics and transport
- -SWNT-
- **Conductivity of a single DNA duplex** bridging a carbon nanotube gap X. Guo et al. Nat. Nanotech. 3, 163 (2008)

Simulation strategy: Molecular dynamics (MD) coupled to electronic structure calculations

MD simulation set-up:

- AMBER10 package, NVT thermostat, 0.5 fs
- time step
- AMBER99 force field used for the sp² carbon atoms of the CNT

Results: DNA coupled to CNT electrodes

HOMO, HOMO-1 orbitals are mainly **localized** on backbones, hopping very small (~1 meV) \rightarrow relevant orbitals for hole transport **below** the HOMO level

• 70,000 atoms, TIP3P water box $70 \times 70 \times 120$ Å³, 28 Na+ ions neutralize the simulation box.

Electronic structure calculation:

- Use QM/MM approach in **Amber10** package
- QM method: semi-empirical Hamiltonian (AM1)
- Fragment molecular orbital method is used to obtain effective on-site energies $\varepsilon_i(t)$ and interfragment transfer integrals $T_{ii}(t)$ along the MD

Snapshot of the CNT-DNA system (upper panel), the well-matched sequence and the sequences with mismatches

Fragment Molecular Orbitals (FMO) technique¹

• H(A⁰ B⁰): Fock matrix for isolated fragments (nucleotides pairs) A⁰ and B⁰

• H(AB): Fock matrix for fragments AB embedded in the simulation box

Effective hopping integral T_{ii} between the AT- and GC fragments

Effective onsite energy ε_i time series at site 8 (AT base pair) and 9 (GC base pair) for the interval [HOMO,HOMO-10]

S₁

S₂ **S**_i **S**_n

 Mapping onto effective Hamiltonian (linear chain) with time-dependent parameters

 $H_t = \sum \varepsilon_i(t) c_i^+ c_i + \sum T'_{ij}(t) c_i^+ c_j$ $\varepsilon_{i}(t) = \left\langle \Phi_{i}^{MO}(t) | H | \Phi_{i}^{MO}(t) \right\rangle \qquad T_{ij}(t) = \left\langle \Phi_{A^{i}}^{MO}(t) | H_{A^{i}B^{j}}(t) | \Phi_{B^{j}}^{MO}(t) \right\rangle$ $T'_{ij}(t) = S_{AO}^{-1/2} T_{ij}(t) S_{AO}^{1/2}$ $\Phi_{i}^{MO}\left(t\right) = \sum C_{i}^{\mu}\left(t\right)\varphi_{\mu}^{AO}$

HOMO-5 HOMO-7 HOMO-6

Results: Charge transport

Conductance calculations with an increasing number of sites around the base pair region where mismatches are introduced

Histograms drawn from the time series showing the energy shifts due to introducing a mismatch $AT \rightarrow GT$ at chain site 8 resp. $GC \rightarrow AC$ at chain site 9

Transport properties:

• Time-dependent transmission function T(E,t)

Time-averaged transmission

References:

- 1. Kitaura & Morokuma, J.Quantum Chem.**10**,325 (1976); T. Kubar, et al., J. Phys. Chem. B **112**, 7937 (2008)
- 2. P. B. Woiczikowski, T. Kubar, R. Gutierrez, R. A. Caetano, G. Cuniberti, and M. Elstner, J. Chem. Phys. 130, 215104 (2009)
- 3. R. Gutierrez, R. A. Caetano, B. P. Woiczikowski, T. Kubar, M. Elstner, and G. Cuniberti, Phys. Rev. Lett. 102, 208102 (2009)

Conclusions and Outlook

- Dynamical fluctuations included in efficient computational scheme
- Mapping of complex electronic structure onto effective model
- Differences between matched and mismatched sequences less dramatic than in experiment \rightarrow improve e-structure methodology
- **Open**: Decoherence effects should be included (real-time charge propagation or coupling to dissipative environments)