Optical manipulation of edge state transport in topological insulators

UNIVERSITÂ WÜRZBURG CARDEQ Meeting

Dresden, March 2009

Björn Trauzettel

Koenig et al. Science 2007

(my personal) motivation

Graphene	Topological insulators
valleys (K and K')	Kramers partners (+ and -)
sublattice (A and B)	CB and VB states (E and H)
spin (\uparrow and \downarrow)	

Topological insulator in graphene

spin filtered edge states: topologically non-trivial w/ respect to TRS

⇒no TRS-preserving (local) perturbation can open gap

$$H = v \left(p_x \sigma_x \tau_x + p_y \sigma_y \right) + \Delta_{so} \sigma_z \tau_z s_z$$

Kane & Mele PRL 2005

Outline

- Effective Hamiltonian of HgTe Quantum Wells
- Experimental consequences $\rightarrow QSHI$
- Optical manipulation of edge state transport
- Summary and Outlook

Band structure of HgTe QW I

Koenig et al. JPSJ 2008

a little bit of group theory

T _d	E	8C ₃	3C ₂	68 ₄	6° d	linear functions, rotations	quadratic functions
A ₁	+1	+1	+1	+1	+1	-	x ² +y ² +z ²
A ₂	+1	+1	+1	-1	-1	-	-
E	+2	-1	+2	0	0	-	$(2z^2-x^2-y^2, x^2-y^2)$
Τ ₁	+3	0	-1	+1	-1	(R_x, R_y, R_z)	-
T_2	+3	0	-1	-1	+1	(x, y, z)	(xy, xz, yz)

 Γ_6 : orbital part transforms s-like Γ₇, Γ₈: orbital part transforms p-like

k.p theory

$$\frac{\left[\frac{p^{2}}{2m}+V\left(\vec{r}\right)\right]\psi_{n,\vec{k}}\left(\vec{r}\right)=E_{n}\left(\vec{k}\right)\psi_{n,\vec{k}}\left(\vec{r}\right)}{\mathbf{Bloch functions }}\psi_{n,\vec{k}}\left(\vec{r}\right)=e^{i\vec{k}\vec{r}}u_{n,\vec{k}}\left(\vec{r}\right)$$

$$\left[\frac{p^2}{2m} + V\left(\vec{r}\right) + \frac{\hbar\vec{k}\cdot\vec{p}}{m} + \frac{\hbar^2k^2}{2m}\right]u_{n,\vec{k}}\left(\vec{r}\right) = E_n\left(\vec{k}\right)u_{n,\vec{k}}\left(\vec{r}\right)$$

- $E_n(\mathbf{k})$ known at $\mathbf{k}=\mathbf{k_0}$ (n: band index)
- band n has Γ_i symmetry $\Rightarrow u_{n,k}(\mathbf{r})$ transforms as Γ_i
- *in HgTe/CdTe*: $\Gamma_i = {\Gamma_6, \Gamma_7, \Gamma_8}$

Band structure of HgTe QW II

Effective model near Γ point

$$H = \begin{pmatrix} h(\vec{k}) & 0 \\ 0 & h^*(\vec{k}) \end{pmatrix} \text{ with } h(\vec{k}) = \varepsilon(\vec{k}) + d_a(\vec{k})\sigma^a$$

$$\varepsilon\left(\vec{k}\right) = C - Dk^{2}$$
$$\vec{d}\left(\vec{k}\right) = \left(Ak_{x}, -Ak_{y}, M - Gk^{2}\right)$$

with basis states:

$$\left\{ \left| E+\right\rangle ,\left| H+\right\rangle ,\left| E-\right\rangle ,\left| H-\right\rangle \right\}$$

±: degenerate Kramers partners

Bernevig, Hughes, Zhang Science 2006

Schmidt, Novik, Kindermann & BT arXiv 2009

Experimental consequence: edge states at B=0

Prediction:

Observation:

Bernevig, Hughes & Zhang Science 2006

Koenig et al. Science 2007

see also: HL34 Spin controlled transport II, Wed 14:00-17:00, BEY 118

Effective model at finite B-field

$$H = \begin{pmatrix} h_+ & 0 \\ 0 & h_- \end{pmatrix} \text{ with } h_{\pm} = h_{HO} + h_{JC}^{\pm} \qquad \vec{A}_0 = (-By, 0, 0)$$

Schmidt, Novik, Kindermann & BT arXiv 2009

Edge states at finite B-field

 $M \to M + V_{edge}(y)$

varies slowly on the scale of the typical extent of Landau level wave function in y-direction

Optical transitions

$$\vec{A}_{0} \rightarrow \vec{A}_{0} + \vec{A}_{1}(\vec{r},t) \text{ with } \vec{A}_{1}(\vec{r},t) = 2|A_{1}|\hat{\varepsilon}\cos\left(\frac{\omega}{c}\hat{n}\cdot\vec{r}-\omega t\right)$$

$$\vec{A}_{0} = (-By,0,0) \text{ choice: } \hat{\varepsilon} = \hat{e}_{y} \text{ and } \hat{n} = -\hat{e}_{z}$$

$$h_{+} \rightarrow h_{+} - 2i |A_{1}| \cos(\omega t) \sqrt{2B} (a^{\dagger} - a) (D\mathbf{1} + G\sigma^{3}) - 2 |A_{1}| A \cos(\omega t) \sigma^{2}$$
$$h_{-} \rightarrow h_{-} - 2i |A_{1}| \cos(\omega t) \sqrt{2B} (a^{\dagger} - a) (D\mathbf{1} + G\sigma^{3}) + 2 |A_{1}| A \cos(\omega t) \sigma^{2}$$

Relative importance of terms:

$$\sqrt{2BD} \simeq -28$$
 meVnm, $\sqrt{2BG} \simeq -37$ meVnm, $A \simeq 364$ meVnm, for $B = 1$ T

Selection rules

Jiang et al. PRL 2007

Optical manipulation of edge state transport

focus on two states that are resonantly connected

subspace: $\left\{ |0\rangle, |\Psi_1^-(k)\rangle \right\}$

$$i\partial_{t}\tilde{\Psi}(x,t) = \left[E_{0}(k) + \frac{1}{2}(\Delta E(k) - \omega)\sigma^{3} + Q\sigma^{2}\right]\tilde{\Psi}(x,t)$$

with
$$E_0(k) + \frac{1}{2}\Delta E(k) = \varepsilon_0(k), \quad E_0(k) - \frac{1}{2}\Delta E(k) = \varepsilon_1^-(k), \quad Q = AA_1 \cos\left(\frac{\phi_1}{2}\right)$$

depends on all system parameters

Transfer matrix approach

linearization of spectrum (at the edge) \Rightarrow

$$\left[E - \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} p_x - Q\sigma^2\right] \tilde{\Psi}_E(x) = 0$$

in transfer matrix notation:

$$\begin{bmatrix} E + i\mathbf{v}\partial_x - Q\sigma^2 \end{bmatrix} T_E(x, x_0) = 0$$

with $\mathbf{v} = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix}$ and $\tilde{\Psi}_E(x) = T_E(x, x_0) \tilde{\Psi}_E(x_0)$
$$\boxed{M_E = T_E(0, L) = T_x \exp\left(-i\int_0^L dx \mathbf{v}^{-1} \left(E - Q(x)\sigma^2\right)\right)}$$
energy of scattering states relative to Fermi energy of the FIR source source of the FIR source

Transmission

How to detect it? → Setup1

Assumptions

- all chemical potentials tuned between 1h and 2h
- $\mu_1 > \mu_2 = \mu_3 = \mu_4$ • $L_{12} = L_{13}$

$$I_{12} \propto \mu_1 - \mu_2$$

- FIR ⇒ counterclockwise movers
 scatter into clockwise movers
 at resonance: I exponentially
- at resonance: I₁₂ exponentially suppressed

How to detect it? → Setup2

Assumptions

• all chemical potentials tuned between 1h and 2h

$$\Rightarrow^{\bullet} \mu_1 = \mu_2 = \mu_3 = \mu_4$$
$$\bullet L_{12} \gg L_{13}$$

- without radiation \Rightarrow no net current
- FIR ⇒ parts of large
 counterclockwise background current
 is blocked
- more efficient on long edge \Rightarrow net current, e.g., from 3 to 1

Summary and Outlook

- Similarities and difference between TI's and graphene
- Low-energy theory of TI's
- Optical manipulation of edge state transport

Schmidt, Novik, Kindermann & BT arXiv:0901.0621

- Relaxation mechanism for excited edge states
- Role of Rashba SOI