Surface Acoustic Solitary Waves

Andreas P. Mayer

Faculty B+W Campus Gengenbach

- Linear surface acoustic waves (SAWs)
- Pulse evolution on homogeneous elastic media
- Solitary wave pulses on coated substrates
- Edge acoustic waves

Elasticity Theory

Displacement field: $\vec{u}(\vec{r},t)$

 \vec{r} : Position of mass element in <u>undeformed</u> medium

 $\vec{r} + \vec{u}(\vec{r},t)$:

Position of same mass element in <u>deformed</u> medium

Elasticity Theory

Displacement field:

Displacement gradients:

$$\vec{u}(x,z,t)$$
$$u_{\alpha,\beta} = \frac{\partial u_{\alpha}}{\partial x_{\beta}}$$

Piola-Kirchhoff stress tensor:

$$T_{\alpha\beta} = C_{\alpha\beta\gamma\delta} u_{\gamma,\delta} + \frac{1}{2} S_{\alpha\beta\gamma\delta\varepsilon\zeta} u_{\gamma,\delta} u_{\varepsilon,\zeta} + O(u_{\dots}^3)$$

Equation of motion:

$$\rho \ddot{u}_{\alpha} = T_{\alpha\beta,\beta}$$

Boundary conditions:

$$T_{\alpha 3}\Big|_{z=0} = 0$$
$$u \xrightarrow{z \to -\infty} 0$$

Linear SAW

Displacement field:

$$u_{\alpha}(x,z,t) = \exp[iq(x-v_{R}t)] w_{\alpha}(z \mid q) + c.c.$$

depth profile

$$u_1(x, z, t) = \cos[q(x - v_R t)]W_1(z | q)$$

$$u_3(x, z, t) = \sin[q(x - v_R t)]W_3(z | q)$$

Nonlinearity / Dispersion

7

Nonlinearity

Piola-Kirchhoff stress tensor: $(T_{\alpha\beta})$

$$T_{11} = C_{1111}u_{1,1} + \dots + \frac{1}{2}S_{111111}u_{1,1}u_{1,1} + \dots + O(u^3)$$

$$u_{\alpha,\beta} = \frac{\partial u_{\alpha}}{\partial x_{\beta}}$$
 displacement gradients

Nonlinear Pulse Evolution

Nonlinearity is small: $|u_{\alpha,\beta}| < 0.01$ Asymptotic expansion for displacement gradient: $u_{\alpha,1} = \varepsilon u_{\alpha,1}^{(1)} + \varepsilon^2 u_{\alpha,1}^{(2)} + O(\varepsilon^3)$ with "stretched" time coordinate: τ

Fourier transform of displacement gradients at the surface:

2009-01-15

| A.P.M. |

for homogeneous medium (no dispersion):

$$i\frac{\partial}{\partial\tau}B(q) = qv_{R}\left[\int_{0}^{q} F\left(\frac{k}{q}\right)B(k)B(q-k)\,dk + 2\int_{q}^{\infty}\left(\frac{q}{k}\right)F\left(\frac{q}{k}\right)^{*}B(k)B(k-q)^{*}\,dk\right]$$

Depends on ratios of 2nd-order and 3rd-order elastic moduli:

Influence of anisotropy !

Non-local nonlinearity !

2009-01-15

Evolution equation for weakly dispersive SAW:

$$i\frac{\partial}{\partial\tau}B(q) = q^{2}\Delta_{R}(q) B(q)$$
$$+ qv_{R}\left[\int_{0}^{q} F\left(\frac{k}{q}\right)B(k)B(q-k)dk + 2\int_{q}^{\infty}\left(\frac{q}{k}\right)F\left(\frac{q}{k}\right)^{*}B(k)B(k-q)^{*}dk\right]$$

Evolution equation for weakly dispersive BAW: KdV equation

Function **F** in evolution equation for $\mathcal{U}_{1,1}$:

F(X) = F(1 - X)

Pulse Evolution without Dispersion

| A.P.M. |

Pulse Evolution without Dispersion

| A.P.M. |

Laser Excitation

Experimental setup

A.M. Lomonosov, V.V. Kozhushko and P. Hess

Optical microscope image of Si(112) surface after propagation of a nonlinear SAW pulse in the <-1 -1 1> direction

V.V. Kozhushko, A.M. Lomonosov, and P. Hess PRL 98, 195505 (2007)

Fracture modes of Si {111} surfaces

Calculated stress at the Si(112) surface:

Pulse shape depends on excitation mechanism and elastic nonlinearity V.V. Kozhushko, A.M. Lomonosov, and P. Hess

PRL 98, 195505 (2007)

Critical strength (Ab-initio calculations):	22 GPa
Experimental strength:	5-7 GPa

Solitary Pulses

Solitary Pulses

2-parameter family:

 $u_{\alpha,1}^{(1)}(x,0,t) = \mathcal{K}S_{\alpha}(\mathcal{K}(x-v_Rt\pm \mathcal{K}v_R\tau - x_0))$

for linear dispersion law $\omega(q) - v_R q = \Delta_0 q^2$

$$u_{\alpha,1}^{(1)}(x,0,t) = \kappa S_{\alpha} \left(\sqrt{\kappa} (x - v_R t \pm \kappa v_R \tau - x_0) \right)$$

for linear dispersion law $\omega(q) - v_R q = \Delta_1 q^3$

Can be computed as limiting cases of periodic pulse-train solutions.

Depth Profile

Strain / Particle Velocity

Fused silica

Si(111)[112]

Depth Profile

Displacement Pattern

Solitary Pulses

Definitions:

Solitary pulses propagate without change of their shape.

Solitons are solitary pulses which survive collisions with each other as intact pulses.

Pulse Collisions

Nonlinearity:

F = const.

Dispersion:

 $\omega(q) - v_R q = \Delta$

Mathematical Analysis

Family of evolution equations:

$$\frac{\partial}{\partial \tau}U = \frac{1}{4}(5\lambda - 1)\frac{\partial^{3}}{\partial \xi^{3}}U + (\lambda - 1)\hat{H}\left[\frac{\partial}{\partial \xi}U\right]\frac{\partial}{\partial \xi}U + \frac{\partial}{\partial \xi}\left\{\hat{H}\left[U\frac{\partial}{\partial \xi}U\right] + (2\lambda - 1)U\hat{H}\left[\frac{\partial}{\partial \xi}U\right] - \frac{4}{9}\lambda U^{3}\right\}$$

has solitary wave solution independent of parameter λ !

$$U(\xi,\tau) = \frac{-3\sqrt{12\kappa}}{4\kappa(\xi - \kappa\tau - \xi_0)^2 + 3}$$

 \hat{H} : Hilbert transform w.r.t. ξ

 $\lambda = 0$: Evolution equation for nonlinear dispersive SAW $U \propto u_3$, approximation: F=const.

 $\lambda = 1$: **BO**₃-equation has multi-soliton solutions.

1D Non-Dispersive Acoustic Waveguides

Displacement gradient associated with linear guided waves:

 $u_{\alpha,1}(x, y, z, t) =$ $\exp[iq(x-vt)] w_{\alpha}(y, z \mid q) B(q) + c.c.$

for even wedge modes:

$$i\frac{\partial}{\partial\tau}B(q) = q^{2}\Delta_{W}(q) B(q)$$

$$+ qv_{W}\left[\int_{0}^{q} F\left(\frac{k}{q}\right)B(k)B(q-k)dk + 2\int_{q}^{\infty}\left(\frac{q}{k}\right)^{2}F\left(\frac{q}{k}\right)^{*}B(k)B(k-q)^{*}dk\right]$$
(Krylov, Parker)

| A.P.M. |

2009-01-15

Summary

- Theoretical description of nonlinear acoustic pulse evolution on solid surfaces
- Strong influence of anisotropy on nonlinear pulse evolution
- Frequency up-conversion relative to down-conversion more efficient than in case of BAWs, (would be even more efficient in 1D acoustic waveguides)
- Solitary SAW and solitary edge pulses exist. They are not solitons.

Cooperations

Christian Eckl

University of Regensburg & Infineon AG, Munich

Alexander S. Kovalev

Insitute for Low Temperature Physics and Engineering, Kharkov

Alexey M. Lomonosov

General Physics Institute, Moscow & University of Heidelberg

Peter Hess

University of Heidelberg