

Faculty of Science, Institute for Theoretical Physics, Condensed Matter Theory

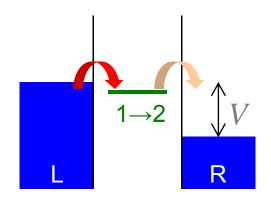
Magnetic N@C₆₀ singlemolecule transistors

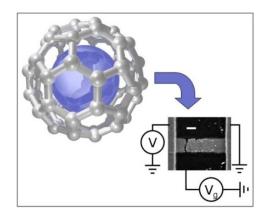
Towards modeling of real devices

Carsten Timm

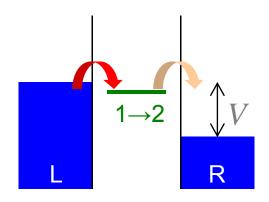
Max Bergmann Symposium 2008

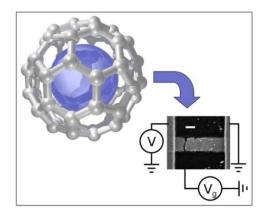
- Master equation formalism
- Endohedral N@C₆₀
- N@C₆₀ transistors



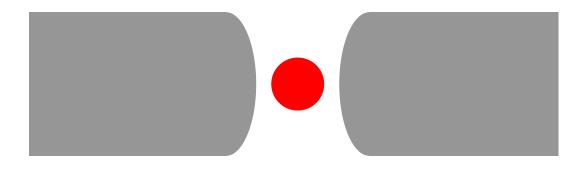


- Master equation formalism
- Endohedral N@C₆₀
- N@C₆₀ transistors





Small system coupled to large reservoirs



Here: quantum dot / molecule coupled to bulk leads

 $\overline{A_{\text{dot}}}(t) = \text{Tr } \rho(t) A_{\text{dot}}$ with the density operator $\rho(t) \cong \rho_{\text{dot}}(t) \otimes \rho_{\text{leads}}^0$

Cannot solve this because *H* is complicated!

Now what?

 $A_{\rm dot}$ only depends on the dot: $\overline{A_{\rm dot}}(t) = {\rm Tr}\,
ho_{
m dot}(t) \, A_{
m dot}$

with reduced density operator (in "small" dot Hilbert space)

$$\rho_{\rm dot} \equiv \sum_{i} \langle\!\langle i | \rho | i \rangle\!\rangle \equiv {\rm tr}_{\rm leads} \,\rho$$

basis of lead (reservoir) states only

Big question: What is the equation of motion of $\rho_{dot}(t)$?

Many different approaches; all start from the von Neumann equation:

$$\frac{d\rho}{dt} = -i \left[H, \rho\right] \quad \Longrightarrow \quad \frac{d}{dt} \rho_{\rm dot} = -i \operatorname{tr}_{\rm leads}[H, \rho(t)]$$

Wangsness-Bloch-Redfield master equation

Hamiltonian $H = H_{dot} + H_{leads} + H_{hop}$ here: electron hopping between dot and leads

- iterate von Neumann equation to expand to second order in $H_{\rm hop}$
- assume product state with leads in equilibrium at time *t*: $\rho(t) \cong \rho_{dot}(t) \otimes \rho_{leads}^0$ means that dot and leads are uncorrelated (strong but superfluous assumption)

$$\frac{d}{dt} \rho_{\text{dot}} \cong -i \left[H_{\text{dot}}, \rho_{\text{dot}}(t) \right] - \int_{-\infty}^{t} dt' \operatorname{tr}_{\text{leads}} \\ \left[H_{\text{hop}}, \left[e^{-i(H_{\text{dot}} + H_{\text{leads}})(t-t')} H_{\text{hop}} e^{i(H_{\text{dot}} + H_{\text{leads}})(t-t')}, \rho_{\text{dot}}(t) \otimes \rho_{\text{leads}}^{0} \right] \right] \\ \text{Wangsness-Bloch-Redfield master equation}$$

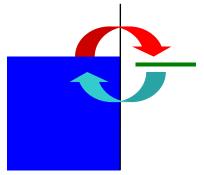
not of the form $\frac{d\rho_{\rm dot}}{dt} = -i [\tilde{H}, \rho_{\rm dot}]$ see C.T., PRB **77**, 195416 (2008)

 \rightarrow time evolution not unitary, includes relaxation

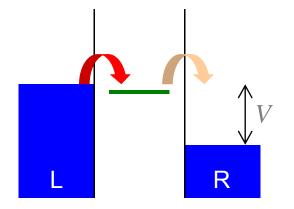
Case 1: single reservoir (particle & energy bath)

dot approaches equilibrium for $t \to \infty$:

 $ho_{\rm dot} \propto e^{-\beta(H_{\rm dot}-\mu N_{\rm dot})}$



Case 2: two leads in *separate* equilibrium—*e.g.* different chemical potential



Have a bias voltage V

Keeps dot out of equilibrium but approaches a steady state

Rate equations

Unperturbed dot many-particle eigenstates: $H_{\text{dot}} | m) = E_m | m)$

If off-diagonal components of ρ_{dot} in basis $\{|m\}$ relax rapidly (rapid dephasing): sufficient to keep only diagonal components

 $P_m \equiv (m | \rho_{\text{dot}} | m)$ probabilities of dot states |m)

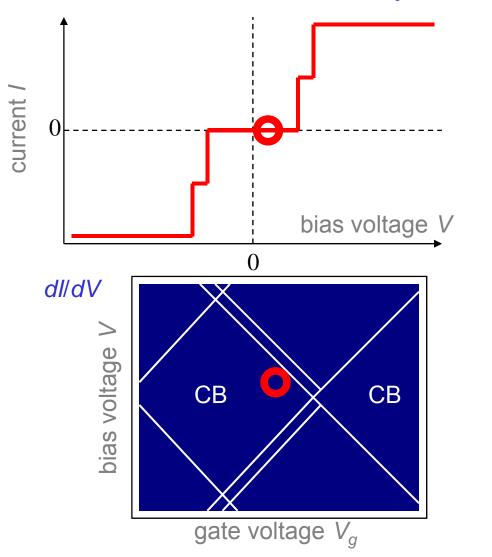
10

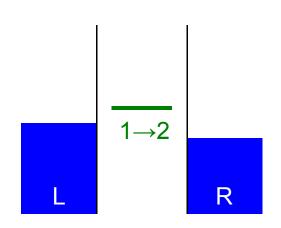
obtain rate equations

ons
$$\frac{dP_m}{dt} = \sum_n \begin{pmatrix} R_{n \to m} P_n - R_{m \to n} P_m \end{pmatrix}$$

in out
 $P_m(t)$ \longrightarrow observables, e.g. $I(t) \equiv \overline{I}(t)$

Generic behavior described by rate equations

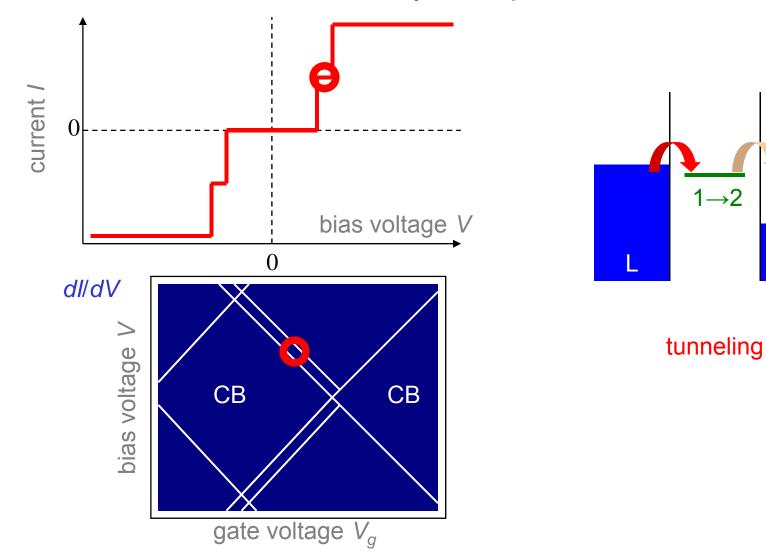




very small current:

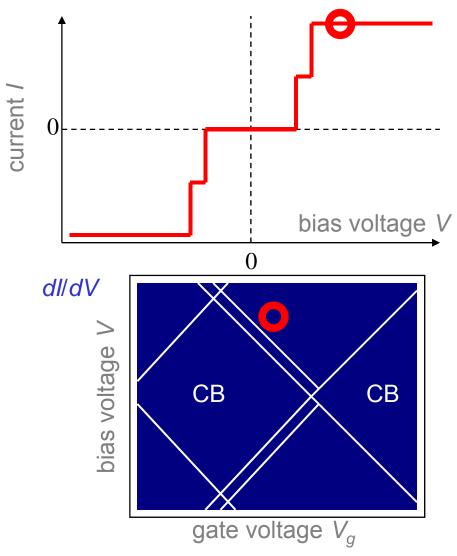
Coulomb blockade

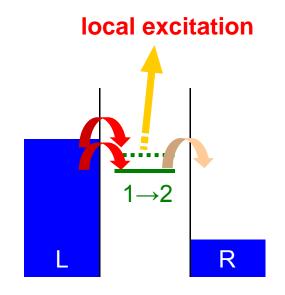
Generic behavior described by rate equations



R

Generic behavior described by rate equations

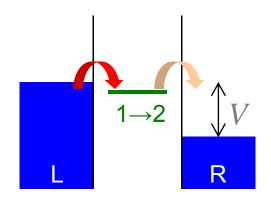


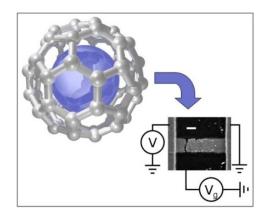


inelastic tunneling (vibration, spin flip)

characteristic for molecules

- Master equation formalism
- Endohedral N@C₆₀
- N@C₆₀ transistors



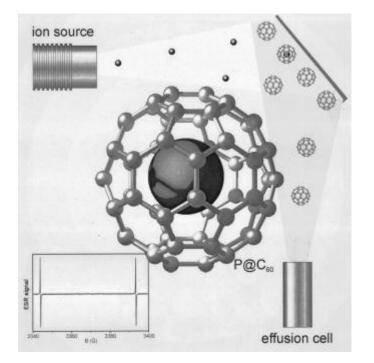


Endohedral N@C₆₀

- nitrogen atom located at center of C₆₀
- nitrogen retains spin $S_N = 3/2$ (Hund's 1st rule)

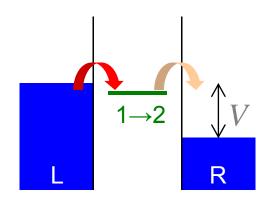
production by Harneit group (FU Berlin) using

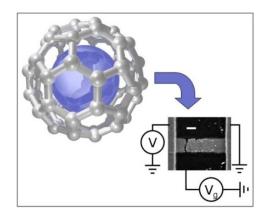
- ion implantation
- enrichment / mass separation



Larsson *et al.*, J. Chem. Phys. **116**, 7849 (2002) (shown for phosphorus)

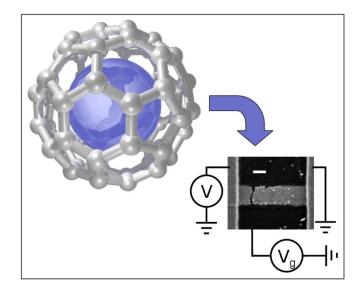
- Master equation formalism
- Endohedral N@C₆₀
- N@C₆₀ transistors





Motivation: Hope to observe inelastic tunneling due to coupling to molecular spin

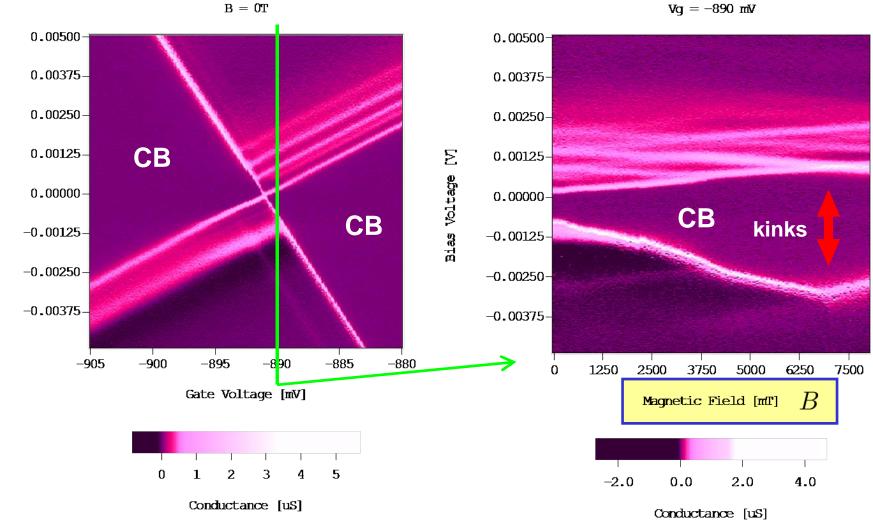
earlier calculations by F. Elste and C.T., PRB 71, 155403 (2005)



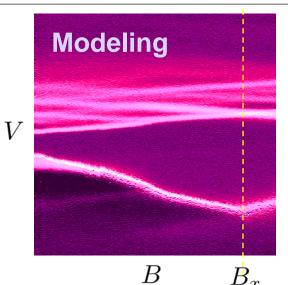
N@C₆₀ in Pt break junctions (Ralph group, Cornell university)

J. E. Grose, E. Tam, C.T., M. Scheloske, B. Ulgut, J. J. Parks, H. D. Abruña, W. Harneit, and D. C. Ralph, Nature Materials **7**, 884 (2008)

Differential conductance: experiment



Bias Voltage [V]

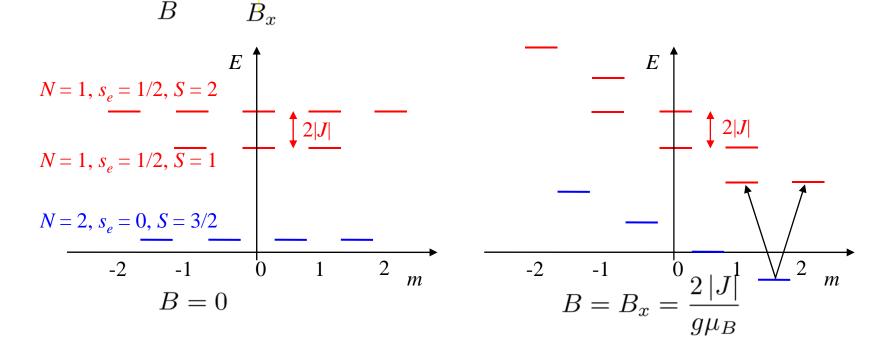


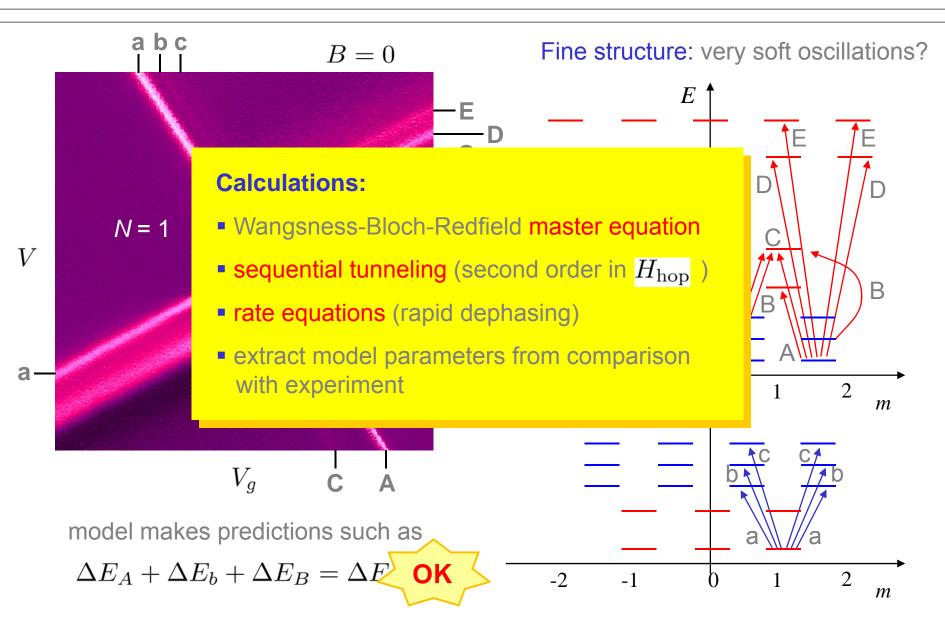
$$H_{\text{dot, el}} = (\epsilon - eV_g^*) \sum_{\sigma} a_{\sigma}^{\dagger} a_{\sigma} + U a_{\uparrow}^{\dagger} a_{\uparrow} a_{\downarrow}^{\dagger} a_{\downarrow} - J \mathbf{s}_e \cdot \mathbf{S}_N - g \mu_B^{\sigma} B \left(s_e^z + S_N^z \right)$$

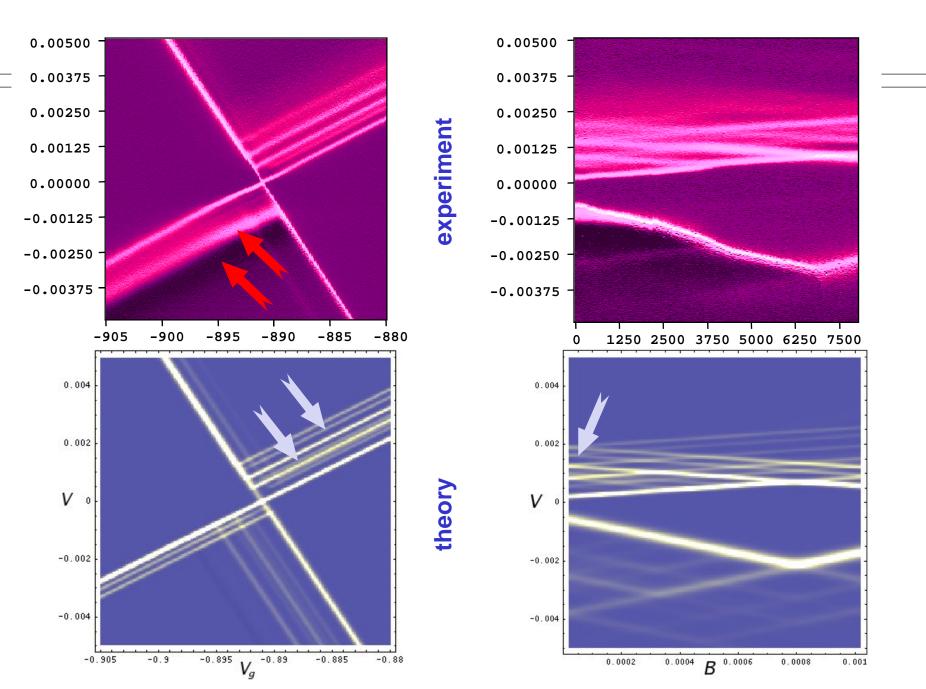
 $V_g^* = \alpha V_g + \beta_L V$: local potential (asym. coupling)

U: Coulomb repulsion on C₆₀

J < 0: exchange between electron and N spin







- Master equation formalism
- Endohedral N@C₆₀
- N@C₆₀ transistors

Acknowledgements

McGill U F. Elste F. von Oppen FU Berlin J. E. Grose Cornell U D. C. Ralph Cornell U G. Weick FU Berlin W. Harneit FU Berlin J. Koch Yale U J. Wu U of Kansas N. S. Maddux U of Kansas L. Calvet U Paris Sud