CRANN

Computing electron transport in nano- and bio-devices

Stefano Sanvito School of Physics and CRANN, TCD

HILAN Higher Education Authority An tÚdarás um Ard-Oideachas

Transport: Can theory get in right?

- Has it got a solid theoretical foundation ?
- Is it predictive ?
- Is it practical ?

Once we know how a device is made at the atomic scale, can we predict its transport properties ?

Our Team

Cormac Toher Ivan Rungger Das Pemmaraju Maria Tsoneva Ruairi Hanafin William Rodger Lee Akinlolu Akande Sankar Kesanakurthi Nuala Caffrey Andrea Droghetti Dr. Tom Archer Dr. Nadjib Baadji Dr. Alex Reily Rocha

(Spin-transport in organic) (Spin-injection, TMR, Smeagol) (Diluted Magnetic semiconductors, ASIC) ۲ (Dynamical magneto-transport effects) (MC for magnetic semiconductors) (Inelastic spin-transport in organic) (Novel XC potential for Transport) ۲ (Spin-transport in organic) (Multiferroic Tunnel Junctions) (Diluted and defective oxides) (LDA+U and LDA+SIC methods) (Spin-polarized STM for organics) (Smeagol, transport in large molecules)

Acknowledgment

Friends

Mauro Ferreira (TCD) Kieron Burke (Irvine) Alessio Filippetti (Cagliari) Tchavdar Todorov (Queen's) Oleg Mryasov (Seagate) Olle Heinonen (Seagate) Daniel Sanchez-Portal (San Sebastian) Jose Soler (Madrid)

Smeagol fellows

J. Ferrer (Oviedo)

V. M. Garcia Suarez (Oviedo)

C.J. Lambert (Lancaster)

S. Bailey (Lancaster)

Resources

TCHPC ICHEC EUROPA

RIA ROYAL IRISH ACADEMY

Outline

- Quantum transport: the concept
- The Smeagol project
- Nano-magnetism

Mn₁₂ molecules

• Nano-Bio-science:

DNA transport

DNA sequencing

Conclusions

Quantum Transport: the concept

Quantum Transport

Quantum Transport

$$N=2rac{\Gamma_{
m L}f(\epsilon-\mu_{
m L})+\Gamma_{
m R}f(\epsilon-\mu_{
m R})}{\Gamma_{
m L}+\Gamma_{
m R}}$$

$$I = \frac{2e}{\hbar} \frac{\Gamma_{\rm L} \Gamma_{\rm R}}{\Gamma_{\rm L} + \Gamma_{\rm R}} [f(\epsilon - \mu_{\rm L}) - f(\epsilon - \mu_{\rm R})]$$

Quantum Transport

$$I^{\sigma} \approx \frac{e}{h} \int_{E_{\rm F} - eV/2}^{E_{\rm F} + eV/2} T^{\sigma}(E;V) \, dE$$

http://www.smeagol.tcd.ie/

Mailing list http://lists.tchpc.tcd.ie/listinfo/smeagol-discuss

A. R. Rocha et al., Phys. Rev. B 73, 085414 (2006); Nature Materials 4, 335 (2005)

Idea:

To construct a solid, flexible and efficient quantum transport package for simulating detailed *I-V* characteristics of

Molecules Nanodevices Point contacts Bio-sensors Transistors Quantum Devices

Goal:

To achieve in quantum transport the same level of prediction capabilities than DFT has for electronic structure

- It converges !! New adaptive mesh
- It can use leads with complicated electronic structure. New GF algorithm
- Both finite and periodic systems
- Parallel in *k*, *E* and χ_{α} : Large scale demonstrated
- It is spin-polarized
- It is non-collinear
- LDA/GGA ...
- LDA+SIC and LDA+U
- Spin-orbit

Warning!! Use DFT sensibly

Warning!! Use DFT sensibly

$$I^{\sigma} \approx \frac{e}{h} \int_{E_{\rm F} - eV/2}^{E_{\rm F} + eV/2} T^{\sigma}(E;V) \, dE$$

Warning!! Use DFT sensibly

C. Das Pemmaraju, T. Archer, D.Sanchez-Portal and S. Sanvito, PRB 75, 045101 (2007)

C. Toher and Sanvito, PRL 99, 056801 (2007); PRL 95, 146402 (2005)

C.F. Hirjibehedin et al, Science **312**, 1021 (2006)

H.B. Heersche et al, PRL **96**, 206801 (2006) M.H. Jo et al, Nano Lett. **6**, 2014 (2006)

H.B. Heersche et al, PRL **96**, 206801 (2006) M.H. Jo et al, Nano Lett. **6**, 2014 (2006)

Extremely accurate transport scheme

I. Rungger et al., cond-mat/0712.1369

Integration of the density matrix

Why we can do it? Transport across Mn₁₂

High parallelism

$$D = \int dE F (E) = \sum_{i} F_{i}$$

DOS: Ground State

Zero bias Trasmission:

Ground State

T(E) as a function

of bias

Spin-flip configuration S=9

Conclusion MM

- Change in static potential due to spin-flip is electrically readable
- It seems that the magnetic state of Mn₁₂ can be read electronically
- Most of the information are in the full *I-V* curve: zero-bias misleading

Is DNA a metal?

Eley and Spivey, Trans. Faraday Soc. 58, 411 (1962)

b

Xu et al, APL 87, 083902 (2005)

LDOS

Remove the DNA

- About 1,800 atoms in the simulation
- Fully RELAXED structure

I-V Curve

DNA Sequencing

DNA Sequencing

DNA Sequencing

Probe\Bias	100 mV	250 mV	E _b
А	(A, C, G) from T	A from (C, G) from T	(A, C) from (G, T)
С	(A, G) from (C, T)	A from G, C from T	(A, C) from T from G
G	(A, C, G) from T	(A, C, G) from T	G from (A, T) from C
Т	(A, C, G) from T	C from (A, G) from T	-

with Ravindra Pandey (MTU, USA), J. Phys. Chem. (in press)

Outlook: the challenges

More Accurate

Orbital-dependent functionals

- Full derivative discontinuity
- NEGF using orbital densities
- Practical ways: OEP

Scalable

Smeagol10K & Smeagol100K

- Downfolding low and high spectrum
- Embedding methods
- Self-consistent minimal basis sets
- Sparse matrix technology

