

Funded by the European Union

SMELLODI. Smart Electronic Olfaction for Body Odor Diagnostics. Computational research.

søllodi

CMD30 – Fismat 2023 5th September, Milan

Chair Materials Science and Nanotechnology Institute for Materials Science, TU Dresden

Dr Nina Tverdokhleb e-mail: nina.tverdokhlib@tu-dresden.de

-

Finland .

Germany

Bttps://nano.tu-dresden.de/

Starting Point: Digital Senses

Visual system

Structural colours

Olfactory system

Motivation:

Computational Modelling and Statistical Learning

BACKGROUND

We aim at correlating **microscopic** molecular **features** to **sensor response** *via* atomistic and mesoscale simulations

OBJECTIVES

- a) Atomistic descriptors for relevant odor molecules
- b) Structural stability and receptor-substrate binding energies
- c) Atomistic characterization of analyte receptor binding
- d) Mesoscale modeling of sensor response within an effective FET model
- e) Predicting sensor signals from molecular descriptors and binding features using artificial neural networks

bttps://nano.tu-dresden.de/

Substrate Functionalization

Non-covalent functionalization of graphene through π - interactions allows for the attachment of functional groups to graphene without interfering with the electronic structure of the material.

Chem. Rev. 2012, 112, 11, 6156–6214 Publication Date:September 25, 2012 https://doi.org/10.1021/cr3000412

Slide 5

Computational methods

Semiempirical Extended Tight-Binding Program Package v6.6.0 D4-ATM dispersion

3ob parameters D3 dispersion Work function $W = -e\Phi - E_{F}$

VASP PBE XC-functional D3 dispersion

ለttps://nano.tu-dresden.de/

Structures of graphene, N-gra and OH-gra

- Top view -

Charge density difference distribution (CDDD) for systems graphene-odorant

Losing Gaining

Electronic band structures for coffee adsorption

ħ**0**tps://nano.tu-dresden.de/

Response: work function $\varphi = E_{vacuum} - E_{F}$

→Δφ = 4.607 – 4.498 = 0.109 eV

https://nano.tu-dresden.de/ Investigated objects

https://nano.tu-dresden.de/

Detector: binding energy

Method – Docking in $xTB \rightarrow find$ metastable odorant-receptor configurations with the largest (absolute) value of the **interaction energy:**

$$E_{int} = E_{comp} - E_{rec} - E_{odor}$$

• E_{int} is only an <u>indicator</u> for binding affinity

hstps://nano.tu-dresden.de/

Potential of mean forces curves of adsorption

Method - Steered molecular dynamic: Adaptive biasing forces

Conclusions

- Smellodi is working on digitalization of olfaction to detect smells, especially for remote medical diagnostics;
- Charge transfer, band gap, work function, binding energy and recovery time of receptor should be defined as detectors of the sensorics response.

Thank you for your attention!

