

Calculation of STM spectra:

Co-Phthalocyanine on metallic surfaces

Institute of Theoretical Physics | TU Bergakadem ie Freiberg Leipziger Str. 23 | 09599 Freiberg | tbrumme@gmx.de

- Motivation
- Theoretical background and computational methods
- Co-Phthalocyanine on metallic surfaces
 - Cu(111) – Co(111)
- Summary and outlook

Motivation

- Application of phthalocyanines
 - Dye in paper and plastics industry
 - Sensors, fuel cells, medicine
 - Model compound for biological important metallo-porphyrins
 - Organic electronics, e.g. OLEDs
- Nearly all Me-Phthalocyanines have a magnetic moment
 possible application in spintronics and in storage devices

3

Motivation

- Metal-Molecule-Interaction
- Investigation of surfaces (with adsorbed substances)
 - <u>Scanning Tunneling Microscope (STM)</u>
 - SP-STM (Spin Polarized)
 - Constant-Current-Mode

- STS-mode (<u>Scanning Tunneling Spectroscopy</u>)
 - Measurement of dl/dV
 - => differential conductance

4

Theoretical Background

- Ground state of a quantum mechanical many-electron system
- = > Density functional theory
- Calculation of STM- and STS-images by means of the Tersoff-Hamann-approximation [1]

$$I(\boldsymbol{R}) \propto \sum_{E_n > E_F - eV_{bias}}^{E_n < E_F} |\psi(\boldsymbol{R}, E_n)|^2 =: n(\boldsymbol{R}, V_{bias})$$

Used codes / programs: PWscf, XCrysDen

Institut für Theoretische Physik

Co-Phthalocyanine

- How is the molecule bonded to the surface?
 => Electronic structure of the free molecule important
- Bond between cobalt d-orbitals and phthalocyanine-ligand
- Strongest bond between Co d_{x²-y²} and nitrogen
- Bonds between degenerated d_{xz}/d_{yz}-orbitals and two different ligand-orbitals

Institut für Theoretische Physik

Calculated energy-level diagram of the central cobalt of CoPc.

Co-Phthalocyanine

- Investigated surfaces: Cu(111), Cu(001), Co(111)
- Bridge-position always energetically preferred, hollow-position unfavorable
- Reasons:
 - Ligand-surface-interaction
 - Symmetry
- x- / y-direction not degenerated anymore

Different positions of CoPc on surfaces.

- Axis, defined by the bridge atoms, is preferred one.
- Direct bond between central cobalt and surface copper results in zero magnetization.
- Most intense signal in STM-images above the cobalt, because of the weakly bonded d-electrons.
- Considering that the cobalt LUMO (<u>Lowest Unoccupied Molecular</u> <u>Orbital</u>) is partly occupied yields good agreement between theory and experiment.

- Resonances from lowest to highest sample bias:
 - Co d_{xy} (HOMO^{*1} 1 of the free molecule)
 - Bond tween Co d_{π} N p OF Cu
 - Co d_{z^2} and d_{\pi}
 - Broad peak at -0.5eV 0eV (experiment) and the 2 peaks (theory)
 Ligand HOMO
 - Ligand LUMO
 - Bond tween Co $d_{x^2-y^2}^*$ and ligand

^{*1} <u>Highest Occupied Molecular Orbital</u>

Co-Phthalocyanine – Co(111)

- Cobalt is magnetic at low temperatures
- Stronger interaction between CoPc and surface
- Significant differences between Spin Up and Spin Down
- Cobalt LUMO (d_{z²}) again partly occupied
 reduced magnetic moment
- At E_F mainly minority-states
- The <u>Co</u>Pc is coupled ferromagnetically to the surface
 - => 2. Goodenough-Kanamori rule for direct exchange
 - Superexchange through the inner nitrogen

- Significant differences between magnetic and non-magnetic surfaces
- Differences between the various positions on a surface smaller
- "How" and "Where" the molecule is adsorbed is determined by the ligand
- Good agreement between theory and experiment

- More (magnetic) surfaces
- Different metals in MePc
- Other molecules
- Transport through molecules on surfaces
- But: comparison between theory and experiment is important

Special thanks go to:

Jean-Pierre Bucher, Laurent Limot
 Institut de Physique et Chimie des Matériaux de Strasbourg

Accepted for publication in PRL "Visualizing the Spin of Individual Cobalt-Phthalocyanine Molecules"

http://arxiv.org/abs/0805.0485

– ZIH Dresden

Thank you for your attention!

Comparison between calculated (blue-red) and measured (black-green) STM-images at different bias-voltages. Upper left (right) -1.4eV (-0.5eV), lower left (right) -0.1eV (1.5eV).

Co-Phthalocyanine - Cu(001)

Institut für Theoretische Physik

Structure of CoPc on Cu(001), superimposed: STM-image at 1.57 eV.

Co-Phthalocyanine – Co(111)

SP-STM of CoPc on Co(111) at V_{bias}=0.51 eV, left Spin Down, right Spin Up.

Magnetic interactions

- Magnetic interactions between an adsorbed molecule and a magnetic surface
 - Classical dipole-dipole-interaction
 - Double exchange, anisotropic exchange
 - In metals: RKKY-exchange
 - Direct / indirect exchange => Goodenough-Kanamori rules

