Predicting Materials and 10.811 Material Properties by **Density Functional Theory:**

5

B

BORON

Jens Kunstmann

Max-Planck-Institut für Festkörperforschung Stuttgart, Germany

- Motivation
- Boron Sheets
- Boron Nanotubes
- Structure Control
- Nanotubular Junctions
- Layered Bulk Phases of Boron
- Enatom Method
- Summary

Motivation

Why is elemental boron interesting?

- little studied
- many fundamental properties are unknown (phase diagram, ground state structure, etc.)
- very complex chemistry and bonding

Bulk Phases

- 3D frameworks of B₁₂ icosahedra
- different bulk phases
 - \rightarrow α -rhombohedral (12 at./cell)
 - \rightarrow β -rhombohedral (106.7 at./cell)
 - \rightarrow β -tetragonal (189.9 at./cell)
- semiconducting
- **superconducting** at high pressure Eremets *et al.*, Science **293**, 272 (2001)

α-rhomb. boron

Motivation

Clusters

• Aufbau principle: Boustani, Phys. Rev. B 55 (1997)

→ prediction of boron nanostructures: nanotubes, fullerenes, sheets

- small boron clusters are quasiplanar
 - \rightarrow theory:I. Boustani, Surf. Sci. **370** (1997) \rightarrow experiments:H.J. Zhai, et al. Nat. Mater. **2** (2003)

- boron nanotubes
 - \rightarrow theory:
 - \rightarrow experiments:

Boustani *et al.*, Europhys. Lett. **39** (1997) Ciuparu *et al.*, J. Phys. Chem. B **108** (2004)

Motivation

Many open questions:

- What is the **detailed** atomic structure of the boron nanostructures?
- What are the properties of these nanostructures?
- How can we understand the chemical bonding in the different phases?
- What is the ground state structure/phases diagram?
- What bulk phase is responsible for the highpressure superconductivity?

•

. . . .

Density Functional Theory (DFT)

- calculate electronic structure (charge density, DOS, band structure, Fermi surface)
- structural simulations and optimizations
- Codes:

 → TB-LMTO-ASA: tight-binding LMTO in atomic sphere approximation
 → LmtART: all-electron full-potential LMTO
 → VASP: plane waves and pseudopotentials

Boron Sheet

Experiment:

- nanotubes Ciuparu *et al.*, J. Phys. Chem. B **108** (2004)
- small quasiplanar clusters H.J. Zhai, et al. Nat. Mater. 2 (2003)

Broad Boron Sheet:

- the precursor of boron nanotubes
- the boron analogue of a single graphite sheet

What does a broad boron sheet look like?

Boron Sheet

top view

side view

triangular lattice

simple up-and-down structure

- structure found by DFT simulations
- structure independently found also by Evans *et al.*, Phys. Rev. B **72**, 45434 (2005). Cabria *et al.*, Nanotechnology **17**, 778 (2006).

JK et al., Phys. Rev. B 74 (2006)

Boron Sheet

yellow: charge density contour at 0.9 e/Å³

- anisotropic in-plane mechanical properties
- metallic properties

Boron Nanotubes:

All boron nanotubes are metallic!

Boron Nanotubes

zigzag

armchair BNT:

 bent circumferential σ bonds

- straight axial σ bonds
- NO circumferential σ bonds

Boron Nanotubes

 unique property among nanotubular materials usually E_{strain} = E_{strain}(R) only

suggestion:

- control radius R by growing nanotubes out of porous catalysts with well defined pores sizes (e.g. Mg-MCM-41)
- control chiral angle θ by tuning the reaction conditions
 synthesis of a specific (R,θ) nanotube

Anisotropic in-plane mechanical properties of sheets allow for more structure control of the tubes!

Boron Nanotubes

- Summary: theory of boron nanotubes (BNTs): unifying and generalizing former studies in the field JK *et al.*, Chem Phys. Lett. **402** (2005). JK *et al.*, Phys. Rev. B **74** (2006).
 - all BNTs are metallic
 - the strain energy of a BNT is a function of the tube's radius and chiral angle: $E_{strain} = E_{strain}(R,\theta)$
 - new approach to the long standing problem of structure control in nanoscience JK et al., Nanotechnology 18, 155703 (2007).

further developments:

revised version of our theory:

Tang *et al.*, Phys. Rev. Lett. **99** (2007). Yang *et al.*, Phys. Rev. B **77** (2008).

- There are many *different* nanotubular materials: existing: BN, MoS₂, VO_x, ... predicted: MB₂, B₂O, CaSi₂, ...
- Idea:

Heterogeneous Nanotubular Networks

• Basic question:

Is it possible to *connect* different nanotubular materials?

• Structural paradigm:

intamoledular junctions between boron and carbon nanotubes

Model System: linear BC-heterojunction of arbitrary radius and chirality from a single sheet

• Only structure elements | and II can appear at the interface

Results:

DFT simulations of different model junctions that only contain structure element

Solution:

• Linear BC-heterojunctions of any type can be formed by incorporating structure element **II** at the interface.

Heterogeneous Nanotubular Networks are possible!

Theory:

- electrons, phonons, and EP interaction are described in reciprocal space
- we want a real-space desription of
 - \rightarrow solids
 - \rightarrow vibrational properties
 - \rightarrow electron-phonon interactions

Enatom:

- introduced by M. A. Ball as generalized pseudoatom J. Phys. C 8, 3328 (1975)
- from greek:

en = inside atom = the indivisible part enatom = an atom inside a solid

JK et al., Phys. Rev. B **75** (2007)

Definition:

- atomic displacement: $\delta R_j = R_j R_j^o$
- definition via Helmholz decomposition of first order change in charge density:

$$rac{\partial n(oldsymbol{r})}{\partial oldsymbol{R}_j} = -
abla
ho_j(oldsymbol{r}-oldsymbol{R}_j^o) +
abla imes oldsymbol{B}_j(oldsymbol{r}-oldsymbol{R}_j^o)$$

- $n(\mathbf{r})$... total charge density
- $ho_j(\mathbf{r})$... rigid density (scalar field); describes the charge density that moves rigidly with the atom upon a displacement
- $abla imes B_j(r)$... deformation density (vector field); describes how the charge density deforms due to a nuclear displacement

Properties:

•
$$\sum_{j} \rho_j(\boldsymbol{r} - \boldsymbol{R}_j^o) = n(\boldsymbol{r})$$

The enatom is a unique decomposition of the total charge density into a sum of atomic-like contributions.

• charge density of displaced atoms:

$$n(\boldsymbol{r}; \{\boldsymbol{R}_j\}) = \sum_j [\rho_j(\boldsymbol{r} - \boldsymbol{R}_j^o - \delta \boldsymbol{R}_j) + \delta \boldsymbol{R}_j \cdot \nabla \times \boldsymbol{B}_j(\boldsymbol{r} - \boldsymbol{R}_j^o)]$$

This holds for a first order displacement of the atoms from their equilibrium position.

The same construction can also be applied to the total **potential**

$$egin{array}{rcl} n(m{r}) & o & v(m{r}) \
ho_j(m{r}) & o & V_j(m{r}) \
abla imes m{B}_j(m{r}) & o &
abla imes m{W}_j(m{r}) \end{array}$$

Example: enatom density of fcc Li at P=35 GPa

rigid density ρ

countour plot of $\boldsymbol{\rho}$ in xy plane

Example: enatom density of fcc Li at P=35 GPa

deformation density $\nabla \times \mathbf{B}$

countour plot of $|\nabla \mathbf{x} \mathbf{B}|$ in xy plane

Results:

- first realization of the enatom method
- studied pressure evolution of enatom quantities for fcc Li and fcc Al

Outlook:

- generalization of the enatom code for more complex systems
- study of non-metals
- calculation of phonon frequencies
- calculation of electron-phonon matrix elements
- study boron

• generalized theory for boron nanotubes

JK *et al.*, Chem Phys. Lett. **402** (2005). JK *et al.*, Phys. Rev. B **74** (2006).

 new route for structure control of nanotubes during synthesis

JK et al., Nanotechnology 18, 155703 (2007).

- intramolecular junctions of nanotubes JK *et al.*, J. Chem. Phys. **121** (2004)
- proposed layered bulk phases of boron JK *et al.*, (to be published)
- first realization of entaom method JK et al., Phys. Rev. B **75** (2007)

Thanks

- Ole K. Andersen (MPI Stuttgart)
- Lilia Boeri (MPI Stuttgart)
- Alexander Quandt (Uni Greifswald)
- Warren E. Pickett (UC Davis, USA)
- Jens Kortus (TU Freiberg)
- Ihsan Boustani (Uni Wuppertal)