Driven transport through nanoscale conductors

Sigmund Kohler

Universität Augsburg

single-molecule conduction

X. D. Cui et al., Science 294, 571 (2001)

M. A. Reed et al., Science 278, 252 (1997)

J. Reichert et al., Phys. Rev. Lett. 88, 176804 (2002)

- direct exposure to light problem: affects contacts
- solution: coated SNOM tip (scanning near-field optical microscope)

- focussing on molecule
- TERS (*tip-enhanced Raman spectroscopy*): local field enhancement by several orders of magnitude

"artificial molecules": coupled quantum dots

T. H. Oosterkamp et al., Nature 395, 873 (1998)

- ? conduction under laser excitation
- ? ratchet and pump effects
- ? current control by laser field
- ? noise properties
- ? Coulomb blockade
- ? ...

- hopping matrix elements ∆
 [molecule: Hückel model of a "molecular bridge"]
- metallic contacts: ideal Fermi gases with chem. potential μ
- effective coupling to metal contacts: Γ
- laser field: $H_{\text{mol}} \longrightarrow H_{\text{mol}}(t)$, dipole coupling

• Floquet transport theory

• DC current from AC driving

- ratchet effect
- nonadiabatic electron pump
- pumping heat

• Coulomb blockade effects

• transmission of an electron with energy *E*

 $T(E, V) = \Gamma_{\rm L} \Gamma_{\rm R} |\langle 1| G(E, V) |N \rangle|^2$

Fischer, Lee, PRB'81; Meir, Wingreen, PRL'92

• zero-frequency noise / noise power:

static component of the current-current correlation function

$$\bar{S} = S(\omega = 0) = \int_{-\infty}^{+\infty} d\tau \left\langle \Delta I(t) \,\Delta I(t+\tau) \right\rangle$$

$$\bar{S} = \frac{e^2}{2\pi\hbar} \int dE \ T(E) \Big\{ \Big[1 - T(E) \Big] \Big[f(E + eV) - f(E) \Big]^2 \\ + f(E + eV) \Big[1 - f(E + eV) \Big] + f(E) \Big[1 - f(E) \Big] \Big\}$$

- shot noise (remains for $k_{\rm B}T = 0$)
- equilibrium noise (remains for eV = 0)

Büttiker, PRB'92

depends only on transmission probability T(E)

- relative noise strength: Fano factor F = S/eI
- example: transport double quantum dot

single barrier / point contact: $F \approx 1$ (Poisson process) double barrier: $F \approx \frac{1}{2}$

• Landauer: "noise is the signal"

 \rightarrow temperature dependent

 \longrightarrow *F* = *q*/*e* (size of charge carrier)

• Cooper pair tunneling: F = 2

• fractional quantum Hall effect: $F = \frac{1}{3}$

FIG. 1. Bias voltage vs tunneling current of a superconducting Al-Al₂O₃-In diode as measured by Dayem and Martin with and without the microwave field. $\hbar\omega/e=0.16$ mV.

current \rightarrow

Josephson contact in microwaves

- current-voltage characteristics exhibits steps of size $\Delta V = \hbar \Omega / e$ Dayem & Martin, PRL 1962
- model:
 - tunnel barrier
 - oscillating chemical potential in one superconductor

Tien & Gordon, Phys. Rev. 1963

• microwaves induce ac bias voltage:

 $V_0 \longrightarrow V_0 + V_{\rm ac} \cos(\Omega t)$

• time-dependent energy shift by $eV_{\rm ac}\cos(\Omega t)$

$$\exp\left(-\frac{\mathrm{i}}{\hbar}Et\right) \longrightarrow \exp\left(-\frac{\mathrm{i}}{\hbar}Et - \mathrm{i}\frac{eV_{\mathrm{ac}}}{\hbar\Omega}\sin(\Omega t)\right)$$
$$= \sum_{k=-\infty}^{\infty} J_k\left(\frac{eV_{\mathrm{ac}}}{\hbar\Omega}\right)\exp\left(-\frac{\mathrm{i}}{\hbar}\left(E + k\hbar\Omega\right)t\right)$$

- sidebands occupied with probability $J_k^2(\ldots)$
- energy $k\hbar\Omega$ corresponds to additonal DC bias voltage $k\hbar\Omega/e$

$$I(V_0, V_{\rm ac}) = \sum_{k=-\infty}^{\infty} J_k^2 \left(\frac{eV_{\rm ac}}{\hbar\Omega}\right) I_0(V_0 + k\hbar\Omega/e)$$

DC conductivity determines the current ! ... and also the shot noise

Tucker, Feldmann, Rev. Mod. Phys. 1985

- derivation rather heuristic
- ? rigorous derivation
- ? when is Tien-Gordon theory applicable

driven systems

• problem:
$$U(t, t') = T \exp\left(-\frac{\mathrm{i}}{\hbar} \int_{t'}^{t} \mathrm{d}t'' H(t'')\right)$$

- \overline{T} : time-ordering operator
- periodic time-dependence: "Bloch theory in time" (Floquet 1883)
- periodic time-dependence: Floquet theorem: time-periodic Schrödinger equation has complete solution of the form

$$|\psi_{\alpha}(t)\rangle = e^{-i\epsilon_{\alpha}t/\hbar} |\phi_{\alpha}(t)\rangle$$
, where $|\phi_{\alpha}(t)\rangle = |\phi_{\alpha}(t+\mathcal{T})\rangle$

• quasienergies ϵ_{α} , Brillouin zone structure Floquet states $|\phi_{\alpha}(t)\rangle = \sum_{k} e^{-ik\Omega t} |\phi_{\alpha,k}\rangle$

non-linear response

transport and driving: computation of the Green function and current formula for time-dependent situation

• Floquet equation

with self-energy $\Sigma = |1\rangle \frac{\Gamma_L}{2} \langle 1| + |N\rangle \frac{\Gamma_R}{2} \langle N|$

$$\left(H(t) - \mathrm{i}\Sigma - \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}\right)|\varphi_{\alpha}(t)\rangle = (\boldsymbol{\epsilon}_{\alpha} - \mathrm{i}\hbar\gamma_{\alpha})|\varphi_{\alpha}(t)\rangle$$

• propagator in the presence of the contacts

$$G(t, t-\tau) = \sum_{k=-\infty}^{\infty} e^{ik\Omega t} \int d\epsilon \, e^{-i\epsilon\tau} \underbrace{\sum_{\alpha, k'} \frac{|\varphi_{\alpha, k+k'}\rangle\langle\varphi_{\alpha, k'}|}{\epsilon - (\epsilon_{\alpha} + k'\Omega - i\hbar\gamma_{\alpha})}}_{G^{(k)}(\epsilon)}$$

propagation under absorption/emission of |k| photons

• dc current [note: no blocking factors $(1 - f_{\ell})$]

$$I = \overline{e\langle \dot{N}_{\rm L}\rangle} = \ldots = \frac{e}{h} \sum_{k=-\infty}^{\infty} \int d\epsilon \left\{ T_{\rm LR}^{(k)}(\epsilon) f_{\rm R}(\epsilon) - T_{\rm RL}^{(k)}(\epsilon) f_{\rm L}(\epsilon) \right\}$$

• transmission under absorption of *k* photons

Camalet, Lehmann, SK, Hänggi, PRL 90, 210602 (2003)

time-averaged zero-frequency noise

$$\bar{S} = \frac{1}{\mathcal{F}} \int_{0}^{\mathcal{F}} dt \int_{-\infty}^{+\infty} d\tau \left\langle \Delta I(t) \Delta I(t+\tau) \right\rangle$$

$$= \frac{e^{2}}{h} \sum_{k} \int d\epsilon \left\{ \Gamma_{R}^{2} \right| \sum_{k'} \Gamma_{L}(\epsilon_{k'}) G_{1N}^{(k'-k)}(\epsilon_{k}) \left[G_{1N}^{(k')}(\epsilon) \right]^{*} \Big|^{2} f_{R}(\epsilon) \bar{f}_{R}(\epsilon_{k})$$

$$+ \Gamma_{R} \Gamma_{L} \Big| \sum_{k'} \Gamma_{L} G_{1N}^{(k'-k)}(\epsilon_{k}) \left[G_{11}^{(k')}(\epsilon) \right]^{*} - i G_{1N}^{(-k)}(\epsilon_{k}) \Big|^{2} f_{L}(\epsilon) \bar{f}_{R}(\epsilon_{k})$$

+ same terms with the replacement $(L, 1) \leftrightarrow (R, N)$

where $\epsilon_k = \epsilon + k\hbar\Omega$

depends on transmission amplitudes $G_{1N}^{(k)}$

Camalet, SK, Hänggi, PRB 70, 155326 (2004)

• Floquet transport theory

• DC current from AC driving

- ratchet effect
- nonadiabatic electron pump
- pumping heat

• Coulomb blockade effects

• classical Brownian motion in a periodic but asymmetric potential

- despite asymmetry: zero current in equilibrium
- asymmetry plus driving → directed transport
- here: coherent quantum dynamics, non-adiabatic driving

• no transport voltage

$$\mu_{\rm L} = \mu_{\rm R}$$

• finite periodic system consisting of *N_g* asymmetric groups

$$H_{nn'}(t) = -\Delta(\delta_{n,n'+1} + \delta_{n+1,n'}) + \left(E_n + Ax_n \cos(\Omega t)\right)\delta_{nn'}$$

- In length dependence?
- coherent vs. incoherent quantum transport?

Lehmann, SK, Hänggi, Nitzan, PRL 88, 228305 (2002)

coherent quantum ratchet: length dependence

$$\Delta = 1, \ \hbar\Omega = 3, \ \Gamma = 0.1,$$

 $kT = 0.25, \ \mu = 0, \ E_{\rm B} = 10,$
 $E_{\rm S} = 1$

• current converges to non-zero value

$$\Delta = 1$$
, $\mu_{\rm L} = \mu_{\rm R} = 0$, $\Gamma = 0.1$, $E_{\rm D} = E_{\rm A} = 0$, $E_{\rm B} = 10$, $E_{\rm S} = 1$

- ratchet current exhibits resonances → coherent transport
- e.g. molecule: $A = e \mathscr{E} d_{\text{site}}$. $d_{\text{site}} \approx 1 \text{ nm}$, $\Delta = 0.1 \text{ eV}$ \implies electric field strength $\mathscr{E} = 10^6 \text{ V/cm}$

• Floquet transport theory

• DC current from AC driving

- ratchet effect
- nonadiabatic electron pump
- pumping heat

• Coulomb blockade effects

adiabatic pumping:

P. Brouwer, PRB 58, 10135 (1998)

- adiabatic pump current:
 - time-reversal summetry: I = 0
 - $I \propto$ frequency
- pumping is more effective beyond the adiabatic limit

pumping with coupled quantum dots

T. H. Oosterkamp et al., Nature 395, 873 (1998)

• current maximum at resonance $\hbar\Omega = \sqrt{(\epsilon_{\rm L} - \epsilon_{\rm R})^2 + \Delta^2}$

- zero voltage: $\mu_{\rm L} = \mu_{\rm R} = \mu$
- coupling to microwaves:

 $H(t) \sim x \cos(\Omega t)$

- ? behaviour close to resonances
- **?** current noise
- ? pumping and time-reversal symmetry

Strass, Hänggi, SK, PRL 95, 130601 (2005)

• double dot

$$H(t) = -\frac{\Delta}{2} (c_1^{\dagger} c_2 + c_2^{\dagger} c_1) + \frac{1}{2} \left(\underbrace{\delta + \hbar\Omega}_{\text{internal bias}} + A\cos(\Omega t) \right) (n_1 - n_2)$$

interaction picture w.r.t. H₀(t) → H̃(t) = H̃(t + 2π/Ω) ≪ ħΩ
 time-scale separation: replace H̃(t) by its time average

→ effective static Hamiltonian

$$H_{\rm eff} = -\frac{\Delta_{\rm eff}}{2}(c_1^{\dagger}c_2 + c_2^{\dagger}c_1) + \frac{\delta}{2}(n_1 - n_2)$$

renormalized tunnel matrix element $\Delta \longrightarrow \Delta_{\text{eff}} = J_1(A/\hbar\Omega)\Delta$

• leads: *t*-average of Green's function $g^{<} = \frac{i}{\hbar} \langle c_q^{\dagger}(t-\tau) c_q(t) \rangle$ effective electron distribution

$$f_{\rm eff}(\epsilon) = \sum_{k} J_k^2 (A/2\hbar\Omega) f(\epsilon + (k \pm 1/2)\hbar\Omega)$$

• "voltage": $f_{\text{L,eff}}(0) - f_{\text{R,eff}}(0) = J_0^2(A/2\hbar\Omega)$

(as in Tien-Gordon theory!)

- total transmission at $\epsilon = 0$ determined by
 - inter-well coupling $\Delta_{\text{eff}} = J_1(A/\hbar\Omega)\Delta$
 - dot-lead coupling Γ

(beyond Tien-Gordon!)

- current maximum and noise minimum
- Fano factor F = S/eI

noise strength considerably below shot noise level F = 1

- at *n*-photon resonance
 - intra-well coupling

 $\Delta_{\rm eff} = J_n(A/\hbar\Omega)$

• "voltage"

 $f_{\rm L,eff}(0) - f_{\rm R,eff}(0) = J_0^2 (A/2\hbar\Omega)$

double dot, wide-band limit: $F_{\min} = \frac{7}{32}$

• ideal conditions: $- \operatorname{large bias} \epsilon_0$

- resonant driving $\hbar \Omega \approx \epsilon_0$

– weak wire-lead coupling $\Gamma \lesssim 0.1 \Delta$

• typical parameters: $\Delta = 10 \ \mu eV$, $\Omega = 2\pi \times 15 \ GHz$

 $\Rightarrow I \approx 40 \, \text{pA with } F \approx 0.23$

the adiabatic limit

- adiabatic pumps:
 - cyclic evolution in parameter space
 - current determined by enclosed area $\longrightarrow I_{adiabatic} \propto \Omega$
- here:
 - one parameter, area = $0 \longrightarrow I_{adiabatic} = 0$
 - $I \propto \Omega^2$?

current & noise in the adiabatic limit?

current	$\propto \Omega^2$ (as expected)
noise	$\propto \Omega$
Fano factor	$\propto \Omega^{-1}$

• Floquet transport theory

• DC current from AC driving

- ratchet effect
- nonadiabatic electron pump
- pumping heat

• Coulomb blockade effects

Can one extract heat/energy from the lead ?

• "heat":

energy w.r.t. ground state

- "cooling":
 - remove electrons with $\epsilon > \mu$
 - fill holes with $\epsilon < \mu$
 - ensure I = 0

to avoid charging of the leads

J. P. Pekola, Nature 435, 889 (2005)

heat balance for right lead:

$$\frac{\mathrm{d}}{\mathrm{d}t}E_{\mathrm{R}} = \sum_{q} (\varepsilon_{q} - \mu_{\mathrm{R}}) \frac{\mathrm{d}N_{\mathrm{R},q}}{\mathrm{d}t} = \dots = \frac{1}{h} \sum_{k=-\infty}^{\infty} \int d\varepsilon \left[(\mu_{\mathrm{R}} - \varepsilon) T_{\mathrm{LR}}^{(k)}(\varepsilon) f_{\mathrm{R}}(\varepsilon) + k\hbar\Omega T_{\mathrm{RR}}^{(k)}(\varepsilon) f_{\mathrm{R}}(\varepsilon) + (\varepsilon + k\hbar\Omega - \mu_{\mathrm{R}}) T_{\mathrm{RL}}^{(k)}(\varepsilon) f_{\mathrm{L}}(\varepsilon) \right]$$

Rey, Strass, SK, Hänggi, Sols, PRB 76, 085337 (2007)

- thermal occupation $f(\epsilon)$ monotonously decaying
 - → inelastic backscattering always leads to heating

$$\frac{\mathrm{d}E_{\mathrm{R}}}{\mathrm{d}t} < 0 \text{ nevertheless possible } ?$$

• GaAs heterostructure

size ~ 10 nm, $\hbar\Omega = 2$ meV, amplitude $V_{ac} \sim 100 \mu V$

- dominant channels: $\Delta E = \pm \hbar \Omega$
- numerical computation of the transmission: Floquet scattering theory & transfer matrices

heat pumping

- $\frac{\mathrm{d}}{\mathrm{d}t}E_{\mathrm{R}} < 0$, cooling!
- I = 0 possible
- cooling power: ~ pW

Rey, Strass, SK, Hänggi, Sols, PRB 76, 085337 (2007)

temperature dependence

for vanishing current:

- heat pumping: from cold to warm
- operating regime:
 - $T \gtrsim 10 \,\mathrm{K}$
 - $\Delta T \lesssim 1 \,\mathrm{K}$

efficiency

optimal cooling:

- contact with lead at zero temperature
- fully transparent 1d channel: $T(\epsilon) \equiv 1$

$$\frac{\mathrm{d}E_{\mathrm{R}}}{\mathrm{d}t} = \frac{1}{h}\int\mathrm{d}\epsilon~(\epsilon-\mu)f(\epsilon) = \frac{\pi\,k_{\mathrm{B}}^2\,T^2}{12\hbar}$$

→ "quantum of cooling power"

 $\approx 50 \,\mathrm{pW}$ (at $T = 10 \mathrm{K}$)

nonadiabatic heat pump rate $\approx 2\%$ of optimal value

• Floquet transport theory

• DC current from AC driving

- ratchet effect
- nonadiabatic electron pump
- pumping heat

• Coulomb blockade effects

• electron distribution P(N, t)?

• moments:

$$\langle N \rangle = N_0 + \frac{It}{e}$$

 $\langle N^2 \rangle = \langle N \rangle^2 + Dt$

→ "charge diffusion coefficient"

$$D = \lim_{t \to \infty} \frac{\langle \Delta N^2 \rangle}{t}$$

$$S(\omega \rightarrow 0) = e^2 D$$

D. K. C. MacDonald, 1949

- e-e interaction U
- master equation approach:
 - perturbation theory for weak wire-lead coupling
 - master equation for reduced density operator

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\text{wire}} = \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{tr}_{\text{leads}}\rho, \quad I \sim \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{tr}_{\text{leads}}N_{\mathrm{L}}\rho, \quad S \sim \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{tr}_{\text{leads}}N_{\mathrm{L}}^{2}\rho$$

→ counting statistics, Mac Donald formula Elattari & Gurvitz, Phys. Lett. (2002) Bagrets & Nazarov, PRB (2003) Flindt, Novotný & Jauho, PRB (2004)

- $U \rightarrow \infty$: at most one excess electron
- decompostion into Floquet basis
- spin vs. spinless electrons

- close to resonance: no significant changes
- finite *U*: work in progress

Kaiser, Hänggi, SK, EPJ B **54**, 201 (2006) Kaiser & SK, Ann. Phys. (in press); cond-mat/0705.4204

• Floquet transport theory for driven conductors

- photon-assisted tunneling
- ratchets, pumps, rectification
- heat pumps
- Coulomb repulsion
- current and noise control

• current projects

- disorder & pumping
- stochastic driving
- coupling to molecule vibrations

• review article

S. Kohler, J. Lehmann, and P. Hänggi, Phys. Rep. 406, 379 (2005)

Kaiser, Hänggi, SK, NJP 10 065013 (2008)

- Franz-Josef Kaiser Michael Stark
 Peter Hänggi
- Jörg Lehmann
- Sébastien Camalet
- Michael Strass
- Abraham Nitzan
- Miguel Rey Fernando Sols

(Augsburg) (Basel) (CNRS Paris) (Nagler & Co) (Tel Aviv)

(Madrid)

