

Electron and phonon in carbon nanostructures: a local study with scanning tunneling spectroscopy

Lucia Vitali

Max-Planck Institut für Festkörperforschung, Stuttgart, Germany

Spectroscopy on atomic scale

Scanning Tunneling Spectroscopy:

Co and H-Co on Cu(111)

TbPc2 on Cu(111)

Inelastic electron tunneling spectroscopy:

Point contact spectroscopy:

Self-assembling, lithography, transport, ...

Carbon allotropes

diamond (3D)

planar graphite

C₆₀ (0D) 1985

2D

Graphene 2004

single-walled carbon nanotube (1D) 1991

Novel fascinations on Carbon

Fullerenes

Metallic, superconducting, isolating transition (doping level), Endohedral fullerenes (Metal or N): Magnetism and superconductivity

CNT

Electronic, mechanical and electrical new properties: Quasi 1D (model system for physicists!), metallic or semiconductor, supports large current flux, high carrier mobility, electron field emitters, CNT-FET, Single electron transistors high young modulus, high tensile strength, gas sensors, gas storage, ...,

Graphene

2D conductor, linear electron band, electron velocity independent on energy, high carrier mobility, QHE at RT, gas sensor, ...,

Semiconducting SWCNTs as components of FETs

* S.J. Wind, J. Appenzeller, R. Martel, V. Derycke & Ph. Avouris; Appl. Phys. Lett. <u>80</u> (2002), 3817.

Integrated Logic Circuit Assembled on a Single Carbon Nanotube

Z. Chen et al., Science 5768, 1735 (2006)

donor-acceptor hybrids: natural photosynthesis

Scanning Tunneling Microscopy & Spectroscopy

Structure of single-wall carbon nanotubes (SWCNTs)

$$\omega(k) = 2\sqrt{rac{K}{M}} \left| \sin rac{1}{2} ka
ight|$$

A.M.Rao et al. Science 275.187.1997

Confocal Raman Spectroscopy

A.Mews et al. Adv.Mat.12.1210.2000

Near-Field Raman Spectroscopy

A.Hartschuh et al. PRL.90.095503.2003

Spectroscopy technique: Local probe of lattice dynamics (vDOS)

Inelastic Electron Tunneling Spectroscopy

- Carbon nanotubes (SWCNT)

- Graphite (HOPG)

Electron Tunneling Spectroscopy

Elastic tunneling

Inelastic tunneling

 $dI/dV \sim \rho_{eI} + \rho_{in}$

SWCNT on Au/mica

Recipe: Disperse SWCNT in Dichlorethane, Sonicate and centrifuge. Deposit the solution on Au substrates

Acknowledgment: * <u>M.Knez</u>, <u>Y.W.Fan</u> for the sample preparation

From STM images....

Determination of (n,m)

Metallic tube $\Delta E = 6\gamma_0 a_{C-C}/d$ $\Delta E \sim 1.38V$

Diameter ~15.4Å

(14,8) tube

(9,0) tube - metallic

Energy separation between the first vHs singulatities:

 $\Delta E = 2\gamma_0 a_{C-C}/d$ semiconducting $\Delta E = 6\gamma_0 a_{C-C}/d$ metallic

 γ_0 = 2.5 eV tight-binding overlap energy a_{C-C} =1.42Å lattice constant

Dependence of the radial breathing mode on the SWCNT diameter

 $d^2 I/dV^2$

C=262meV*Å

C~270-290meV*Å D.Sanchez-Portal et al PRB.59.12678.1999 J.Kurti et al. PRB.58.R8869.1998

Local properties:

Intramolecular-junction

Fig.2. A few examples of manotube connections. From left to right straight junction between two zig-zag nanetubes, a Dunlap knee formed by joining a zig-zag to un armochair nanorube, and (9,0) connected to two chiral nanotubes. The pentagons and heptagons are indicated by the p and h letters, respectively

Ph.Lambin, V.Meunier, Appl.Phys.A 68.263.(1999)

Tube cap

Tube crossings

Local probe: Intra-molecular junction or 5/7 pairs

Local probe: Nanotube capping

Intermolecular- "Neck" junction Cap

Nanotube capping: d^2I/dV^2

PRL.93.136103.2004

Theory for RBM (powered by C.S.Jayanthi et al)

$(5,5)+C_{60}$

-finite length:

A tube can sustain an RBM only if its length exceeds 3.5nm.

-capped region:

Transforms from radial to tangential character inside the tube

Crossed Nanotube Junction pressure induced local metallization

Phys. Rev. Lett. 96, 086804 (2006)

If a (9,2) tube crosses a bundle...

1. DOS

PRL 96, 086804 (2006)

1.1 DOS: Local pressure-induced metallization

d(9,2)=8.2Å bundle~15Å

Tube compressed of ~35% at the crossing junction

Pressure at crossing junction=15GPa (Assuming Bulk modulus=35GPa)

PRL 96, 086804 (2006)

1.2 DOS: I mage-charges

Contact potential $\Delta = \Delta_{holes} - \Delta_{image}$

 $\Delta V = \Delta Q / C_{TS}$

 ΔV =60meV C_{TS}~0.1aF

 ΔQ = additional 0.025hole/nm (= ~25% total charge transferred)

2. Vibrational density of states

HOPG

FIG. 1. Graphite π -band structure near some relevant points M, Γ , and K in the energy range considered in this work.

IETS of HOPG

Phonons + Plasmon

Experiment

DFT powered by L.Wirtz, A.Rubio

PRB 69, R121414, (2004)

The total density of phonons can be detected with STM-IETS

Phonon assisted tunneling process

Electron transmission probability

-Enhancement of the phonon modes at K

Take home message

- Inelastic Tunneling Spectroscopy as probe of lattice dynamics (vDOS)
 - 1. HOPG (phonon assisted tunneling process)
 - 2. SWCNT: RBM + G band

- Map of the vibration frequencies along the tube
 - vibrational modes vs. tube structural changes (i.e. 5/7 pairs or tube deformations)
 - 2. charge transfer

Acknowledgments

M.Burghard, M.A.Schneider, K.Kern, C.Riedl, U.Starke @MPI-Stuttgart & Uni Erlangen

L.Wirtz, A.Rubio, @San Sebastian & Institute for Microelectronics and Nanotechnology, Villeneuve d'Ascq

> Lei, Liu, C.S.Jayanthi, S.Y.Wu @University of Louisville

> > You for your attention!

