Quantum Transport in Carbon-based Nanostructures

Norbert Nemec *Promotionskolloquium Regensburg, 27. Juli 2007*

Molecular Computing Group

Norbert Nemec

Outline

0) Background: Carbon hybridization and sp^2 -carbon structures

Norbert Nemec

Universität Regensburg

Orbital hybridization in carbon

Carbon: atomic number 6, atomic ground state $1s^22s^22p^2$

Norbert Nemec

Nanostructures of sp^2 -hybridized carbon

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Geometry and electronic structure of graphene

hexagonal lattice, 2-atom π -orbital basis:

- \Rightarrow pointlike Fermi-"surface" at K-points
- \Rightarrow semi-metallic character
- \Rightarrow massless bands at $E_{\rm F}$ (Dirac-like theory)

[Wallace, Phys. Rev. 71, 622 (1947)]

Norbert Nemec

5

B

Carbon nanotubes

Norbert Nemec

Universität Regensburg

Outline

0) Background: Carbon hybridization and sp^2 -carbon structures

Molecular Computing Group

Norbert Nemec

Extended contacts to carbon nanotubes

CNT-transport measurements – typical experimental setup:

courtesy of C. Strunk Regensburg, 2004

(contacts \gtrsim 100nm by metal evaporation, e.g. Au, Cr, Pd etc.)

Breit-Wigner resonance in molecular junction

Breit-Wigner resonance of single energy level: $T(E) = \frac{4\Delta_{\rm L}\Delta_{\rm R}}{4(E-\varepsilon)^2 + (\Delta_{\rm L} + \Delta_{\rm R})^2}$

neutron capture: Breit and Wigner, Phys. Rev. 49, 519 (1936) resonant tunneling: Stone and Lee, Phys. Rev. Lett. 54, 1196 (1985)

Norbert Nemec

Breit-Wigner resonance in molecular junction

For
$$E = \varepsilon$$
:

$$T = 4 \left(\frac{\Delta_{\rm L}}{\Delta_{\rm R}} + \frac{\Delta_{\rm R}}{\Delta_{\rm L}} \right)^{-2}$$

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Breit-Wigner resonance of extended molecule

Norbert Nemec

 Δ/Δ_0

Universität Regensburg

Minimal model for contact to CNT

semiinfinite linear chain on-site energy $\varepsilon = 0$ hopping paramter $\gamma = 1$ contact length N

contact strength Δ

$$T(E) = \frac{8\sqrt{4 - E^2} \operatorname{Im}(f_N(E/2 - i\Delta/4))}{\left|E - i\sqrt{4 - E^2} - 2f_N(E/2 - i\Delta/4)\right|^2}$$

 $f_N = U_{N-1}(x)/U_N(x)$

 $U_N(x)$: Chebyshev polynomials (2nd kind)

Norbert Nemec

Minimal model for contact to CNT

semiinfinite linear chain

on-site energy $\varepsilon = 0$ hopping paramter $\gamma=1$

contact length N

contact strength Δ

$$T(E) = \frac{8\sqrt{4-E^2} \operatorname{Im}(f_N(E/2 - i\Delta/4))}{\left|E - i\sqrt{4-E^2} - 2f_N(E/2 - i\Delta/4)\right|^2}$$

Length saturation of transmission

Norbert Nemec

Universität Regensburg

Length saturation of contact reflection

contact reflection: R = 1 - T

 $\begin{array}{c} N \text{-resonant regime:} \\ R \approx \exp(-N\Delta) \end{array} \longleftrightarrow$

Norbert Nemec

Universität Regensburg

Length saturation of contact reflection

contact reflection: R = 1 - T

$$\begin{array}{c} N \text{-resonant regime:} \\ R \approx \exp(-N\Delta) \end{array} \longleftrightarrow \begin{array}{c} N \text{-independent regime:} \\ R \approx \Delta^2/64 \end{array}$$

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Carbon nanotube in two-terminal setup

 $L_{\rm c}^{\rm eff}(\Delta) = \ell_{\rm uc} \frac{\alpha_1}{\Delta} \ln \frac{\alpha_2}{\Delta} \qquad (\alpha_1 = 1.34 \, {\rm eV}, \, \alpha_2 = 9.14 \, {\rm eV})$

[N. Nemec, D. Tománek and G. Cuniberti, Phys. Rev. Lett. 96, 076802 (2006)]

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Ab initio results for contact metals Ti and Pd

microscopic DFT-study, using SIESTA (LDA-PZ):

- \rightarrow better matching of work function in Pd/C (less charge transfer)
- \rightarrow lower binding energy in Pd/C

	Ti	Pd	
$\Delta = \gamma_{\rm Me/C}^2 \times \rm{SDOS}_{\rm metal}$	0.1 eV	0.02 eV	=
$L_{\text{eff}}^{\text{c}} = \ell_{\text{uc}} \frac{\alpha_1}{\Delta} \ln \frac{\alpha_2}{\Delta}$	$\sim 4\mathrm{nm}$	$\sim 30\mathrm{nm}$	

transparent Pd contacts due to weak coupling

[N. Nemec, D. Tománek and G. Cuniberti, Phys. Rev. Lett. 96, 076802 (2006)]

Norbert Nemec

Outline

0) Background: Carbon hybridization and sp^2 -carbon structures

Norbert Nemec

Length scales in disordered carbon systems

Universität Regensburg

Multilayer graphene and carbon nanotubes

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Hofstadter butterfly of graphene

Hofstadter butterfly of carbon nanotubes

Norbert Nemec

Universität Regensburg

A) Extended contacts to carbon nanotubes: weaker coupling \leftrightarrow higher transparency

B) Effects of disorder: elastic mean free path \leftrightarrow localization length

C) Multilayer systems:

approximate momentum conservation / incommensurability

D) Magnetoelectronic structure:
Hofstadter butterflies / anomalous Landau levels

– – Thanks – –

Molecular Computing Group

Giovanni Cuniberti

Norbert Nemec

... and many, many others

Additional slides

Supersymmetry in graphene

$$\mathcal{H}_{D} = \begin{pmatrix} 0 & \mathcal{Q} \\ \mathcal{Q} & 0 \end{pmatrix}; \ Q = v_{\mathrm{F}}(\sigma_{x}\mathcal{P}_{x} + \sigma_{y}\mathcal{P}_{y})$$
$$\mathcal{U}\mathcal{H}_{D}\mathcal{U}^{\dagger} = \begin{pmatrix} \mathcal{Q} & 0 \\ 0 & -\mathcal{Q} \end{pmatrix}$$

Molecular Computing Group

Norbert Nemec

Hofstadter butterflies of graphitic nanostructures

N. Nemec and G. Cuniberti, Phys. Rev. B **74**, 165411 (2006) N. Nemec and G. Cuniberti, Phys. Rev. B **75** (Rapid Comm.), 201404 (2007)

Group Norbe

Norbert Nemec

The original Hofstadter butterfly

Norbert Nemec

Universität Regensburg

1975 in Regensburg...

HP 9820A ("Rumpelstilzchen") (8MHz/16bit CPU, 3432 byte RAM...)

D. Hofstadter G. Wannier G. Obermair

Phys. Rev. B 14, 2239 (1976)

4

Molecular Computing Group

Norbert Nemec

Conventional Landau levels

Norbert Nemec

Universität Regensburg

Hofstadter butterfly of graphene

Rammal, J. Phys. (Paris) 46, 1345 (1985)

Norbert Nemec

Universität Regensburg

Supersymmetric Dirac electrons

linearization around the K-points \Rightarrow 2D-Dirac Hamiltonian:

$$H_D = \begin{pmatrix} 0 & Q \\ Q & 0 \end{pmatrix}, \text{ with } Q = v_{\mathrm{F}}(\sigma_x P_x + \sigma_y P_y), \mathbf{P} = -\mathrm{i}\hbar\partial + e\mathbf{A}$$

supersymmetric spectrum:

 $E_0 = 0$ (4-fold degenerate, half-filled) $E_n = \pm v_F \sqrt{2e\hbar B n}$ (each 4-fold deg.)

see, e.g.: M. Ezawa, cond-mat/0606084

Molecular Computing Group

Norbert Nemec

Hofstadter butterfly of graphene

(standard) Landau levels ("LL"): $E - E_{\min} \propto \frac{\hbar e}{m^*} B\left(n + \frac{1}{2}\right)$ $E_{\max} - E \propto \frac{\hbar e}{m^*} B\left(n + \frac{1}{2}\right)$

relativistic LL: $(v_{\rm F} = \sqrt{3}\gamma a/2\hbar)$ $E - E_{\rm F} = \pm v_{\rm F}\sqrt{2e\hbar B n}$

supersymmetric LL ("SuSyLL"): $E = E_{\rm F}$

Molecular Computing Group

Norbert Nemec

Hofstadter butterfly of bilayer graphene

broken symmetries: $\rightarrow \Phi_0$ -periodicity \rightarrow electron-hole

Bernal-

SuSyLL protected by symmetry

N. Nemec and G. Cuniberti, Phys. Rev. B 75 (Rapid Comm.), 201404 (2007)

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Shifted bilayer graphene

N. Nemec and G. Cuniberti, Phys. Rev. B 75 (Rapid Comm.), 201404 (2007)

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Hofstadter butterfly of graphene

 $B_0^{\perp} = \Phi_0 / A_{\text{plaquette}}$ $\approx 79 \,\text{kT} \,(!!)$

Norbert Nemec

Universität Regensburg

Graphene nanoribbon

Norbert Nemec

Universität Regensburg

Bilayer graphene

$$\begin{split} \gamma_{ij}^{\text{interlayer}} = & \frac{\gamma_0}{8} \exp\!\left(\frac{d_{ij} - d_0}{\delta}\right) \\ \beta = & \frac{\gamma_0}{8}, \ d_0 = 3.34 \text{ Å}, \ \delta = 0.45 \text{ Å} \end{split}$$

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Theory: Peierls substitution

$$\gamma_{ij}(\boldsymbol{B}) = \gamma_{ij}^{0} \exp\left(\frac{2\pi i}{\Phi_0} \int_{\boldsymbol{r}_i}^{\boldsymbol{r}_j} d\boldsymbol{r} \cdot \boldsymbol{A}(\boldsymbol{r})\right)$$

magnetic field: $B(r) = \nabla \times A(r)$ gauge field: A(r) (*"vector potential"*) flux quantum: $\Phi_0 = h/e$

Peierls, Z. Phys. 80, 763 (1933)

Phase of circular path given by enclosed area *F*:

$$\varphi_{i \to j \to k \to i} = \exp\left(2\pi \mathrm{i} \frac{FB_{\perp}}{\Phi_0}\right)$$

Molecular Computing Group

Norbert Nemec

Universität Regensburg

The original Hofstadter butterfly (I)

Norbert Nemec

Universität Regensburg

The original Hofstadter butterfly (II)

Molecular Computing Group

Norbert Nemec

Universität Regensburg

e-h asymmetry

Bernalstacking

Wavefcns in graphene **monolayer**

Norbert Nemec

Universität Regensburg

Split of the SUSYLL

Bernal stacking: SuSyLL protected against split

Shifted configurations: SuSyLL split by varying amounts

Norbert Nemec

Universität Regensburg

Split of the SUSYLL

Bernal stacking: SuSyLL protected against split

Shifted configurations: SuSyLL split by varying amounts

Molecular Computing Group

Norbert Nemec

Universität Regensburg

Magnetic field scales in CNT

$$B_0^{\perp} = \Phi_0 / A_{\text{plaquette}} \\ \approx 79 \,\text{kT}$$

$$B_0^{\parallel} = \Phi_0 / r^2 \pi \\ = \frac{2\sqrt{3}\pi}{m^2 + n^2 + m n} B_0^{\perp}$$

(6,6) CNT: $B_0^{\parallel} \approx 7.9 \,\mathrm{kT}$

(100,100) CNT: $B_0^{\parallel} \approx 28 \, T$

Molecular Computing Group

Norbert Nemec

Evolution of band structure and DOS

Norbert Nemec

Visualization as butterfly plot

for A-B-oscillations in parallel fields, see also: Bachtold et al., Nature **397**, 673 (1998)

Norbert Nemec

Universität Regensburg

Armchair CNT

• B_{\perp} : states at Fermi level protected by supersymmetry see also: Lee and Novikov, Phys. Rev. B **68**, 155402 (2003)

Norbert Nemec

Universität Regensburg

Semiconducting CNT

(11,0) CNT: gap size oscillates nonperiodically

(6,5) CNT: helical symmetry broken by B-field \Rightarrow large number of bands low dispersion

(gap observed in optical experiments, J. Kono et al.)

Norbert Nemec

Huge SWCNT

(size comparable to external shell of MWCNT)

Norbert Nemec

Universität Regensburg

Experimentally accessible fields

• scaling behavior:
$$\text{DOS}_{(m,m)}(E, \mathbf{B}) = \text{DOS}_{(m',m')}\left(\frac{m}{m'}E, \frac{m^2}{m'^2}\mathbf{B}\right)$$

Norbert Nemec

Universität Regensburg

Inter-shell effects in DWCNT

• no interaction \Rightarrow DOS = DOS_{inner} + DOS_{outer}

Norbert Nemec

Inter-shell effects in DWCNT

- no interaction \Rightarrow DOS = DOS_{inner} + DOS_{outer}
- SuSyLL split up by intershell-interaction

Inter-shell effects in MWCNT

 $\Delta E \approx 0.1 \, \mathrm{eV}$ independent of relative positions !!

Molecular Computing Group

Norbert Nemec

Universität Regensburg