Bipolar supercurrent in graphene

Hubert B. Heersche, Pablo Jarillo-Herrero, Jeroen B. Oostinga, Lieven M. K. Vandersypen and Alberto F. Morpurgo *Nature* **446**, 56-59, March 2007

> Gabriel Niebler Journal Club Strunk/Cuniberti 04.07.2007

1.) Josephson effect

2.) Why graphene?

3.) Sample preparation & characterization

4.) Results

The Josephson effect

E

- One superconducting electrode
- Non-superconducting material
- Andreev reflection

The Josephson effect

 $\cdot I_{C}$

- Two superconducting electrodes
- Thin, non-superconducting barrier
- Andreev reflection on both contacts
- Proximity effect
- Tunneling of Cooper-pairs possible

Sample characterization

B = 35 mT

 $T = 30 \, \text{mK}$

20

40

Results

• Dips occur at $V=2\varDelta/en$, with $n\epsilon\mathbb{N}$

- Superconducting gap: $\varDelta = 125 \mu eV$
 - in accordance with expectations for

Ti/AI bilayer

- Application of external microwave field
- AC-Josephson effect
- Shapiro steps of amplitude $\hbar\omega/2e$
- ω : microwave frequency

Results – normal state

TRS usually suppressed in normal state (no coupling between valleys), but can be restored by impurities or edges.