journal club presentation

by Lydia Nemec

Molecule Cascades

A. J. Heinrich, *et al. Science* **298**, 1381 (2002); DOI: 10.1126/science.1076768

Universität Regensburg

Outline

- apparatus and methods
- configuration of CO molecules on a copper (111) surface
 - "molecule cascades"
- stability of CO on Cu (111)
- toppling dominoes at nanometer-scale and low temperatures
- cascade logic circuits
- cascades and computation

Apparatus and methods

Jniversität Regensburg

- STM at low temperature and ultra-high-vacuum
 - fixed at 5K
 - variable between
 0.5K and 40K
- clean Cu(111) single crystal surfaces

Apparatus and methods

Adsorbing CO molecules onto Cu surface

vdia Nemec

 admitting CO gas with the crystal held at 15 K

 CO binds on top of the surface Cu atoms standing upright with the carbon atom closest to the Cu surface

CO configurations

- CO monomer
 - 2 CO as nearest neighbours "dimer"
- "trimers": 3-fold symmetric closed package
 - bend-line configuration
 - straight-line configuration

The stability of CO on Cu(111)

STABILITY

"chevron" stable enough to image decays ~1min decay only as shown

low-energy spacing, island formation observed at higher temperatures (>5K)

Lydia Nemec

Molecule Cascades

Linked chevron cascade

- form an initial chevron
- chevron decays spontaneously
- → forms a new chevron
- energy of the system lowered with each hop
- If thermal energy is higher than the change in energy due to a hop, backwards hops became possible
- → propagation time rises

The hopping mechanism

environmental dependency

- presence of STM tip influences the decay rate (e.g. repeated imaging or holding the tip fixed)
- nearby defects (e.g. steps)
- minimized proximity effects:
 - STM tip only used to start the cascade and to detect a characteristic signal near the end
 - enclosed cascades with CO walls

The hopping mechanism Model of the hopping rate

$$hopping rate[R] = \frac{(number of hops)}{(propagation time)}$$

$$R = R_{QT} + A \cdot e^{(\frac{-E}{Tk_B})}$$

- R ... hopping rate
- Rot ... tunneling rate
- E ... activation energy

... Arrhenius Factor

in this case: tunneling from thermally excited states of the molecule

Α

see

Understanding the Hopping Mechanism of Molecule Cascades at Very Low Temperatures A.J. Heinrich, C.P. Lutz, J.A. Gupta, and D.M. Eigler 12th International Conf. American Institute of Physics 2003 Volume 100 page 168-176

ydia Nemec

Cascades logic circuits Mechanical computation

- A molecule cascade serves as a wire to communicate 1 bit
- toppled and untoppled states representing binary 0 and 1
- different kinds of gates are possible
- difficulties with NOT gate
- NOT gate requires that all molecules in the output are untoppled, when the input topples
 → untoppled state has higher energy than toppled
- NOT gate can be realized in a 2-Input-Sorter (so-called "clocked-NOT")

Cascades logic circuits Logic AND Gate

Input X Output B nput \

For setting up a chevron in the middle, both Input cascades have to be triggered
 STM Image

5.1nm by 3.4nm

CO that hops
 after hopping

Cascades logic circuits

Two Input Sorter

computes logic AND and OR of the input Fanout - duplicates the input signal

> Crossover – to pass the two signals through each other

Cascades logic circuits

occasional backwards and premature hops observed in the Crossover, the Fanout and the OR Gate

(~1 per day)

ia Nemec

Cascades and Computing

Three-Input Sorter

STM Imagepropagation time at 5K:12nm x 17nm~1 hour from Input to Output

Universität Regensburg

Conclusion

- Molecule cascades allow to study the motion of individual molecules.
- The direction and rate of molecular motion was engineered.
- Working digital-logic elements were built 260000 times smaller than conventional electronic devices.
- Only one-time calculations are possible
 → no reset mechanism.

The hopping mechanism

Hopping rate vs. wall spacing

Jniversität Regensburg

- Environmental influence on hopping rates:
- nearby defects, steps
- impurities
- surface-state standing waves
- and other CO molecules
- hopping rate is independent of wall spacing for d>4d0
- enclosed cascades with CO walls
- reduce environmental influences

The hopping mechanism Temperature dependency

- dotted line in B → fitted with same values for A and E
- thermally activated process dependent on the C isotope E=(9.5±0.9)me
- solid lines in A & B \rightarrow with
- $E = (9.5 \pm 0.9) meV$ $A = 10^{(5.8 \pm 0.5)} s^{-1} for^{12}C$ $A = 10^{(5.4 \pm 0.5)} s^{-1} for^{13}C$

The hopping mechanism Isotope dependency

- coabsorbed ¹²C ¹⁶O and ¹³C ¹⁶O by mixing isotope-selected gas in the room temperature vacuum chamber
 - Picture done by IETS (Inelastic electron tunneling spectroscopy)

The hopping mechanism Model of the hopping rate

- observed A (~10^5.5) is smaller than initial state vibrational frequencies (~10^12-10^13)
- in this case: tunneling from thermaly excited states of the molecule

WKB Approximation

$$\mathsf{R}_{QT} = \mathsf{A}_{T} \cdot \exp\left[\frac{(-4 \cdot \pi^{2} \cdot \sqrt{2m})}{h} \times \int_{initial}^{final} \sqrt{v_{(x)} - ZPE} \, dx\right]$$

m ... tunneling mass
V(x) ... potential
ZPE ... zero point energy
A_T ... attempt frequency

Lydia Nemec