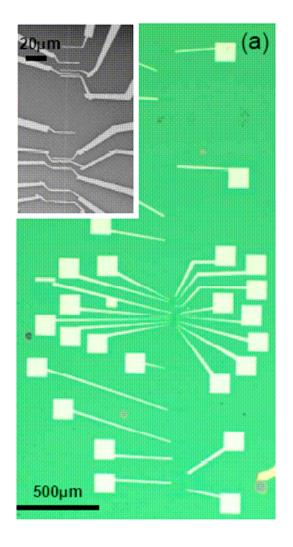
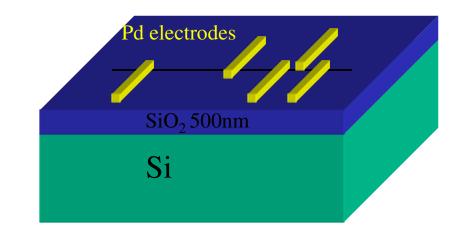
Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes

Meninder Purewal¹, Byung Hee Hong², Anirudhh Ravi², Bhupesh Chandra³, James Hone³, and Philip Kim²
 ¹ Department of Applied Physics, Columbia University, New York, New York 10027
 ² Department of Physics, Columbia University, New York, New York 10027 and
 ³ Department of Mechanical Engineering, Columbia University, New York, New York 10027

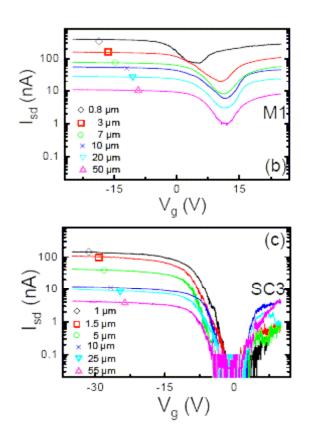
Journal Club Carbon Nanotube


Mai 9, 2007

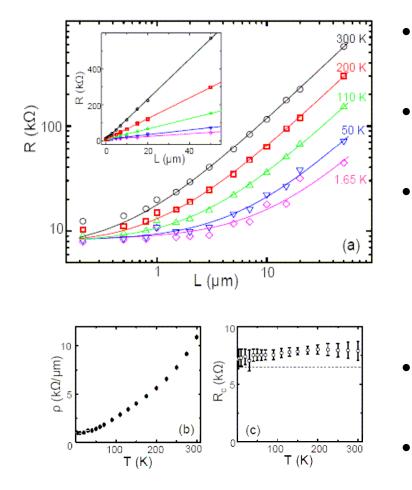

Andreas Stetter

Outline

- Sample setup
- Sample categorization
- Measurement of contact resistance and resistivity
- Determination of the mean free path
- The temperature dependent behavior of the mean free path
- Measurement with scanning gate microscopy infuence of disorder
- The non-linear scaling of R(L)
- Summary


Sample setup

- •Length of nanotubes > 1mm
- •Many pairs of contacts with different distance are fabricated
- •Diameter < 2.5nm
- •High bias saturation current < 30uA
- ➔ Only singlewall carbon nanotubes are contacted


Sample characterization

- $I_{SD}(V_g)$ is used to characterize the CNT as metallic or semiconducting
 - Metallic CNTs have small current suppression at Fermi- Level
 - In semiconducting CTNs current is strongly suppressed
- Different pairs of contacts are used to get the behavior depending on the intrinsic structure of the CNT;

Not from local disorder

Measurement of contact resistance and resitivity

- 2-point measurements of R(L) show linearbehavior for all measured temperatures
- For small distances the resistance converges to a finite value
- The behavior can be described well with:

$$R(L) = \rho L + R_C$$

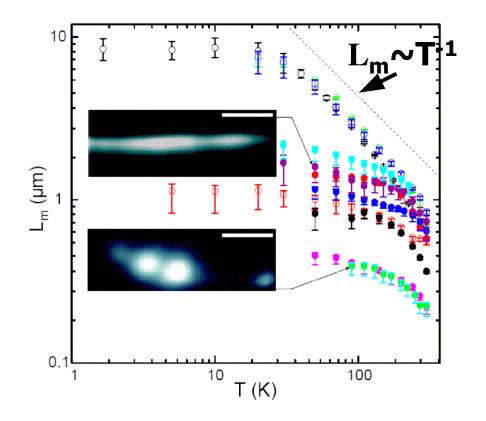
were ρ is the 1D resistivity and R_C is the contact resistance

- The contact resistance remains nearly constant for different temperatures
- The resistivity has metallic behavior
 - increases with increasing temperature
 - saturates to a value R_{sat} at low temperatures

Determination of the mean free path and the nontransparent contact resistance

The Landauer-Buttiker formula applied to SWCNTs:

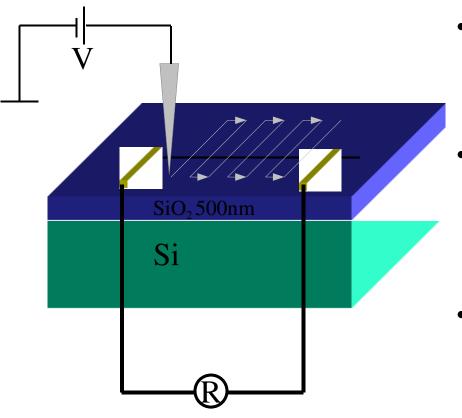
$$R(L) = (h/(4e^{2}))(L/L_{m}+1) + R_{nc}$$


$$R(L) = Lh/(4e^{2}L_{m}) + h/(4e^{2}) + R_{nc}$$
Compared to $R(L) = \rho L + R_{c}$

$$L_{m} = h/(4e^{2}\rho(T))$$

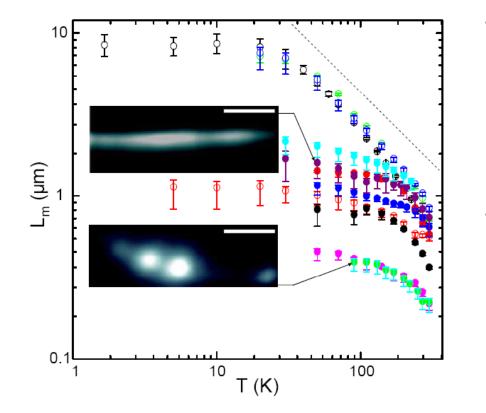
$$R_{nc} = R_{c} - h/(4e^{2})$$

	M1	M2	M3	M4	SC1	SC2	SC3	SC4	SC5	SC6	SC7
d(nm)	$2.0 \pm .2$	$1.3 \pm .4$	$1.7 \pm .6$	$1.6 \pm .4$	$1.6 \pm .4$	$1.8 \pm .6$	$1.9 \pm .4$	$2.1 \pm .2$	$2.2 \pm .2$	$2.0 \pm .6$	$2.2 \pm .2$
$R_c(k\Omega)$	$7.9\pm.8$	11.5 ± 2.9	8.3 ± 2.5	12.0 ± 4.4	10.2 ± 4.5	14.9 ± 5.7	$10.4 \pm .9$	7.0 ± 2.3	25.4 ± 4.2	6.9 ± 40	21.8 ± 14
$\rho_{sat}(k\Omega/\mu{\rm m})$	$0.76\pm.02$	$0.87\pm.02$	$0.93 \pm .01$	$6.5 \pm .08$	$2.95\pm.05$	$3.61 \pm .05$	$4.64\pm.01$	$5.91\pm.12$	$8.13 \pm .31$	$14.1 \pm .19$	$16.3 \pm .13$
$L_m^{sat}(\mu {\rm m})$	$8.56\pm.23$	$7.65\pm.17$	$7.07 \pm .08$	$1.00 \pm .01$	$2.24\pm.04$	$1.83 \pm .03$	$1.40 \pm .01$	$1.10\pm.02$	$0.80 \pm .03$	$0.47\pm.01$	$0.40\pm.01$

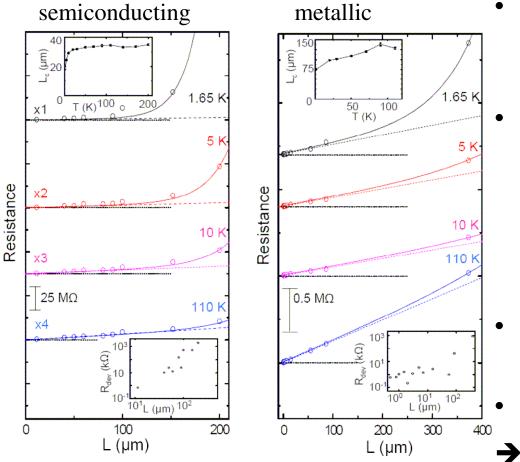

Temperature dependent behavior of the mean free path

- Different behaviours in two regimes
- High temperature: L_m~T⁻¹ → inelastic scattering between electrons and acoustic phonons dominates
- Low temperature: L_m saturates to the tube specific L_m^{sat}
- The lower L_m^{sat} the higher the separation temparature

How is L_m^{sat} defined?


Overlook: scanning gate microscopy

- Scanning with a tip with a well defined potential above the sample (→ coducting AFM) usig it as local gate
- Measuring the resistance of the tube
 for the local gate above every point
 on the sample results in a SGM
 image (the lower the resistance the
 darker the color)
- At the locations that limit the current through the CNT, the local gate changes the whole resistance



Electron mean free path versus disorder

- L_m is generally much higher for metallic CNTs (open circle) than that of semiconducting CNTs (closed circles) \rightarrow scattering of electrons in metallic CNTs is strongly suppressed
- CNTs with lower L_m^{sat} show much more disorder $\rightarrow L_m^{sat}$ is defined by the disorder in the tubes

The non-linear scaling of R(L)

- For longer lengthscales and low temperature there is a deviation from linear behavior
 - For determining the critical lengthscale L_c beyond which the non-linear behavior is dominant the following equation was used:

$$R(L) = R_c + R_Q \left(\frac{L}{L_m} + e^{\frac{L}{L_c}}\right)$$

- There was found that $L_c >> L_m$ for all temperature regimes
- L_c increased with increasing T
- This behavior of L_c shows that there is no strong localization

Summary

- Contact resistance and resistivity can be derived from 2-point measurements of R(L)
- With the Landauer-Buttiker formula L_m and R_{nc} was calculated
- For high temperatures scattering with acoustic phonons is dominant For low temperatures L_m saturates
- Measurements with SGM show that L_m^{sat} is determined by impurities
- Scattering of electrons is suppressed in metallic CNTs
- The non-linear scaling of R(L) shows that there is no strong localisation