# Charge transport through gated DNA; role of the helical confirmation

Andrey V. Malyshev

Quantum Nanosystems Group, GISC

Departamento de Física de Materiales Universidad Complutense de Madrid

on leave from the Ioffe Physico-Technical Institute St. Petersburg, Russia

#### Acknowledgments

- F. Domínguez-Adame, Universidad Complutense, Madrid
- E. Maciá, Universidad Complutense, Madrid
- V. Malyshev, University of Groningen
- R. Gutierrez, University of Regensburg

E. Martz, Uni. of Massachusetts: http://molvis.sdsc.edu/dna/ A. Herráez, Uni. of Alcalá: biomodel.uah.es/en/model4/dna/

# Outline

The DNA structure

Conductivity of the DNA

Modeling the gated DNA; the helical geometry

Current-voltage characteristics; strong gating effect

Possible applications for single molecule devices

Proposed experimental set-ups

Summary

A. V. Malyshev, Universidad Complutense, Madrid / Ioffe Institute, St. Petersburg

#### The structure of the DNA





# insulating: 5 publications

insulating: 5 publications

semiconducting: 6 publications

insulating: 5 publications

semiconducting: 6 publications

metallic: 6 publications

insulating: 5 publications

semiconducting: 6 publications

metallic: 6 publications

superconducting: 1

insulating: 5 publications

semiconducting: 6 publications

metallic: 6 publications

superconducting: 1

Factors affecting the conductivity:

- environment / DNA form
- base sequence



random correlated (natural DNA)  $\Rightarrow$  insulator

periodic (synthetic DNA)  $\Rightarrow$  semiconductor

Synthetic DNA:

- poly(A)-poly(T)
- poly(G)-poly(C)

# Semiconducting poly(G)-poly(C) DNA

# **Direct measurement of electrical transport through DNA molecules**

Danny Porath\*, Alexey Bezryadin\*†, Simon de Vries\* & Cees Dekker\*

\* Department of Applied Sciences, Delft University of Technology, 2628 CJ Delft The Netherlands



D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635 (2000)

# Semiconducting poly(G)-poly(C) DNA

#### **Direct measurement of electrical transport through DNA molecules**

#### Danny Porath\*, Alexey Bezryadin\*†, Simon de Vries\* & Cees Dekker\*

\* Department of Applied Sciences, Delft University of Technology, 2628 CJ Delft The Netherlands



D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635 (2000)

### **DNA models: dangling backbone ladder model**



D. Klotsa, R. A. Römer, and M. S. Turner, Biophys. J. 89, 2187 (2005)

# **Poly(G)-poly(C) DNA:** the ladder model





$$\hat{H}_{DNA} = \sum_{n,s=\pm 1} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$



$$\hat{H}_{DNA} = \sum_{n,s=\pm 1} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$



$$\hat{H}_{DNA} = \sum_{n,s=\pm 1} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$



$$\hat{H}_{DNA} = \sum_{n,s=\pm 1} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$

[K. Iguchi, Int. J. Mod. Phys. B **11**, 2405 (1997)]

A. V. Malyshev, Universidad Complutense, Madrid / Ioffe Institute, St. Petersburg

#### Helical geometry: modeling the gated DNA



$$\varepsilon_{sn} = \varepsilon_{sn}^{(0)} + s \, e \, \frac{V_g}{2} \, \cos\left(\frac{2\pi n}{10} + \varphi_0\right)$$
$$V_g = 2E_0 \, r, \quad s = \pm 1$$

#### Helical geometry: modeling the gated DNA



$$\varepsilon_{sn} = \varepsilon_{sn}^{(0)} + s \, e \, \frac{V_g}{2} \, \cos\left(\frac{2\pi n}{10} + \varphi_0\right)$$
$$V_g = 2E_0 \, r, \quad s = \pm 1$$

#### Site potential profile



#### **Mini-band width**



$$\Delta E \sim \exp\left(-\alpha N \sqrt{\frac{V_g}{t}}\right)$$

#### The ladder model + contacts



$$\hat{H} = \hat{H}_{DNA} + \hat{H}_{el} + \hat{H}_{DNA-el}$$

$$\hat{H}_{DNA} = \sum_{s,n} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$
$$\hat{H}_{el} = \sum_{s,k} \left( \varepsilon_{sM} c_{sk}^{\dagger} c_{sk} - t_M c_{sk+1}^{\dagger} c_{sk} + h.c. \right)$$
$$\hat{H}_{DNA-el} = \sum_{s} \left( -\Gamma_{sl} \, c_{s0}^{\dagger} b_{s1} - \Gamma_{sr} \, c_{sN+1}^{\dagger} b_{sN} + h.c. \right)$$

#### The ladder model + contacts



$$\hat{H} = \hat{H}_{DNA} + \hat{H}_{el} + \hat{H}_{DNA-el}$$

$$\hat{H}_{DNA} = \sum_{s,n} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$
$$\hat{H}_{el} = \sum_{s,k} \left( \varepsilon_{sM} c_{sk}^{\dagger} c_{sk} - t_M c_{sk+1}^{\dagger} c_{sk} + h.c. \right)$$
$$\hat{H}_{DNA-el} = \sum_{s} \left( -\Gamma_{sl} \, c_{s0}^{\dagger} b_{s1} - \Gamma_{sr} \, c_{sN+1}^{\dagger} b_{sN} + h.c. \right)$$

A. V. Malyshev, Universidad Complutense, Madrid / Ioffe Institute, St. Petersburg

#### The ladder model + contacts



$$\hat{H} = \hat{H}_{DNA} + \hat{H}_{el} + \hat{H}_{DNA-el}$$

$$\hat{H}_{DNA} = \sum_{s,n} \left( \varepsilon_{sn} b_{sn}^{\dagger} b_{sn} - t \, b_{sn+1}^{\dagger} b_{sn} + h.c. - \tau \, b_{-sn}^{\dagger} b_{sn} \right)$$
$$\hat{H}_{el} = \sum_{s,k} \left( \varepsilon_{sM} c_{sk}^{\dagger} c_{sk} - t_M c_{sk+1}^{\dagger} c_{sk} + h.c. \right)$$
$$\hat{H}_{DNA-el} = \sum_{s} \left( -\Gamma_{sl} \, c_{s0}^{\dagger} b_{s1} - \Gamma_{sr} \, c_{sN+1}^{\dagger} b_{sN} + h.c. \right)$$

A. V. Malyshev, Universidad Complutense, Madrid / Ioffe Institute, St. Petersburg

#### **Calculating current-voltage characteristics**



$$I(V_g, V_{sd}) = \frac{2e}{h} \int T(V_g, E) \left[ f_l(E, V_{sd}) - f_r(E, V_{sd}) \right] dE$$

$$f_{l,r}(E, V_{sd}) = \frac{1}{1 + e^{\frac{E_F \pm eV_{sd}/2 - E}{kT}}}$$

- $T(V_g, E)$  is the transmission coefficient
- $V_{sd}$  and  $V_g$  source-drain and gate voltages
- $E_F = 0$  is the Fermi energy at equilibrium

#### **Calculating current-voltage characteristics**



$$I(\mathbf{V_g}, V_{sd}) = \frac{2e}{h} \int T(\mathbf{V_g}, E) \left[ f_l(E, V_{sd}) - f_r(E, V_{sd}) \right] dE$$

$$f_{l,r}(E, V_{sd}) = \frac{1}{1 + e^{\frac{E_F \pm eV_{sd}/2 - E}{kT}}}$$

- $T(V_g, E)$  is the transmission coefficient
- $V_{sd}$  and  $V_g$  source-drain and gate voltages
- $E_F = 0$  is the Fermi energy at equilibrium

#### **Calculating current-voltage characteristics**



$$I(V_g, \mathbf{V_{sd}}) = \frac{2e}{h} \int T(V_g, E) \left[ f_l(E, \mathbf{V_{sd}}) - f_r(E, \mathbf{V_{sd}}) \right] dE$$

$$f_{l,r}(E, \mathbf{V_{sd}}) = \frac{1}{1 + e^{\frac{E_F \pm e\mathbf{V_{sd}}/2 - E}{kT}}}$$

- $T(V_g, E)$  is the transmission coefficient
- $V_{sd}$  and  $V_g$  source-drain and gate voltages
- $E_F = 0$  is the Fermi energy at equilibrium

## **Poly(G)-poly(C) DNA:** parameters

• 
$$N = 31 \ (L \approx 10.5 \text{nm}), \ T = 4K$$

• 
$$\varepsilon_G = 1.14 eV$$
,  $\varepsilon_C = -1.06 eV$  \*

• 
$$t = 0.27 eV$$
,  $\tau = 0.25 eV$ 

• 
$$\varepsilon_{sM} = E_F = 0$$
,  $t_M = 4 t^{\dagger}$ 

• 
$$\Gamma_{sl} = \Gamma_{sr} = t$$

- \* H. Mehrez and M. P. Anantram, Phys. Rev. B **71**, 115405 (2005)
- <sup>†</sup> R. Gutiérrez, S. Mohapatra, H. Cohen, D. Porath, and G. Cuniberti Phys. Rev. B **74**, 235105 (2006)

# $Poly(G)-poly(C) DNA: E_0 = 0$



# Gated poly(G)-poly(C) DNA: I-V curves



# **Poly(G)-poly(C) DNA: strong gating effect**



# Gated poly(G)-poly(C) DNA: I-V surface



#### Single molecule analog of the Esaki diode



$$V_g = \frac{2r}{L} \tan\left(\alpha\right) V_{sd}$$

#### Single molecule analog of the Esaki diode



#### Single molecule analog of the Esaki diode



#### **DNA conductivity: experimental set-ups**



#### **Proposed experimental set-ups**



Trapping:  $V_{sd} \sim 2V$ ,  $V_{g_1g_2} \sim 30V$   $V_{sd} \sim 2V$  $\alpha \sim 45^{\circ}$ 

Measurement:

### **DNA conductivity: experimental set-ups**

# Direct measurement of electrical transport through single DNA molecules of complex sequence

Hezy Cohen\*<sup>†</sup>, Claude Nogues\*<sup>†‡</sup>, Ron Naaman<sup>‡</sup>, and Danny Porath\*<sup>§</sup>

\*Physical Chemistry Department, Hebrew University, Jerusalem 91904, Israel; and <sup>‡</sup>Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 7



H. Cohen, C. Nogues, R. Naaman, D. Porath, Proc. Natl. Acad. Sci. 102, 11589, 2005

#### **Proposed experimental set-ups**



# Conclusions

• The intrinsic helix conformation of DNA strands determines electric transport properties of the gated double-stranded DNA.

# Conclusions

- The intrinsic helix conformation of DNA strands determines electric transport properties of the gated double-stranded DNA.
- Synthetic semiconducting DNA reveals strong gating effect, which implies various single molecule device applications.

# Conclusions

- The intrinsic helix conformation of DNA strands determines electric transport properties of the gated double-stranded DNA.
- Synthetic semiconducting DNA reveals strong gating effect, which implies various single molecule device applications.
- Tilted periodic DNA sandwiched between two electrodes is a single molecule analog of the Esaki diode

# Outlook

- Two experimental set-ups to observe the predicted effect can be proposed:
- A tilted DNA molecule electrostatically trapped between two contacts
- A DNA molecule tiled between the substrate and a nanoparticle suspended from an AFM tip
- Similar argumentation applies also to other helical systems,
  e. g., the G4-DNA or posiibly proteins.