

Influence of vibrational modes on the electronic properties of DNA

Benjamin B. Schmidt

Institut für Theoretische Festkörperphysik, Universität Karlsruhe (TFP) Institut für Nanotechnologie, Forschungszentrum Karlsruhe (INT)

in collaboration with:

Matthias H. Hettler (INT) Gerd Schön (TFP) Wolfgang Wenzel (INT) Jewgeni B. Starikov (INT)

Outline

- Motivation
- Model
- Technique
- Results
- Conclusion

Motivation

Electronic properties of DNA

- HOMO on guanine and adenine
- LUMO on cytosine and thymine
- large bandgap (~2eV) between
 HOMO and LUMO

consider hole transport (HOMO)
 single tight-binding site per base pair

Purves et al., Life: The Science of Biology, 4th Edition

Theoretical model: Hamiltonian

$$H = H_{\rm el} + H_{\rm L/R} + H_{\rm T,L} + H_{\rm T,R} + H_{\rm bath} + H_{\rm vib} + H_{\rm el-vib}$$

 $H_{\rm el}$: *tight-binding* chain with N elements (i.e. base pairs) (ϵ_i and t_{ij} from *ab initio* calculations)

$$H_{\rm el} = \sum_{i} \epsilon_i a_i^{\dagger} a_i + \sum_{\langle ij \rangle} t_{ij} a_i^{\dagger} a_j$$

 $H_{
m L/R}$: non-interacting electrodes $H_{
m T,L}/H_{
m T,R}$: hopping from electrode to adjacent base pair with strength $t_{
m L/R}$ (linewidth: $\Gamma_{
m L/R} = 2\pi \rho_e |t_{
m L/R}|^2$)

for details see BBS et al., Phys. Rev. B 75, 106711 (2007)

Vibrations and el-vib coupling

 $H_{\rm vib}$: vibrational modes of DNA-chain

$$H_{\rm vib} = \sum_{\alpha} \hbar \omega_{\alpha} B_{\alpha}^{\dagger} B_{\alpha}$$

 H_{el-vib} : local and non-local coupling of electronic and vibronic degrees of freedom of the DNA

$$H_{\text{el-vib}} = \sum_{i} \sum_{\alpha} \lambda_{0} a_{i}^{\dagger} a_{i} \left(B_{\alpha} + B_{\alpha}^{\dagger} \right)$$
$$+ \sum_{\langle ij \rangle} \sum_{\alpha} \lambda_{1} a_{i}^{\dagger} a_{j} \left(B_{\alpha} + B_{\alpha}^{\dagger} \right)$$

Vibrational modes in base pairs

λ ħω = 16 meV (GC)

examplary mode: Stretch

 \hbar ω = 11 meV (AT)

linear coupling to local energy $\pmb{\epsilon}$ and hopping t

|λ₀|≈1-10meV
 |λ₁|≈1-10meV

E. B. Starikov, Philos. Mag. 85, 3435 (2005)

Stretch

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Bath

 $H_{
m bath}$: vibrons coupled to (`ohmic') bath with high-frequency cut-off $\omega_{
m c}$

- bath allows for dissipation of electronic and vibronic energy
- vibrons change from discrete modes to continuous spectra

spectral function for single vibron with resonance ω_0 :

$$D(\omega) = \frac{1}{\pi} \left(\frac{\eta(\omega)}{(\omega - \omega_0)^2 + \eta(\omega)^2} - \frac{\eta(\omega)}{(\omega + \omega_0)^2 + \eta(\omega)^2} \right)$$

 $\eta(\omega)=0.05\,\omega\,\theta(\omega_c-\omega)~~{\rm (weak~coupling~to~ohmic~bath)}$

Technique

Lang-Firsov transformation:

$$\bar{H} = e^S H e^{-S} ; \ S = -\sum_{i\alpha} \frac{\lambda_0}{\omega_\alpha} a_i^{\dagger} a_i \left[B_{\alpha} - B_{\alpha}^{\dagger} \right]$$

transformed Hamiltonian:

$$\begin{split} \bar{H} &= \sum_{i} (\epsilon_{i} - \Delta) a_{i}^{\dagger} a_{i} - \sum_{i,j;i \neq j} t_{ij} a_{i}^{\dagger} a_{j} + H_{\mathrm{T,L}} + H_{\mathrm{T,R}} + H_{\mathrm{L}} + H_{\mathrm{R}} \\ &+ \sum_{\alpha} \sum_{i,j;i \neq j} \lambda_{1\alpha} a_{i}^{\dagger} a_{j} (B_{\alpha} + B_{\alpha}^{\dagger}) + H_{\mathrm{vib}} + H_{\mathrm{bath}} \\ \Delta &= \int d\omega D(\omega) \frac{\lambda_{0}^{2}}{\omega} \,. \end{split}$$
 (polaron shift)

Equation of Motion

retarded Green function:

$$G_{kl}^{\text{ret}}(t) = -i\theta(t) \left\langle \left\{ a_k(t)\chi(t), a_l^{\dagger}\chi^{\dagger} \right\} \right\rangle_{\bar{H}}$$
$$\chi = \exp\left[\sum_{\alpha} \frac{\lambda_0}{\omega_{\alpha}} \left(B_{\alpha} - B_{\alpha}^{\dagger} \right) \right]$$

equation of motion:

$$i\frac{\partial}{\partial t}G_{kl}^{\rm ret}(t) = \delta(t)\delta_{kl} - i\theta(t)\left\langle\left\{\left[a_k(t)\chi(t),\bar{H}\right],a_l^{\dagger}\chi^{\dagger}\right\}\right\rangle_{\bar{H}}$$

- hierarchy of higher order Green functions

- truncated at first level (first order in λ_1)

Calculation of the current

general relation by Meir and Wingreen (PRL **68**, 2512 (1992)) can be split into two parts:

$$I_{\rm el}(V) = \frac{e}{h} \int dE \left(f_{\rm L}(E) - f_{\rm R}(E) \right) \operatorname{Tr} \left\{ \Gamma_{\rm L} G^{\rm ret} \Gamma_{\rm R} G^{\rm adv} \right\}$$

$$I_{\rm inel}(V) = \frac{ie}{4h} \int dE \left(f_{\rm L}(E) - f_{\rm R}(E) \right) \operatorname{Tr} \left\{ \left(\Gamma_{\rm L} + \Gamma_{\rm R} \right) G^{\rm ret} \left(\Sigma_{\rm vib}^{\rm ret} - \Sigma_{\rm vib}^{\rm adv} \right) G^{\rm adv} \right\}$$

Galperin/Ratner/Nitzan J. Chem. Phys 121, 11968 (2004)

$$T_{\rm el}(E) = {\rm Tr}\left\{\Gamma_{\rm L}G^{\rm ret}\Gamma_{\rm R}G^{\rm adv}\right\}$$

for inelastic current use approximation

$$\Sigma_{\rm vib}^{<} = -\frac{f_{\rm L}(E) + f_{\rm R}(E)}{2} \left(\Sigma_{\rm vib}^{\rm ret} - \Sigma_{\rm vib}^{\rm adv}\right)$$

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Results: homogeneous DNA

ε_c= -0.35eV

Poly(G-C) (26 base pairs)

- local energy:
- Fermi energy: $E_{F} = 0 eV$
- temperature: T = 300K
- vibrational energy: ħω₀=10meV
 - linewidth:
- Γ=100meV

asymmetry and change in bandwidth due to non-local coupling

Results: zero bias conductance

coupling to
increase of conductance at low temperatures
decrease of conductance at high temperatures

Results: inhomogeneous DNA

5' - CAT TAA TGC TAT GCA GAA AAT CTT AG - 3'

- local energy: $\epsilon_{_{G}}$ = -0.35eV, $\epsilon_{_{A}}$ = -0.86eV
- Fermi energy: $E_{F} = 0 eV$
- temperature: T = 300K

- vibrational energy: ħω₀=10meV
- linewidth: Γ=100meV

Results: dependence on Γ

non-monotonic dependence of current on Γ $\Gamma_{max} = Im\{\Sigma_{vib}\} {\approx} 0.01 eV$

Conclusion

- current dominated by: elastic contribution
 homogeneous DNA inelastic contribution
 inhomogeneous DNA
- electron-vibron coupling:

increase of conductance at low temperatures decrease of conductance at high temperatures

- non-local electron-vibron coupling: asymmetry and increase in bandwidth inhomogeneous DNA <--> change of IV-characteristics
- non-monotonic dependence of current on Γ

higher order Green functions

for example:

$$\left\langle a_j(t)B_{\alpha}(t)\chi(t)a_l^{\dagger}\chi^{\dagger}\right\rangle \approx F_{\alpha}(t)\left\langle a_j(t)\chi(t)a_l^{\dagger}\chi^{\dagger}\right\rangle$$

assuming no el-vib coupling:

$$\left\langle a_j(t)B_{\alpha}(t)\chi(t)a_l^{\dagger}\chi^{\dagger}\right\rangle_{H_0} = F_{\alpha}(t)\left\langle a_j(t)\chi(t)a_l^{\dagger}\chi^{\dagger}\right\rangle_{H_0}$$

where

$$F_{\alpha}(t) = (N(\Omega_{\alpha}) + 1) e^{-i\Omega_{\alpha}t} - N(\Omega_{\alpha}) e^{i\Omega_{\alpha}t}$$

