Hofstadter butterflies of graphene layers and carbon nanotubes

Norbert Nemec

Molecular Computing Group Institut für theoretische Physik Universität Regensburg

Molecular Computing

Universität Regensburg

• N. Nemec and G. Cuniberti, Phys. Rev. B (Rapid Comm.) to appear [cond-mat/0612369]

• N. Nemec and G. Cuniberti, Phys. Rev. B 74, 165411 (2006)

http://www-MCG.uni-R.de/

Outline

- Motivation: anomalous QHE in graphene layers
- Theory:

graphene band structure and magnetoelectronic spectrum

http://www-MCG.uni-R.de/

- Bilayer graphene: effects of interlayer interaction beyond Bernal stacking
- Double wall carbon nanotubes: varying stacking around the circumference

Molecular Computing

Motivation: Graphene

Meyer et al., Nature 446, 60-63 (2007)

(remember: HL 37.5 this morning)

Molecular Computing

http://www-MCG.uni-R.de/

Motivation: Quantum Hall effect (QHE)

2D semiconductor $\sigma_{xy} = \frac{e^2}{h} g_s n$

von Klitzing et al., Phys. Rev. Lett. 45, 494 (1980)

Molecular Computing

http://www-MCG.uni-R.de/

Odd-integer QHE in graphene

Zhang et al. / Novoselov et al., Nature 438 (2006)

Molecular Computing

http://www-MCG.uni-R.de/

Nonzero QHE in bilayer graphene

Novoselov et al., Nat. Phys. 2, 177-180 (2006)

Molecular Computing

http://www-MCG.uni-R.de/

Theory: Peierls substitution

$$\gamma_{ij}(\boldsymbol{B}) = \gamma_{ij}^{0} \exp\left(\frac{2\pi i}{\Phi_0} \int_{\boldsymbol{r}_i}^{\boldsymbol{r}_j} d\boldsymbol{r} \cdot \boldsymbol{A}(\boldsymbol{r})\right)$$

magnetic field: $B(r) = \nabla \times A(r)$ gauge field: A(r) (*"vector potential"*) flux quantum: $\Phi_0 = h/e$

Peierls, Z. Phys. 80, 763 (1933)

Phase of circular path given by enclosed area F:

$$\varphi_{i \to j \to k \to i} = \exp\left(2\pi \mathrm{i}\frac{FB_{\perp}}{\Phi_0}\right)$$

Molecular Computing

http://www-MCG.uni-R.de/

The original Hofstadter butterfly (I)

Molecular Computing

http://www-MCG.uni-R.de/

The original Hofstadter butterfly (II)

The original Hofstadter butterfly

Molecular Computing http://

http://www-MCG.uni-R.de/ Unive

1975 in Regensburg...

D. Hofstadter G. Wannier G. Obermair

HP 9820A ("Rumpelstilzchen") (8MHz/16bit CPU, 3432 byte RAM...)

Phys. Rev. B 14, 2239 (1976)

Molecular Computing

http://www-MCG.uni-R.de/

Conventional Landau levels

Molecular Computing

http://www-MCG.uni-R.de/

Band structure of graphene

• •

hexagonal lattice, 2-atom basis:

$$\mathcal{H}(\boldsymbol{k}) = \varepsilon_0 - \gamma_0 \begin{pmatrix} 0 & 1 + e^{ika_1} + e^{ika_2} \\ 1 + e^{-ika_1} + e^{-ika_2} & 0 \end{pmatrix}$$

$$E(\boldsymbol{k}) = \varepsilon_0 \pm \gamma_0 |1 + e^{i\boldsymbol{k}\boldsymbol{a}_1} + e^{i\boldsymbol{k}\boldsymbol{a}_2}|$$

$$\Rightarrow \text{ pointlike Fermi-"surface"}^{1}$$

$$\Rightarrow \text{ semi-metallic character}^{2}$$

$$\Rightarrow \text{ massless bands at } E_{\text{F}}$$

$$(\text{Dirac-like theory)}$$

Wallace, Phys. Rev. 71, 622 (1947)

Molecular Computing

http://www-MCG.uni-R.de/

Hofstadter butterfly of graphene

Rammal, J. Phys. (Paris) 46, 1345 (1985)

(standard) Landau levels ("LL"): $E - E_{\min} \propto \frac{\hbar e}{m^*} B\left(n + \frac{1}{2}\right)$ $E_{\max} - E \propto \frac{\hbar e}{m^*} B\left(n + \frac{1}{2}\right)$

effective mass:
$$m^* = \frac{2\hbar^2}{\gamma a^2}$$

Molecular Computing

http://www-MCG.uni-R.de/

Hofstadter butterfly of graphene

(standard) Landau levels ("LL"): $E - E_{\min} \propto \frac{\hbar e}{m^*} B\left(n + \frac{1}{2}\right)$ $E_{\max} - E \propto \frac{\hbar e}{m^*} B\left(n + \frac{1}{2}\right)$

relativistic LL: $(v_{\rm F} = \sqrt{3}\gamma a/2\hbar)$ $E - E_{\rm F} = \pm v_{\rm F}\sqrt{2e\hbar B n}$

supersymmetric LL ("SuSyLL"): $E = E_{\rm F}$

Molecular Computing

http://www-MCG.uni-R.de/

Hofstadter butterfly of graphene

 $B_0^{\perp} = \Phi_0 / A_{\text{plaquette}}$ $\approx 79 \,\text{kT} \,(!!)$

Molecular Computing

http://www-MCG.uni-R.de/

Graphene nanoribbon

Molecular Computing

http://www-MCG.uni-R.de/

Hofstadter butterfly of bilayer graphene

Bernalstacking

broken symmetries: $\rightarrow \Phi_0$ -periodicity \rightarrow electron-hole

SuSyLL protected by symmetry

Molecular Computing

see also: Novoselov et al., Nature Physics 2, 177 (2006)

Universität Regensburg

http://www-MCG.uni-R.de/

e-h asymmetry

Bernalstacking

Molecular Computing

Universität Regensburg

N. Nemec and G. Cuniberti, Phys. Rev. B (Rapid Comm.) to appear. [cond-mat/0612369] 🛵

http://www-MCG.uni-R.de/

Shifted bilayer graphene

Molecular Computing

http://www-MCG.uni-R.de/

N. Nemec and G. Cuniberti, Phys. Rev. B (Rapid Comm.) to appear. [cond-mat/0612369] 🛵

Split of the SUSYLL

Bernal stacking: SuSyLL protected against split

Shifted configurations: SuSyLL split by varying amounts

Molecular Computing

http://www-MCG.uni-R.de/

.uni-R.de/ Universität Regensburg

Split of the SUSYLL

Bernal stacking: SuSyLL protected against split

Shifted configurations: SuSyLL split by varying amounts

Molecular Computing

Universität Regensburg

http://www-MCG.uni-R.de/

Carbon nanotubes at accessible fields

• scaling behavior: $\text{DOS}_{(m,m)}(E, \mathbf{B}) = \text{DOS}_{(m',m')}\left(\frac{m}{m'}E, \frac{m^2}{{m'}^2}\mathbf{B}\right)$

http://www-MCG.uni-R.de/

Molecular Computing

N. Nemec and G. Cuniberti, Phys. Rev. B 74, 165411 (2006)

Inter-shell effects in MWCNT

• no interaction \Rightarrow DOS = DOS_{inner} + DOS_{outer}

http://www-MCG.uni-R.de/

Molecular Computing

Inter-shell effects in MWCNT

- no interaction \Rightarrow DOS = DOS_{inner} + DOS_{outer}
- SuSyLL split up by intershell-interaction

work in progress 🌡

Inter-shell effects in MWCNT

 $\Delta E \approx 0.1 \,\mathrm{eV}$ independent of relative positions !!

Molecular Computing

http://www-MCG.uni-R.de/

Summary

- Graphene: *Dirac electrons* at $E_{\rm F} \rightarrow$ relativistic LL & SuSyLL
- SuSyLL in graphene: ΔE_{SuSy} varies with relative shift of layers

http://www-MCG.uni-R.de/

• DWCNT: $\Delta E_{\rm SuSy} \approx 0.1 \, {\rm eV}$

Outlook

- more detailed modelling of interlayer interaction
- effects on magnetotransport e.g. Fabry-Perot, *see also: HL 49.1, 17³⁰ (H17)*
- role of defects see also: HL 49.3, 18⁰⁰ (H17)

Molecular Computing

