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Nanotubes




Crystal structure
of graphene:
Two sublattices




Spectrum near K (K”) points is linear.
Conical cross-points: provided by
symmetry and thus robust property

v




If Umklapp-processes K-K’ are neglected:
2D Dirac massless fermions with the Hamiltonian

“Spin indices” label sublattices A and B
rather than real spin




K. Novoselov et al,
Nature 2005;

Y. Zhang et al, Nature
2005

Square-root dependence
of the cyclotron mass
on the charge-carrier
concentration

n (1012 ¢cm-2)
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The lowest Landau level is at ZERO energy
and shared equally by electrons and holes




Oxy (4€2/h)

Single-layer: half-integer
guantization since zero-
energy Landau level has
twice smaller degeneracy

Bilayer: integer quantization
but no zero-v plateau
(chiral fermions with
parabolic gapless spectrum




Atiyah-Singer index theorem: number of chiral
modes with zero energy for massless Dirac
fermions with gauge fields

Simplest case: 2D, electromagnetic field

(magnetic flux in units of the flux quantum)




no femperature
dependence
in the peak
between 3 and 80K

zero-gap
semiconductor




At zero doping there 1s a finite minimal
conductivity approximately e2/h per channel

(do not mix with conductance quantization in
ballistic regime)

Amazing property of 2D massless
particles: finite conductivity for 1deal
crystal — no scattering, no current
carriers!




Conductance = €%/h Tr T per valley per spin

T 1s the transmission probability matrix

The wave functions of massless
Dirac fermions at zero energy:

Boundary conditions determine the functions




Edge states near the top and bottom of the sample




Leads from doped graphene
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The problem of “missing pi(e)




For Dirac particles the

current operator does
not commute with the
Hamiltonian of free-
motion

The reason:
Indeterminacy of the
electron coordinate
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and electron-hole pair (@ vp/h is the particle frequency

creation at the
electron motion




Kubo formula for conductivity
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Indeterminacy Oeco due to Zitterbewegung
Resulting static conductivity of order of e?/h




Electronics: heterostructures (p-n-p junctions etc.)

Classical particles: cannot propagate through
potential barriers

Quantum particles: can propagate (tunneling) but
probability decays exponentially with barrier
height and width

Ultrarelativistic quantum particles: can propagate
with the probability of order of unity (Klein
paradox)




Ultrarelativisic

Nonrelativistic

Tunnel effect: momentum and coordinate
are complementary variables, kinetic and potential
energy are not measurable simultaneously

Relativistic case: even the coordinate itself is not
measurable, particle-antiparticle pair creation




Transmission probability

Barrier width 100 nm

Electron concentration
outside barrier 0.5x1012 cm>

Hole concentration

inside barrier 1x101? cm™
(red) and 3x10'2 cm™ (blue)




A problem: graphene transistor
can hardly be locked!

Possible solution: use bilayer

graphene: chiral fermions with
parabolic spectrum — no analogue
in particle physics!

Transmission for bilayer;
parameters are the same as for
previous slide




Back scattering 1s
forbidden for chiral
fermions!

Unusual transport
properties

Electrons cannot be locked by random potential
relief neither for singe-layer nor for bilayer
graphene — absence of localization and minimal
conductivity?




Mott's argument: |2y
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(in the absence of localization)
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graphene membrane
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Nature)

in
2D crystals 1n

. C. Meyer et al,

to appear

3D space

cannot be flat, due to
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Suppression of weak

localization...




Deformation tensor in the plane
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coordinates in the plane

displacement vector

m displacements normal to the plane




Nearest-neighbour approximation: changes of
hopping integrals

H = vpo (—?IHV _ ZA)

K and K’ points are shifted
In opposite directions;
Umklapp processes
restore time-reversal
symmetry




e Weakening of scattering by finite-
radius potentials for massless Dirac
fermions in comparison with normal
2D electron gas

e “Vacuum polarization” effects
(electron-hole pair creation near
charge impurities) and strong
nonlinear screening




Contribution of point defects to resistivity p




df, (r) 1 +1 j

dr r hop

dgi(r) [ 0
dr ro hop

E—-V ()] filr) =0

where [ = 0,41, ... is the angular-momentum quantum number. g; (r) e’ and f; (r) e"+0%
are components of Dirac pseudospinor; to be specific we will consider the case of electrons

E = hvpk > 0.



Wave functions beyond the range of action
of potential

Scattering
Cross section:




Exact symmetry for massless fermions:

f«—— g.,l «—— —[— 1 which means t;, =1_;_;4

AS a consequence




Exact symmetry for massless fermions:

f«—— g.,l «—— —[— 1 which means t;, =1_;_;4

AS a consequence




Vi(r)=Vyatr < Rand V (r) = 0 otherwise

Ji (qR) Jiy1 (kR) — Ji (ER) Ji41 (¢R)
 H"Y (kR) Jiy1 (qR) — J (qR) H}, (kR)




s-scattering ([ = 0) dominates

Estimation of the resistivity
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The same result as for resonant scattering
for massless Dirac fermions!




Coulomb potential

Scattering cross section o Is proportional
to 1/k, leading term to resistivity
(concentration independent mobility)




Rigorous expression for total potential




Effective impurity
charge

Inverse linear
screening radius

A very strong suppression: tens of times




Experimentally: mobility is approximately
concetration independent but is rather weakly
sensitive to adding of charge impurities

Nonlinear screening: a controversial issue
(Thomas-Fermi theory beyond formal limit of its
applicability)




Scattering by
random vector
potential:

Random potential due to surface curvature

h \
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Assumption: intrinsic ripples due to thermal
fluctuations




Harmonic
approximation

Small g: anharmonic

coupling of bending
and stretching phonons

Crossover wave vector:




Ripples quenched at
room temperature:

For the case ]{‘F > q*

28 The same

i((]OT/h) concentration

— 5 dependence as
de 1 for charge

Impurities

pN




Relativistic effects are of crucial importance for
graphene physics and applications (minimal
conductivity, absence of localization, carbon
transistors...)

Exotic phenomena in everyday’s life (e.g., Klein
paradox)

Some interesting physics beyond particle physics

(e.g., bilayer — chiral fermions with parabolic
spectrum
Important: “finite-structure constant” is larger

than 1 (e.g., strong suppression of Coulomb
potential due to “nulification” )




