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Allotropes of CarbonAllotropes of Carbon

Diamond GraphiteDiamond, Graphite

GrapheneGraphene

NanotubesNanotubes FullerenesFullerenes



TightTight--binding description of the binding description of the 
l il ielectronic structureelectronic structure

Crystal structureCrystal structure
of graphene:of graphene:
Two sublatticesTwo sublattices



Massless Dirac fermionsMassless Dirac fermions

Spectrum near K (K’) points is linear.Spectrum near K (K ) points is linear. 
Conical cross-points: provided by 
symmetry and thus robust propertysymmetry and thus robust property

U d dU d d El tEl t llUndopedUndoped ElectronElectron HoleHole



Massless Dirac fermions IIMassless Dirac fermions II

If Umklapp-processes K-K’ are neglected:
2D Dirac massless fermions with the Hamiltonian
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ac
i

y
i

xciH 0
**

2
3

0

0
γ=

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

∂
+

∂
∂

−
∂−= hh

y
i

x
0 ⎟

⎠
⎜
⎝ ∂

+
∂

“Spin indices’’ label sublattices A and B
rather than real spinrather than real spinpp



Experimental confirmation: Schubnikov Experimental confirmation: Schubnikov 
–– de Haas effect + anomalous QHEde Haas effect + anomalous QHE

K. Novoselov et al, 
Nature 2005; 

Y Zh t l N tY. Zhang et al, Nature 
2005

Square-root dependence
of the cyclotron mass
on the  charge-carrier
concentration



Anomalous Quantum Hall Effect
EN =[2ehc∗2B(N + ½ ± ½)]1/2E =hc∗k

Q

pseudospin

hωC

E =0N =0E =0
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N =2
N =1

N 3
N =4
N =3

The lowest Landau level is at ZERO energy
and shared equally by electrons and holes



Anomalous QHE in singleAnomalous QHE in single-- andand
bilayer graphenebilayer graphenebilayer graphenebilayer graphene

Single-layer: half-integer
quantization since zero-
energy Landau level has 
twice smaller degeneracytwice smaller degeneracy

Bilayer: integer quantization
but no zero-ν plateau
(chiral fermions with
parabolic gapless spectrum)



HalfHalf--integer quantum Hall effect integer quantum Hall effect 
and “index theorem”and “index theorem”and index theoremand index theorem

AtiyahAtiyah--Singer index theorem: number of chiralSinger index theorem: number of chiralAtiyahAtiyah--Singer index theorem: number of chiralSinger index theorem: number of chiral
modes with zero energy for massless Dirac modes with zero energy for massless Dirac 

fermions with gauge fieldsfermions with gauge fieldsfermions with gauge fieldsfermions with gauge fields

Simplest case: 2D, electromagnetic field

0/φφ=− NN 0/φφ−+ NN
(magnetic flux in units of the flux quantum)( g q )



Quantum-Limited Resistivity
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Problem of minimal conductivityProblem of minimal conductivityyy

At zero doping there is a finite minimal p g
conductivity approximately e2/h per channel

(do not mix with (do not mix with conductanceconductance quantization inquantization in
ballistic regime)ballistic regime)

Amazing property of 2D masslessAmazing property of 2D massless 
particles:  finite conductivity for ideal 

crystal – no scattering, no currentcrystal no scattering,  no current 
carriers!



Landauer formula approachLandauer formula approach

Conductance = e2/h Tr T per valley per spin

T T is the transmission probability matrixis the transmission probability matrix

The wave functions of masslessThe wave functions of massless
Dirac fermions at zero energy:
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Boundary conditions determine the functions f



Landauer formula II
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Edge states near the top and bottom of the sample



Landauer formula IIILandauer formula III
Leads from doped grapheneLeads from doped graphene

Conductivity per channel:Conductivity per channel:y py p

The problem of “missing pi(e)”!The problem of “missing pi(e)”!



Minimal conductivity Minimal conductivity andand
ZitterbewegungZitterbewegungZitterbewegungZitterbewegung

For Dirac particles theFor Dirac particles the 
current operator does 
not commute with the 
Hamiltonian of free-
motion 

The reason: 
indeterminacy of the 
electron coordinate 
and electron-hole pair 
creation at thecreation at the 
electron motion



Minimal conductivity Minimal conductivity andandyy
Zitterbewegung IIZitterbewegung II

Kubo formula for conductivityKubo formula for conductivity

I d t i 0 d t Zitt bI d t i 0 d t Zitt bIndeterminacy 0•∞ due to ZitterbewegungIndeterminacy 0•∞ due to Zitterbewegung
Resulting static conductivity of order of eResulting static conductivity of order of e22/h/h



Chiral tunneling and Klein paradoxChiral tunneling and Klein paradox

Electronics:Electronics: heterostructures (heterostructures (pp--nn--pp junctions etc.)junctions etc.)Electronics:Electronics: heterostructures (heterostructures (pp nn pp junctions etc.)junctions etc.)

Classical particles:Classical particles: cannot propagate through cannot propagate through 
t ti l b it ti l b ipotential barrierspotential barriers

Quantum particles:Quantum particles: can propagate (tunneling) butcan propagate (tunneling) but
b bilit d ti ll ith b ib bilit d ti ll ith b iprobability decays exponentially with barrierprobability decays exponentially with barrier

height and widthheight and width
Ult l ti i ti t ti lUlt l ti i ti t ti l ttUltrarelativistic quantum particles:Ultrarelativistic quantum particles: can propagatecan propagate
with the probability of order of unity (Kleinwith the probability of order of unity (Klein
parado )parado )paradox)paradox)



Klein paradox IIKlein paradox II

Ult l ti i iUlt l ti i iUltrarelativisicUltrarelativisic

N l ti i tiN l ti i tiNonrelativisticNonrelativistic

Tunnel effect: momentum and coordinate Tunnel effect: momentum and coordinate 
are complementary variables, kinetic and potentialare complementary variables, kinetic and potential
energy are not measurable simultaneouslyenergy are not measurable simultaneously

R l ti i ti thR l ti i ti th di t it lfdi t it lf i ti tRelativistic case: even the Relativistic case: even the coordinate itselfcoordinate itself is not is not 
measurable, particlemeasurable, particle--antiparticle pair creationantiparticle pair creation



Klein paradox IIIKlein paradox III

Transmission probabilityTransmission probability

Barrier width 100 Barrier width 100 nmnm

Electron concentrationElectron concentration
id b i 0 5 10id b i 0 5 101212 22outside barrier 0.5x10outside barrier 0.5x1012 12 cmcm--22

H l iH l iHole concentrationHole concentration
inside barrier 1x10inside barrier 1x101212 cmcm--2 2 

( d) d 3 10( d) d 3 101212 22 (bl )(bl )(red) and 3x10(red) and 3x101212 cmcm--22 (blue)(blue)



Klein paradox IVKlein paradox IV
A problem: graphene transistor A problem: graphene transistor 
can hardl be locked!can hardl be locked!can hardly be locked!can hardly be locked!

Possible sol tion: sePossible sol tion: se bila erbila erPossible solution: use Possible solution: use bilayerbilayer
graphene: graphene: chiral fermions withchiral fermions with
parabolic spectrumparabolic spectrum no analogueno analogueparabolic spectrum parabolic spectrum –– no analogueno analogue
in particle physics!in particle physics!

Transmission for bilayer; Transmission for bilayer; 
parameters are the same as forparameters are the same as forparameters are the same as for parameters are the same as for 
previous slideprevious slide



Klein paradox and the absence ofKlein paradox and the absence of
l li il li ilocalizationlocalization

Back scattering isBack scattering isBack scattering isBack scattering is
forbidden for chiralforbidden for chiral
fermions! fermions! e o s!e o s!

Unusual transport Unusual transport U usu spoU usu spo
propertiesproperties

Electrons cannot be locked by random potential Electrons cannot be locked by random potential 
relief neither for singerelief neither for singe--layer nor for bilayerlayer nor for bilayergg y yy y

graphene graphene –– absence of localization and minimalabsence of localization and minimal
conductivity?conductivity?



Quantum-Limited Resistivity
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Ripples on graphene: Dirac Ripples on graphene: Dirac 
fermions in curved spacefermions in curved spacefermions in curved spacefermions in curved space

Freely suspendedFreely suspended
h bh bgraphene membranegraphene membrane

(J. C. Meyer et al,(J. C. Meyer et al,
to appear into appear in NatureNature))to appear in to appear in NatureNature))
2D crystals in 3D space 2D crystals in 3D space 
cannot be flat due tocannot be flat due tocannot be flat, due to cannot be flat, due to 
bending instabilitybending instability
Random shifts of Dirac Random shifts of Dirac a do s ts o aca do s ts o ac
points: gauge field points: gauge field 
acting on electronsacting on electronsgg
Suppression of weakSuppression of weak
localization…localization…



Pseudomagnetic fields due to ripplesPseudomagnetic fields due to ripples

Deformation tensor in the plane

coordinates in the plane

displacement vector

displacements normal to the plane



Pseudomagnetic fields IIPseudomagnetic fields II

Nearest-neighbour approximation: changes of
h i i t lhopping integrals  

“Vector potentials”
K and K’ points are shifted
in opposite directions;
Umklapp processes 
restore time reversalrestore time-reversal 
symmetry



Relativistic effects and scattering Relativistic effects and scattering 
h i i hh i i hmechanisms in graphenemechanisms in graphene

Weakening of scattering by finite-Weakening of scattering by finite
radius potentials for massless Dirac 
fermions in comparison with normalfermions in comparison with normal 
2D electron gas
“Vacuum polarization” effectsVacuum polarization  effects 
(electron-hole pair creation near 
charge impurities) and strongcharge impurities) and strong 
nonlinear screening



Scattering by point defects:Scattering by point defects:
Contribution to transport propertiesContribution to transport propertiesContribution to transport propertiesContribution to transport properties

Contribution of point defects to resistivity ρContribution of point defects to resistivity ρ



Radial Dirac equationRadial Dirac equation



Scattering cross sectionScattering cross section
Wave functions beyond the range of action
of potentialp

ScatteringScattering
cross section: 



Scattering cross section IIScattering cross section II
Exact symmetry for massless fermions:

As a consequence



Scattering cross section IIScattering cross section II
Exact symmetry for massless fermions:

As a consequence



Cylindrical potential wellCylindrical potential well



Small energy case kR Small energy case kR « 1« 1

Estimation of the resistivityEstimation of the resistivity



Resonant scattering caseResonant scattering case

Much larger resistivity

Nonrelativistic case:

Th lt f t tt iThe same result as for resonant scattering
for massless Dirac fermions!



Charge impuritiesCharge impurities

Coulomb potential 

Scattering cross section σ is proportional 
to 1/k, leading term to resistivity 
(concentration independent mobility)

(Nomura & MacDonald, PRL 2006; 
Ando, JPSJ 2006 – linear screening theory)



Nonlinear screeningNonlinear screening
MIK, PR B 74, 201401(R) (2006)

Rigorous expression for total potential

Thomas-Fermi theory



Suppression of the screeningSuppression of the screening

Effective impurity 
charge

Inverse linear 
screening radiusscreening radius

A very strong suppression: tens of times



Main scattering mechanismMain scattering mechanism

Experimentally: mobility is approximately 
concetration independent but is rather weakly 
sensitive to adding of charge impurities

Nonlinear screening: a controversial issue
(Thomas-Fermi theory beyond formal limit of its(Thomas Fermi theory beyond formal limit of its
applicability)

A hypothesis: scattering by ripples



Main scattering mechanism IIMain scattering mechanism II

Scattering by 
d trandom vector 

potential:

Random potential due to surface curvature

Assumption: intrinsic ripples due to thermal
fluctuations



Main scattering mechanism IIIMain scattering mechanism III

Harmonic 
approximation

Small q: anharmonic
coupling of bending

d t t hi hand stretching phonons
(D. Nelson et. al.)

Crossover wave vector:



Main scattering mechanism IVMain scattering mechanism IV
Ripples quenched at
room temperature:room temperature:

For the case

The same 
concentrationco ce t at o
dependence as 
for charge g
impurities 



Conclusions and final remarksConclusions and final remarks
Relativistic effects are of crucial importance for 
graphene physics and applications (minimal 
conductivity absence of localization carbonconductivity, absence of localization, carbon 
transistors…)
Exotic phenomena in everyday’s life (e.g., Klein 
paradox)paradox) 
Some interesting physics beyond particle physics 
(e.g., bilayer – chiral fermions with parabolic 
spectrumspectrum
Important: “finite-structure constant” is larger 
than 1 (e.g., strong suppression of Coulomb 
potential due to “nulification” )potential due to nulification  )


